REFERENCES
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., . . . Zhang, L.
(2020). Epidemiological and clinical characteristics of 99 cases of 2019
novel coronavirus pneumonia in Wuhan, China: a descriptive study.Lancet, 395 (10223), 507-513. doi:10.1016/S0140-6736(20)30211-7
Chu, C. M., Cheng, V. C., Hung, I. F., Wong, M. M., Chan, K. H., Chan,
K. S., . . . Group, H. U. S. S. (2004). Role of lopinavir/ritonavir in
the treatment of SARS: initial virological and clinical findings.Thorax, 59 (3), 252-256. doi:10.1136/thorax.2003.012658
Crowe, A., Ilett, K. F., Karunajeewa, H. A., Batty, K. T., & Davis, T.
M. (2006). Role of P glycoprotein in absorption of novel antimalarial
drugs. Antimicrob Agents Chemother, 50 (10), 3504-3506.
doi:10.1128/AAC.00708-06
da Mota, L. M. H., Cruz, B. A., Brenol, C. V., Pereira, I. A.,
Rezende-Fronza, L. S., Bertolo, M. B., . . . Pinheiro, G. D. C. (2013).
Guidelines for the drug treatment of rheumatoid arthritis (vol 53, pg
158, 2013). Revista Brasileira De Reumatologia, 53 (3), 319-320.
doi:Doi 10.1590/S0482-50042013000300013
Ernest, C. S., 2nd, Hall, S. D., & Jones, D. R. (2005). Mechanism-based
inactivation of CYP3A by HIV protease inhibitors. Journal of
Pharmacology and Experimental Therapeutics, 312 (2), 583-591.
doi:10.1124/jpet.104.075416
Eron, J. J., Feinberg, J., Kessler, H. A., Horowitz, H. W., Witt, M. D.,
Carpio, F. F., . . . Sun, E. (2004). Once-daily versus twice-daily
lopinavir/ritonavir in antiretroviral-naive HIV-positive patients: a
48-week randomized clinical trial. Journal of Infectious Diseases,
189 (2), 265-272. doi:10.1086/380799
Furst, D. E., Lindsley, H., Baethge, B., Botstein, G. R., Caldwell, J.,
Dietz, F., . . . Yocum, D. (1999). Dose-loading with hydroxychloroquine
improves the rate of response in early, active rheumatoid arthritis: a
randomized, double-blind six-week trial with eighteen-week extension.Arthritis Rheum, 42 (2), 357-365.
doi:10.1002/1529-0131(199902)42:2<357::AID-ANR19>3.0.CO;2-J
Hsu, A., Granneman, G. R., Witt, G., Locke, C., Denissen, J., Molla, A.,
. . . Leonard, J. M. (1997). Multiple-dose pharmacokinetics of ritonavir
in human immunodeficiency virus-infected subjects. Antimicrob
Agents Chemother, 41 (5), 898-905.
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., . . . Cao, B.
(2020). Clinical features of patients infected with 2019 novel
coronavirus in Wuhan, China. Lancet, 395 (10223), 497-506.
doi:10.1016/S0140-6736(20)30183-5
Koudriakova, T., Iatsimirskaia, E., Utkin, I., Gangl, E., Vouros, P.,
Storozhuk, E., . . . Gerber, N. (1998). Metabolism of the human
immunodeficiency virus protease inhibitors indinavir and ritonavir by
human intestinal microsomes and expressed cytochrome P4503A4/3A5:
mechanism-based inactivation of cytochrome P4503A by ritonavir.Drug Metabolism and Disposition, 26 (6), 552-561.
Mackenzie, A. H. (1983). Dose refinements in long-term therapy of
rheumatoid arthritis with antimalarials. Am J Med, 75 (1A), 40-45.
doi:10.1016/0002-9343(83)91269-x
Mzayek, F., Deng, H., Mather, F. J., Wasilevich, E. C., Liu, H., Hadi,
C. M., . . . Krogstad, D. J. (2007). Randomized dose-ranging controlled
trial of AQ-13, a candidate antimalarial, and chloroquine in healthy
volunteers. PLoS Clin Trials, 2 (1), e6.
doi:10.1371/journal.pctr.0020006
Na-Bangchang, K., Limpaibul, L., Thanavibul, A., Tan-Ariya, P., &
Karbwang, J. (1994). The pharmacokinetics of chloroquine in healthy Thai
subjects and patients with Plasmodium vivax malaria. Br J Clin
Pharmacol, 38 (3), 278-281. doi:10.1111/j.1365-2125.1994.tb04354.x
Olafuyi, O., & Badhan, R. K. S. (2019). Dose Optimization of
Chloroquine by Pharmacokinetic Modeling During Pregnancy for the
Treatment of Zika Virus Infection. J Pharm Sci, 108 (1), 661-673.
doi:10.1016/j.xphs.2018.10.056
Patel, M., Mandava, N., Gokulgandhi, M., Pal, D., & Mitra, A. K.
(2014). Amino Acid Prodrugs: An Approach to Improve the Absorption of
HIV-1 Protease Inhibitor, Lopinavir. Pharmaceuticals (Basel),
7 (4), 433-452. doi:10.3390/ph7040433
Projean, D., Baune, B., Farinotti, R., Flinois, J. P., Beaune, P.,
Taburet, A. M., & Ducharme, J. (2003). In vitro metabolism of
chloroquine: Identification of CYP2C8, CYP3A4, and CYP2D6 as the main
isoforms catalyzing N-desethylchloroquine formation. Drug
Metabolism and Disposition, 31 (6), 748-754. doi:DOI
10.1124/dmd.31.6.748
Saeheng, T., Na-Bangchang, K., & Karbwang, J. (2018). Utility of
physiologically based pharmacokinetic (PBPK) modeling in oncology drug
development and its accuracy: a systematic review. European
Journal of Clinical Pharmacology, 74 (11), 1365-1376.
doi:10.1007/s00228-018-2513-6
Saeheng, T., Na-Bangchang, K., Siccardi, M., Rajoli, R. K. R., &
Karbwang, J. (2019). Physiologically-Based Pharmacokinetic Modeling for
Optimal Dosage Prediction of Quinine Coadministered With
Ritonavir-Boosted Lopinavir. Clinical Pharmacology &
Therapeutics . doi:10.1002/cpt.1721
Sager, J. E., Yu, J., Ragueneau-Majlessi, I., & Isoherranen, N. (2015).
Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation
Approaches: A Systematic Review of Published Models, Applications, and
Model Verification. Drug Metabolism and Disposition, 43 (11),
1823-1837. doi:10.1124/dmd.115.065920
Shebley, M., Sandhu, P., Riedmaier, A. E., Jamei, M., Narayanan, R.,
Patel, A., . . . Rowland, M. (2018). Physiologically Based
Pharmacokinetic Model Qualification and Reporting Procedures for
Regulatory Submissions: A Consortium Perspective. Clinical
Pharmacology & Therapeutics, 104 (1), 88-110. doi:10.1002/cpt.1013
Siccardi, M. R., M.;Rajoli, R.KR.; Dickinson, L.; Khoo, S.; Owen, A.;
Back, D. (2015). In Silico Simulation of Interaction Between Rifampicin
and Boosted Darunavir. Conference on retroviruses and
opportunistic infections. Retrieved from
http://www.croiconference.org/sessions/silico-simulation-interaction-between-rifampicin-and-boosted-darunavir
Wagner, C., Zhao, P., Arya, V., Mullick, C., Struble, K., & Au, S.
(2017). Physiologically Based Pharmacokinetic Modeling for Predicting
the Effect of Intrinsic and Extrinsic Factors on Darunavir or Lopinavir
Exposure Coadministered With Ritonavir. Journal of Clinical
Pharmacology, 57 (10), 1295-1304. doi:10.1002/jcph.936
Wang, M. L., Cao, R. Y., Zhang, L. K., Yang, X. L., Liu, J., Xu, M. Y.,
. . . Xiao, G. F. (2020). Remdesivir and chloroquine effectively inhibit
the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell
Research . doi:10.1038/s41422-020-0282-0
Wolrdometer. (2020). COVID-19 CORONAVIRUS OUTBREAK. Retrieved from
https://www.worldometers.info/coronavirus/
Xu, H., Vela, S., Shi, Y., Marroum, P., & Gao, P. (2017). In Vitro
Characterization of Ritonavir Drug Products and Correlation to Human in
Vivo Performance. Mol Pharm, 14 (11), 3801-3814.
doi:10.1021/acs.molpharmaceut.7b00552
Yeh, R. F., Gaver, V. E., Patterson, K. B., Rezk, N. L., Baxter-Meheux,
F., Blake, M. J., . . . Kashuba, A. D. M. (2006). Lopinavir/ritonavir
induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19,
and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as
measured by a phenotyping drug cocktail in healthy volunteers.Jaids-Journal of Acquired Immune Deficiency Syndromes, 42 (1),
52-60.
Zhang, C., McIlleron, H., Ren, Y., van der Walt, J. S., Karlsson, M. O.,
Simonsson, U. S. H., & Denti, P. (2012). Population pharmacokinetics of
lopinavir and ritonavir in combination with rifampicin-based
antitubercular treatment in HIV-infected children. Antiviral
Therapy, 17 (1), 25-33. doi:10.3851/Imp1915
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., . . .
Research, T. (2020). A Novel Coronavirus from Patients with Pneumonia in
China, 2019. N Engl J Med, 382 (8), 727-733.
doi:10.1056/NEJMoa2001017