
Energy conservation for inhomogeneous Navier-Stokes

equations

Jiaqi Yang1,∗

1 School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, 710129,

China

Abstract

In this paper, we focus on the energy conservation for the weak solutions of in-

homogeneous Navier-Stokes equations. It is proved that if the function of density

belongs to L∞(0, T ;L∞(TN )) ∩ Lp(0, T ;W 1,p(TN )), and the function of velocity be-

longs to Ls(0, T ;Lr(TN )) with 2
s +

2
r = 1, then the energy equality holds. This result

can be seen as a inhomogeneous version for Shinbrot’s criterion.

Mathematics Subject Classification: 35Q30; 35D30; 76D07.

Keywords: Inhomogeneous Navier-Stokes equations; energy equality; Shinbrot’s criterion.

1 Introduction

In this paper we are concerned with the problem of energy conservation for the weak

solutions of the following inhomogeneous Navier-Stokes equations in the periodic domain.
∂tρ+ div(ρu) = 0 ,

∂t(ρu) + div(ρu⊗ u)−∆u+∇π = 0 , in TN × (0, T ) ,

divu = 0 , in TN × (0, T ) ,

ρ(·, 0) = ρ0 , ρu(·, 0) = ρ0u0 , in TN ,

(1.1)

where u is the velocity, π denotes the pressure, and ρ ≥ 0 is the density of fluid, and we

define u0 = 0 on the set {x : ρ0(x) = 0}.
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When ρ is a positive constant, the system (1.1) reduces to the classical Navier-Stokes.

It is well known that the weak solutions (Leray-Hopf weak solutions)of Navier-Stokes exist

globally in any given interval, and the weak solutions enjoy the following energy inequality,

see [9, 7].

‖u(t0)‖22 + 2

∫ t0

0

‖∇u(τ)‖22 dτ ≤ ‖u0‖22 ,

for any t0 ∈ [0, T ). It is natural to ask if it is possible to replace the the sign “less or equal”

by “equal”? In other words, does the energy equality hold? A first results are due to Lions

[10] and Prodi [12], they proved that if u ∈ L4(0, T ;L4(TN)), then the energy equality

holds. Later on, in 1974, Shinbrot [14] extended Lions and Prodi’s results,he showed that

if u ∈ Ls(0, T ;Lr(TN)) with 2
s

+ 2
r

= 1, then the energy equality holds. We also recall

that the Serrin’s regularity criterion: if u ∈ Ls(0, T ;Lr(TN)) with 2
s

+ N
r

= 1, then u

is regular, and hence u satisfies the energy equality, see [13]. Recently, compared with

Shinbrot’s results, Berselli and Chiodaroli [2] looked for conditions involving the gradient

of the velocity, instead of the velocity itself, see also [3] for Newtonian fluids and non-

Newtonian fluids.

The inhomogeneous Navier-Stokes equations are very important in geophysical fluid

dynamics. It is called upon to describe situations in which a fluid is inhomogeneous with

respect to density. DiPerna and Lions [6, 11] proved the global existence of weak solutions

to (1.1) in any space dimension even if the initial data permits regions of vacuum. In the

sixties and seventies, the Russian school studied the system 1.1 for the initial density with

positive lower bound, see [1, 8]. It was proved that a unique strong solution exists locally for

arbitrary initial data. Moreover, these papers also establish global well-posedness results

for small solutions in dimension N ≥ 3, while for the two dimensional case they establish

the existence of large strong solutions. However, as far as we know, there is no result on

the results for the energy conservation of system 1.1.

Recently, Chen and Yu [4] studied the energy conservation for inhomogeneous Euler

equations. They extended the classical result of Constantin-E-Titi [5] to the inhomogeneous

Euler equations, and proved the following theorem.

Theorem 1.1. Let (ρ, u) be a weak solution of (1.1) in the sense of distributions. Assume

ρ ∈ L∞(0, T ;L∞(TN)) ∩ Lp(0, T ;W 1,p(TN)) , u ∈ Lq(0, T ;Bα,∞
q (TN)) , (1.2)

for any 1
p

+ 3q ≤ 1 and α > 1
3

√
ρu ∈ L∞(0, T ;L2(TN)) (1.3)
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and

u0 ∈ L2(TN).

Then the energy

E(t) =

∫
TN

ρ|u|2dx

is conserved.

The purpose of the present paper is to extend the Shinbrot’s results on Navier-Stokes

equations to the inhomogeneous Navier-Stokes equations. Specifically, we will prove the

following results.

Theorem 1.2. Let (ρ, u) be a weak solution of (1.1) in the sense of distributions, and

satisfy
√
ρu ∈ L∞(0, T ;L2(TN)) , ∇u ∈ L2(0, T ;L2(TN)) , (1.4)

and

u0 ∈ L2(TN).

Assume

ρ ∈ L∞(0, T ;L∞(TN)) ∩ Lp(0, T ;W 1,p(TN)) , u ∈ L4(0, T ;L4(TN)) , (1.5)

for any p ≥ 4. Then the energy equality holds, that is,

‖(√ρu)(t0)‖22 + 2

∫ t0

0

‖∇u(τ)‖22 dτ = ‖√ρ0u0‖22 ,

for any t0 ∈ [0, T ).

Note that L∞(0, T ;L2(TN))∩Ls(0, T ;Lr(TN)) ⊂ L4(0, T ;L4(TN)) if 2
s

+ 2
r

= 1. Hence,

we have the following conclusion.

Corollary 1.3. Let (ρ, u) be a weak solution of (1.1) in the sense of distributions, and

satisfy
√
ρu ∈ L∞(0, T ;L2(TN)) , ∇u ∈ L2(0, T ;L2(TN)) ,

and

u0 ∈ L2(TN).

Assume

ρ ∈ L∞(0, T ;L∞(TN)) ∩ Lp(0, T ;W 1,p(TN)) , u ∈ Ls(0, T ;Lr(TN)) ,

for any p ≥ 4, and 2
s

+ 2
r

= 1. Then the energy equality holds.
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2 Proof of Theorem 1.2

To obtain Theorem 1.2, the following lemma is very crucial. It was proved by Lions [11],

see also [4], Lemma 2.1.

Lemma 2.1. Let ∂ be a partial derivative in space or time. Let f , ∂f ∈ Lp(R+ × TN),

g ∈ Lq(R+ × TN) with 1 ≤ p, q ≤ ∞, and 1
p

+ 1
p
≤ 1. Then, we have

‖[∂(fg)]ε − ∂(fgε)‖Lr(R+×TN ) ≤ C(‖∂tf‖Lp(R+×TN ) + ‖∇f‖Lp(R+×TN ))‖g‖Lq(R+×TN ) (2.1)

for a constant C > 0 in dependent of ε, f and g, and with 1
r

= 1
p

+ 1
q
. In addition,

[∂(fg)]ε − ∂(fgε)→ 0 in Lr(R+ × TN) , (2.2)

as ε→ 0 if r <∞.

Next, we prove Theorem 1.2. Our argument is in the spirit of the argument in [4].

Compared with the Euler equations, Navier-Stokes equations have a additional regularity,

∇u ∈ L2(0, T ;L2(TN)), this is crucial to obtain Theorem 1.2.

Proof of Theorem 1.2. As [4], we choose Φ(t, x) = (ψ(t)uε)ε as a test function, where ψ(t)

is the class of all smooth compactly supported functions on (0,+∞). Multiplying Φ on

both sides of the second equation in (1.1), one can obtain∫ T

0

∫
TN

Φ[(ρu)t + div(ρu⊗ u)−∆u+∇π]dxdt = 0 ,

which implies that∫ T

0

∫
TN

ψ(t)uε[(ρu)t + div(ρu⊗ u) +∇π]εdxdt+

∫ T

0

∫
TN

ψ(t)|∇uε|2dxdt = 0 . (2.3)

It is easy to get that∫ T

0

∫
TN

ψ(t)uε((ρu)t)
εdxdt

=

∫ T

0

∫
TN

ψ(t)uε[((ρu)t)
ε − (ρuε)t]dxdt+

∫ T

0

∫
TN

ψ(t)uε(ρuε)tdxdt

=: Aε +

∫
T

∫
TN

ψ(t)ρ∂t
|uε|2

2
dxdt+

∫
T

∫
TN

ψ(t)ρt|uε|2dxdt ,

(2.4)
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and∫ T

0

∫
TN

ψ(t)uε(div(ρu⊗ u)ε)εdxdt

=

∫ T

0

∫
TN

ψ(t)uε[(div(ρu⊗ u)ε)ε − div(ρu⊗ uε)]dxdt+

∫ T

0

∫
TN

ψ(t)div(ρu⊗ uε)dxdt

=: Bε +

∫
T

∫
TN

ψ(t)ρu · ∇|u
ε|2

2
dxdt+

∫
T

∫
TN

ψ(t)div(ρu)|uε|2dxdt

= Bε −
∫
T

∫
TN

ψ(t)ρt|uε|2dxdt .

(2.5)

From (2.3)-(2.5), we have

−
∫
T

∫
TN

ψt
1

2
ρ|uε|2dxdt+

∫ T

0

∫
TN

ψ(t)|∇uε|2dxdt+ Aε +Bε = 0 . (2.6)

For Aε, by Lemma 2.1, we have

|Aε| ≤‖ψ(t)‖L∞(0,T )‖uε‖L4(0,T ;L4(TN ))‖((ρu)t)
ε − (ρuε)t‖L 4

3 (0,T ;L
4
3 (TN ))

≤C‖u‖2L4(0,T ;L4(TN ))‖ρt‖L2(0,T ;L2(TN ))

≤C‖u‖2L4(0,T ;L4(TN ))‖u · ∇ρ‖L2(0,T ;L2(TN ))

≤C‖u‖3L4(0,T ;L4(TN ))‖∇ρ‖Lp(0,T ;Lp(TN )) ,

and

‖((ρu)t)
ε − (ρuε)t‖L 4

3 (0,T ;L
4
3 (TN ))

→ 0, as ε→ 0 , (2.7)

i.e. Aε → 0 as ε→ 0. For Bε, similarly, we have

|Bε| ≤‖ψ(t)‖L∞(0,T )‖uε‖L4(0,T ;L4(TN ))‖(div(ρu⊗ u)ε)ε − div(ρu⊗ uε)‖
L

4
3 (0,T ;L

4
3 (TN ))

≤C‖u‖2L4(0,T ;L4(TN ))‖∇(ρu)‖L2(0,T ;L2(TN ))

≤C‖u‖2L4(0,T ;L4(TN ))

(
‖u⊗∇ρ‖L2(0,T ;L2(TN )) + ‖ρ∇u‖L2(0,T ;L2(TN ))

)
≤C‖u‖2L4(0,T ;L4(TN ))

(
‖u‖L4(0,T ;L4(TN ))‖∇ρ‖Lp(0,T ;Lp(TN ))

+ ‖ρ‖L∞(0,T ;L∞(TN ))‖∇u‖L2(0,T ;L2(TN ))

)
,

and

‖(div(ρu⊗ u)ε)ε − div(ρu⊗ uε)‖
L

4
3 (0,T ;L

4
3 (TN ))

→ 0, as ε→ 0 , (2.8)

i.e. Bε → 0 as ε → 0. Now, letting ε → 0, by (2.7), (2.8) and the dominated convergence

theorem, we have

−
∫ T

0

∫
TN

ψt
1

2
ρ|u|2dxdt+

∫ T

0

∫
TN

ψ|∇u|2dxdt = 0 . (2.9)
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Next, by (1.4) and (1.5), following the proof of (3.17) in [4], we have, for any t→ t0

√
ρu(t)→ √ρu(t0), strongly in L2(TN) as t→ t+0 . (2.10)

Now, for t0 > 0, as [4], choose some positive τ and α such that τ + α < t0 and define the

following test function

ψτ (t) =



0 , 0 ≤ t ≤ τ ,

t−τ
α
, τ ≤ t ≤ τ + α ,

1 , τ + α ≤ t ≤ t0 ,

t0−t
α
, t0 ≤ t ≤ t0 + α ,

0 , t0 + α ≤ t .

Then we can deduce from (2.9) that

− 1

α

∫ τ+α

τ

∫
TN

1

2
ρ|u|2dxds+

1

α

∫ t0+α

t0

∫
TN

1

2
ρ|u|2dxds+

∫ t0

τ+α

∫
TN

|∇u|2dxds

=− 1

α

∫ τ+α

τ

∫
TN

(s− τ)|∇u|2(s)dxds− 1

α

∫ t0+α

t0

∫
TN

(t0 − s)|∇u|2(s)dxds .

Let α→ 0, due to (2.10), and

| 1
α

∫ τ+α

τ

∫
TN

(s− τ)|∇u|2(s)dxds| ≤
∫ τ+α

τ

∫
TN

|∇u|2(s)dxds ,

and

| 1
α

∫ t0+α

t0

∫
TN

(t0 − s)|∇u|2(s)dxds| ≤
∫ t0+α

t0

∫
TN

|∇u|2(s)dxds ,

we have

−
∫
TN

1

2
ρ|u|2(τ)dx+

∫
TN

1

2
ρ|u|2(t0)dx+

∫ t0

τ

∫
TN

|∇u|2dxds = 0 .

Finally, let τ → 0, we can obtain Theorem 1.2.
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