5 Conclusions
In conclusion, evolutionary analysis suggests that INHs are essential
for the regulation of sucrose metabolism in vascular plants, by
balancing VIN activity. We demonstrated that PpINH1 interacts with
PpVIN2 and inhibits VIN activity in peach fruit. Upregulation ofPpINH1 expression in trehalose-treated peaches resulted in
decreased VIN activity, which slowed sucrose decomposition thereby
enhancing chilling resistance. Our findings provide new insight into the
regulation of sucrose metabolism during chilling stress in peach fruit,
and has implications for developing more effective postharvest treatment
methods and breeding fruits with cold tolerant genotypes.
ACKNOWLEDGEMENTS
The research was supported by the National Key R&D Program of China
(No. 2018YFD1000200) and National Science Foundation of China (No.
31671903; 31972124).
CONFLICT OF INTEREST
Authors declare no conflicts of interest.
References:
Albert, V. A., Barbazuk, W. B., Depamphilis, C. W., Der, J. P.,
Leebens-Mack, J., Ma, H., … & Soltis, D. E. (2013). The Amborella
genome and the evolution of flowering plants. Science, 342(6165) ,
1241089. 10.1126/science.1241089
Bate, N. J., Niu, X., Wang, Y.,
Reimann, K.S., & Helentjaris, T.G. (2004). An invertase inhibitor from
maize localizes to the embryo surrounding region during early kernel
development. Plant Physiology , 134(1) , 246-254.
https://doi.org/10.1104/pp.103.027466
Benaroudj, N., Lee, D.H., & Goldberg, A.L. (2001). Trehalose
accumulation during cellular stress protects cells and cellular proteins
from damage by oxygen radicals. Journal of biological chemistry ,276(26) , 24261-24267. https://doi.org/10.1074/jbc.M101487200
Borsani, J., Budde, C.O, Porrini, L., Lauxmann, M.A., Lombardo, V.A.,
Murray, R., … Lara, M.V. (2009). Carbon metabolism of peach fruit
after harvest: changes in enzymes involved in organic acid and sugar
level modifications. Journal of Experimental Botany ,60(6) , 1823-1837. https://doi.org/10.1093/jxb/erp055
Brummell, D.A., Chen, R.K.Y., Harris, J.C., Zhang, H., Cyril, H.,
Kralicek, A.V., & Mckenzie, M.J. (2011). Induction of vacuolar
invertase inhibitor mRNA in potato tubers contributes to cold-induced
sweetening resistance and includes spliced hybrid mRNA variants.Journal of Experimental Botany , 62(10) , 3519-3534.
https://doi.org/10.1093/jxb/err043
Castrillón-Arbeláez, P.A., & Délano-Frier, J.P. (2011). The sweet side
of inhibition: invertase inhibitors and their importance in plant
development and stress responses. Current Enzyme Inhibition ,7(3) , 169-177. https://doi.org/10.2174/157340811798807588
Ding, F., Wang, R. (2018). Amelioration of postharvest chilling stress
by trehalose in pepper. Scientia Horticulturae , 232 ,
52-56. https://doi.org/10.1016/j.scienta.2017.12.053
Draffehn, A.M., Meller, S., Li, L., & Gebhardt, C. (2010). Natural
diversity of potato (Solanum tuberosum ) invertases. BMC
Plant Biology , 10 , 271. https://doi.org/10.1186/1471-2229-10-271
Elbein, A.D., Pan, Y.T., Pastuszak, I., & Carroll, D. (2003). New
insights on trehalose: a multifunctional molecule. Glycobiology ,13(4) , 17R–27R.
https://doi.org/10.1093/glycob/cwg047
Glass, F., Härtel, B., Zehrmann, A., Verbitskiy, D., & Takenaka, M.
(2015). MEF13 requires MORF3 and MORF8 for RNA editing at eight targets
in mitochondrial mRNAs in Arabidopsis thaliana . Molecular
Plant , 8 , 1466-1477.
https://doi.org/10.1016/j.molp.2015.05.008
Greiner, S., Krausgrill, S., & Rausch, T. (1998). Cloning of a tobacco
apoplasmic invertase inhibitor proof of function of the recombinant
protein and expression analysis during plant development. Plant
Physiology , 116(2) , 733-742.
https://doi.org/10.1104/pp.116.2.733
He, X., Wei, Y., Kou, J., Xu, F., Chen, Z., & Shao, X. (2018).PpVIN2 , an acid invertase gene family member, is sensitive to
chilling temperature and affects sucrose metabolism in postharvest peach
fruit. Plant Growth Regulation , 1-12 .
https://doi.org/10.1007/s10725-018-0419-z
Hothorn, M., D’Angelo, I., Márquez, J.A., Greiner, S., & Scheffzek, K.
(2004a). The invertase inhibitor Nt-CIF from tobacco: a highly
thermostable four-helix bundle with an unusual N-terminal extension.Journal of Molecular Biology , 335 , 987-995.
https://doi.org/10.1016/j.jmb.2003.10.066
Hothorn, M., Ende, W.V., Lammens, W., Rybin, V., & Scheffzek, K.
(2010). Structural insights into the pH-controlled targeting of plant
cell-wall invertase by a specific inhibitor protein. Proceedings
of the National Academy of Sciences of the United States of America ,107(40) , 17427-17432.
https://doi.org/10.1073/pnas.1004481107
Hothorn, M., Wolf, S., Aloy, P., Greiner, S., & Scheffzek, K. (2004b).
Structural insights into the target specificity of plant invertase and
pectin methylesterase inhibitory proteins. Plant Cell ,16(12) , 3437-3447. https://doi.org/10.1105/tpc.104.025684
Keunen, E., Peshev, D.,
Vangronsveld, J., Wim, V. D. E., & Cuypers, A. (2013). Plant sugars are
crucial players in the oxidative challenge during abiotic stress:
extending the traditional concept. Plant, Cell & Environment ,36(7) , 1242-1255. https://doi.org/10.1111/pce.12061
Kosar, F., Akram, N.A., Sadiq, M., Al-Qurainy, F., & Ashraf, M. (2019).
Trehalose: a key organic osmolyte effectively involved in plant abiotic
stress tolerance. Journal of Plant Growth
Regulation , 38(2) , 606-618.
https://doi.org/10.1007/s00344-018-9876-x
Lammens, W., Roy, K.L, Yuan, S., Vergauwen, R., Rabijns, A., Laere,
A.V., … Ende, W.V. (2012). Crystal structure of 6-SST/6-SFT from
Pachysandra terminalis, a plant fructan biosynthesizing enzyme in
complex with its acceptor substrate 6-kestose. The Plant Journal ,70 , 205-219.
https://doi.org/10.1111/j.1365-313X.2011.04858.x
Leebens-Mack, J.H., Barker, M.S., Carpenter, E.J., Deyholos, M.K.,
Gitzendanner, M.A., Graham, S.W., … Wong, G.K.S. (2019). One
thousand plant transcriptomes and the phylogenomics of green plants.Nature . 574 , 679–685
https://doi.org/10.1038/s41586-019-1693-2
Li, X., Xu, Y., Shen, S., Yin, X., Klee, H., Zhang, B., & Chen, K.
(2017). Transcription factor CitERF71 activates the terpene synthase
gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange
fruit. Journal of Experimental Botany . 68(17) , 4929-4938.
https://doi.org/10.1093/jxb/erx316
Lin, Y., Liu, J., Liu, X., Ou, Y., Li, M., Zhang, H., Song, B., & Xie,
C. (2013). Interaction proteins of invertase and invertase inhibitor in
cold-stored potato tubers suggested a protein complex underlying
post-translational regulation of invertase. Plant Physiology and
Biochemistry , 73 , 237-244.
https://doi.org/10.1016/j.plaphy.2013.09.012
Lin, Y., Liu, T., Liu, J., Liu, X., Ou, Y., Zhang, H., … & Xie,
C. (2015). Subtle regulation of potato acid invertase activity by a
protein complex of invertase, invertase inhibitor, and sucrose
nonfermenting1-related protein kinase. Plant Physiology ,168 , 1807-1819.
https://doi.org/10.1104/pp.15.00664
Link, M., Rausch, T., & Greiner, S. (2004). In Arabidopsis
thaliana , the invertase inhibitors AtC/VIF1 and 2 exhibit distinct
target enzyme specificities and expression profiles. FEBS
Letters , 573 , 105-109.
https://doi.org/10.1016/j.febslet.2004.07.062
Liu, X., Lin, Y., Liu, J., Song, B., Ou, Y., Zhang, H., Li, M., & Xie,
C. (2013). StInvInh2 as an inhibitor of StvacINV1 regulates the
cold‐induced sweetening of potato tubers by specifically capping
vacuolar invertase activity. Plant Biotechnology Journal ,11 , 640-647. https://doi.org/10.1111/pbi.12054
Liu, X., Song, B., Zhang, H., Li, X.Q., Xie, C., & Liu, J. (2010).
Cloning and molecular characterization of putative invertase inhibitor
genes and their possible contributions to cold-induced sweetening of
potato tubers. Molecular Genetics and Genomics , 284 ,
147-159. https://doi.org/10.1007/s00438-010-0554-3
Liu, X., Zhang, C., Ou, Y., Lin, Y., Song, B., Xie, C., Liu, J., & Li,
X.Q. (2011). Systematic analysis of potato acid invertase genes reveals
that a cold-responsive member, StvacINV1, regulates cold-induced
sweetening of tubers. Molecular Genetics and Genomics ,286 , 109-118. https://doi.org/10.1007/s00438-011-0632-1
Lurie, S., & Crisosto C.H. (2005). Chilling injury in peach and
nectarine. Postharvest Biology and Technology , 37 ,
195-208. https://doi.org/10.1016/j.postharvbio.2005.04.012
Ohyama, A., Ito, H., Sato, T., Nishimura, S., Imai, T., & Hirai, M.
(1995). Suppression of acid invertase activity by antisense RNA modifies
the sugar composition of tomato fruit. Plant and Cell Physiology ,36 , 369-376.
https://doi.org/10.1093/oxfordjournals.pcp.a078769
Ou, Y., Song, B., Liu, X., Lin, Y., Zhang, H., Li, M., Fang, H., & Liu,
J. (2013). Profiling of StvacINV1 expression in relation to acid
invertase activity and sugar accumulation in potato cold-stored tubers.Potato Research , 56 , 157-165.
https://doi.org/10.1007/s11540-013-9237-x
Paul, M.J., Primavesi, L.F., Jhurreea, D., &Zhang, Y. (2008). Trehalose
Metabolism and Signaling. Annual Review of Plant Biology ,59(1) , 417-441.
https://doi.org/10.1146/annurev.arplant.59.032607.092945
Pitzschke, A. (2013). Agrobacterium infection and plant
defense-transformation success hangs by a thread. Frontiers in
Plant Science , 4 , 1-12. https://doi.org/10.3389/fpls.2013.00519
Puig, C.P., Dagar, A., Ibanez, C.M., Singh, V., Crisosto, C.H.,
Friedman, H., Lurie, S., & Granell, A. (2015). Pre-symptomatic
transcriptome changes during cold storage of chilling sensitive and
resistant peach cultivars to elucidate chilling injury mechanisms.BMC Genomics , 16(245) , 1-35.
https://doi.org/10.1186/s12864-015-1395-6
Qin, G., Zhu, Z., Wang, W., Cai, J., Chen, Y., Li, L., & Tian, S.
(2016). A tomato vacuolar invertase inhibitor mediates sucrose
metabolism and influences fruit ripening. Plant Physiology ,172(3) , 1596-1611. https://doi.org/10.1104/pp.16.01269
Rausch, T., & Greiner, S. (2004). Plant protein inhibitors of
invertases. Biochimica et Biophysica Acta , 1696 , 253-261.
https://doi.org/10.1016/j.bbapap.2003.09.017
Reca, I.B., Brutus, A., D’Avino, R., Villard, C., Bellincampi, D., &
Giardina, T. (2008). Molecular cloning, expression and characterization
of a novel apoplastic invertase inhibitor from tomato (Solanum
lycopersicum ) and its use to purify a vacuolar invertase.Biochimie , 90 , 1611-1623.
https://doi.org/10.1016/j.biochi.2008.04.019
Schaffer, A.A., Rylski, I., & Fogelman, M. (1989). Carbohydrate content
and sucrose metabolism in developing Solanum muricatum fruits.Phytochemistry , 28(3) , 737-739.
https://doi.org/10.1016/0031-9422(89)80105-0
Scholes, J., Bundock, N., Wilde, R., & Rolfe, S. (1996). The impact of
reduced vacuolar invertase activity on the photosynthetic and
carbohydrate metabolism of tomato. Planta , 200 , 265-272.
https://doi.org/10.1007/BF00208317
Schwimmer, S., Makower, R.U., & Rorem, E.S. (1961). Invertase &
invertase inhibitor in potato. Plant Physiology , 36 , 313.
http://doi.org/10.1104/pp.36.3.313
Shao, X., Zhu, Y., Cao, S., Wang, H., & Song, Y. (2012). Soluble sugar
content and metabolism as related to the heat-induced chilling tolerance
of loquat fruit during cold storage. Food and Bioprocess
Technology , 6(12) , 3490-3498.
https://doi.org/10.1007/s11947-012-1011-6
Shivalingamurthy, S.G., Anangi, R., Kalaipandian, S., Glassop, D., King,
G.F., & Rae, A.L. (2018). Identification and functional
characterization of sugarcane invertase inhibitor (ShINH1 ): A
potential candidate for reducing pre- and post-harvest loss of sucrose
in sugarcane. Frontiers in Plant Science , 9 , 1-14.
https://doi.org/10.3389/fpls.2018.00598
Tang, X., Tao, S., Han, M., Wei, L., Wang, W., Yu, Z., … Liu, L.
(2017). Suppression of extracellular invertase inhibitor gene expression
improves seed weight in soybean (Glycine max ). Journal of
Experimental Botany , 68(3) , 469-482.
https://doi.org/10.1093/jxb/erw425
Tauzin, A.S., Sulzenbacher, G., Lafond, M., Desseaux, V., Reca, I.B.,
Perrier, J., … Giardina, T. (2014). Functional characterization
of a vacuolar invertase from Solanum lycopersicum :
post-translational regulation by N-glycosylation and a proteinaceous
inhibitor. Biochimie , 101 , 39-49.
https://doi.org/10.1016/j.biochi.2013.12.013
Vogel, J. T., Zarka, D. G., Van Buskirk, H. A., Fowler, S. G., &
Thomashow, M. F. (2005). Roles of the CBF2 and ZAT12 transcription
factors in configuring the low temperature transcriptome ofArabidopsis . The Plant Journal, 41(2), 195-211 .
10.1111/j.1365-313X.2004.02288.x
Wan, H., Wu, L., Yang, Y., Zhou, G., & Ruan, Y. L. (2018). Evolution of
Sucrose Metabolism: The Dichotomy of Invertases and Beyond. Trends
in Plant Science , 23(2) ,163-177.
https://doi.org/10.1016/j.tplants.2017.11.001
Wang, K., Shao, X., Gong, Y., Zhu, Y., Wang, H., Zhang, X., … Lu,
H. (2013). The metabolism of soluble carbohydrates related to chilling
injury in peach fruit exposed to cold stress. Postharvest Biology
and Technology , 86 , 53-61.
https://doi.org/10.1016/j.postharvbio.2013.06.020
Wang, L., Li, X.R., Lian, H., Ni, D.A., He, Y.K., Chen, X.Y., & Ruan,
Y.L. (2010). Evidence that high activity of vacuolar invertase is
required for cotton fiber and Arabidopsis root elongation through
osmotic dependent and independent pathways, respectively. Plant
Physiology, 154, 744-756. https://doi.org/10.1104/pp.110.162487
Weil, M., Krausgrill, S., Schuster, A., & Rausch, T. (1994). A 17-kDaNicotiana tabacum cell-wall peptide acts as an in-vitro inhibitor
of the cell-wall isoform of acid invertase. Planta , 193 ,
438-445. https://doi.org/10.1007/BF00201824
Yu, L., Liu, H., Shao, X., Yu, F., Wei, Y., Ni, Z., Xu, F., & Wang, H.
(2016). Effects of hot air and methyl jasmonate treatment on the
metabolism of soluble sugars in peach fruit during cold storage.Postharvest Biology and Technology , 113 , 8-16. http://
doi.org/10.1016/j.postharvbio.2015.10.013
Zhang, N., Jiang, J., Yang, Y., & Wang, Z. (2015). Functional
characterization of an invertase inhibitor gene involved in sucrose
metabolism in tomato fruit. Journal of Zhejiang University Science
B , 16(10) , 845-856. https://doi.org/10.1631/jzus.B1400319
Zhang, Y.L., Zhang, A.H., & Jiang, J. (2013). Gene expression patterns
of invertase gene families and modulation of the inhibitor gene in
tomato sucrose metabolism. Genetics and Molecular Research ,12(3) , 3412-3420. http://doi.org/10.4238/2013.January.24.1