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Abstract. One of the fundamental research problems in the theory of generalized inverses of matrices is to establish
reverse order laws for generalized inverses of matrix products. Under the assumption that A, B, and C singular matrices
of the appropriate sizes, two reverse order laws for generalized inverses of the matrix products AB and ABC can be
written as (AB)(i,...,j) = B(i2,...,j2)A(i1,...,j1) and (ABC)(i,...,j) = C(i3,...,j3)B(i2,...,j2)A(i1,...,j1), or other mixed reverse
order laws. These equalities do not necessarily hold for different choices of generalized inverses of the matrices. Thus
it is a tremendous work to classify and derive necessary and sufficient conditions for the reverse order law to hold
because there are all 15 types of {i, . . . , j}-generalized inverse for a given matrix according to the combinatoric choice
of the four Penrose equations. In this paper, we shall establish several decades of mixed reverse order laws for {1}-
and {1, 2}-generalized inverses of AB and ABC, and give a classified investigation to a family of reverse order laws
(ABC)(i,...,j) = C−1B(k,...,l)A−1 for the eight commonly-used types of generalized inverses by means of the block matrix
representation method (BMRM) and the matrix rank method (MRM). A variety of consequences and applications these
reverse order laws are presented.
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1 Introduction

Throughout this article, we denote by Cm×n the set of all m×n complex matrices; by A∗, r(A), and R(A) the
conjugate transpose, the rank, and the range (column space) of a matrix A ∈ Cm×n, respectively; by Im the
identity matrix of order m; and [A, B] be a row block matrix consisting of A and B. A matrix A ∈ Cm×m is
said to be EP (or range Hermitian) if R(A∗) = R(A) holds. We next introduce the definition and notation of
generalized inverses of a matrix. The Moore–Penrose inverse of A ∈ Cm×n, denoted by A†, is the unique matrix
X ∈ Cn×m satisfying the four Penrose equations

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA. (1.1)

A matrix X is called an {i, . . . , j}-generalized inverse of A, denoted by A(i,...,j), if it satisfies the ith, . . ., jth
equations in (1.1). The collection of all {i, . . . , j}-generalized inverses of A is denoted by {(A(i,...,j)}. There are
all 15 types of {i, . . . , j}-generalized inverses for a given matrix A by definition, but people are mainly interested
in the types that involve the first equation:

A†, A(1,3,4), A(1,2,4), A(1,2,3), A(1,4), A(1,3), A(1,2), A(1), (1.2)

which are usually called the eight commonly-used types of generalized inverses of A in the literature; see
e.g., [3,4,19]. In addition, we denote by PA = AA†, EA = Im−AA†, and FA = In−A†A, the three orthogonal
projectors (Hermitian idempotent matrices) induced from A.

Matrix expressions that involve a family of generalized inverses A
(i1,...,j1)
1 , A

(i2,...,j2)
2 , . . . , A

(ik,...,jk)
k can gen-

erally be expressed as f(A
(i1,...,j1)
1 , A

(i2,...,j2)
2 , . . . , A

(ik,...,jk)
k ), where f(·) denotes certain algebraic operations of

matrices, while matrix equalities that involve generalized inverses can be written as

f1(A
(i1,...,j1)
1 , A

(i2,...,j2)
2 , . . . , A

(ik,...,jk)
k ) = f2(B

(s1,...,t1)
1 , B

(s2,...,t2)
2 , . . . , B

(sl,...,tl)
l ). (1.3)

Since generalized inverses of a singular matrix are not unique, the matrix expressions may vary with respect to
the choices of the generalized inverses. Hence (1.3) can also be described by the following matrix set equality{

f1(A
(i1,...,j1)
1 , A

(i2,...,j2)
2 , . . . , A

(ik,...,jk)
k )

}
=
{
f2(B

(s1,...,t1)
1 , B

(s2,...,t2)
2 , . . . , B

(sl,...,tl)
l )

}
. (1.4)

We next describe some examples of (1.3) for the generalized inverses of matrix products. Recall a fundamental
facts in linear algebra that for any three nonsingular matrices A, B, and C of the same size, the products AB
and ABC are nonsingular as well, and the reverse order laws (AB)−1 = B−1A−1 and (ABC)−1 = C−1B−1A−1,
as well as the cancellation law C(ABC)−1A = B−1 always hold. These identities can be used to simplify matrix
expressions that involve inverse operations of products of nonsingular matrices. If some or all of A, B, and C
are singular, generalized inverses of AB and ABC can be written as certain expressions composed by A, B,
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and C and their generalized inverses. The special matrix equalities for generalized inverses which people are
interested are the following reverse order laws

(AB)(i,...,j) = B(i2,...,j2)A(i1,...,j1), (ABC)(i,...,j) = C(i3,...,j3)B(i2,...,j2)A(i1,...,j1) (1.5)

for the products AB and ABC. In addition to (1.5), generalized inverses of the matrix products AB and ABC
can be written as various mixed reverse order laws, such as,

(AB)(i,...,j) = B(i2,...,j2)XA(i1,...,j1), (1.6)

(AB)(i,...,j) = B(i2,...,j2)A(i1,...,j1) + Y, (1.7)

(ABC)(i,...,j) = C(i3,...,j3)Y B(i2,...,j2)XA(i1,...,j1), (1.8)

(ABC)(i,...,j) = C(i3,...,j3)B(i2,...,j2)A(i1,...,j1) + Z, (1.9)

etc., for certain matrices X, Y , and Z composed by A, B, C, and their generalized inverses. Eq. (1.5)–
(1.9) do not necessarily hold for different choices of generalized inverses of the matrices. Thus people wish
to find identifying conditions for (1.5)–(1.9) to hold under various assumptions. This is really a tremendous
work because of different possible choices of {i, . . . , j}-generalized inverses for a given matrix. Approaches on
reverse order laws were started in the 1960s and have been one of the attractive and fruitful research fields in
matrix algebra and operator theory, but only a small part of reverse order laws were considered; for instance,
(AB)(1) = B(1)A(1) and (AB)† = B†A† were approached in [2, 9, 11, 23–25,32,40, 41] among others; the special
case of the second equality in (1.5) for the Moore–Penrose inverse is given by (ABC)† = C†B†A†, which was
considered in [5, 8, 12, 14, 26, 36], while mixed reverse order laws for Moore–Penrose inverses of AB and ABC
were formulated and approached in [6, 7, 10, 13, 17, 29, 30, 32, 34, 38] among others. It is worth to point out
that the present author initiated the use of the matrix rank method in the study of reverse order laws, which
can manipulate various complicated calculations associated with generalized inverses. In spite of many efforts,
most of (1.5) remain unresolved because there are no analytical methods in mathematics to establish general
algebraic identities or solve general algebraic equations.

The paper is organized as follows. In Section 2, we give an introduction to the theory of generalized inverses
of matrices and present various formulas for calculating ranks of matrices that we shall use in the sequel. In
Section 3, we formulate a variety of mixed reverse order laws for generalized inverses of AB and ABC and
give their proofs using definitions of generalized inverses and matrix rank formulas. In Section 4, we consider
a special product ABC, where A and C are nonsingular, and derive necessary and sufficient conditions for the
following four matrix set relations

{(ABC)(i,...,j)} ∩ {C−1B(k,...,l)A−1} 6= ∅ (82 = 64 situations), (1.10)

{(ABC)(i,...,j)} ⊇ {C−1B(k,...,l)A−1} (82 = 64 situations), (1.11)

{(ABC)(i,...,j)} ⊆ {C−1B(k,...,l)A−1} (82 = 64 situations), (1.12)

{(ABC)(i,...,j)} = {C−1B(k,...,l)A−1} (82 = 64 situations) (1.13)

to hold for the eight common-used generalized inverses of ABC and B by means of the block matrix represen-
tation method (BMRM) and the matrix rank method (MRM). We also present a variety of consequences of the
these reverse order laws in Sections 4 and 5.

2 Preliminaries

In this section, we present an introduction on the theory on generalized inverses of matrices and describe the
matrix rank methods by which we establish and simplify various matrix equalities that involve generalized
inverses.

Lemma 2.1 ( [3, 4, 19]). Let A ∈ Cm×n. Then the following results hold.

(a) A† satisfies the following equalities

(A†)∗ = (A∗)†, (A†)† = A, (2.1)

(A∗)†A∗ = (AA†)∗ = AA†, A∗(A∗)† = (A†A)∗ = A†A, (2.2)

R(A) = R(AA∗) = R(AA∗A) = R(AA†) = R[(A†)∗], (2.3)

R(A∗) = R(A∗A) = R(A∗AA∗) = R(A†) = R(A†A), (2.4)

r(A) = r(A∗) = r(A†) = r(AA∗) = r(A∗A) = r(AA†) = r(A†A). (2.5)
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(b) The general expressions of the seven commonly-used types of generalized inverses A(1,3,4), A(1,2,4), A(1,2,3),
A(1,4), A(1,3), A(1,2), and A(1) of A can be written in the following 7 matrix-valued functions

A(1) = A† + FAU1 + U2EA, (2.6)

A(1,2) = (A† + FAU1)A(A† + U2EA), (2.7)

A(1,3) = A† + FAU, (2.8)

A(1,4) = A† + UEA, (2.9)

A(1,2,3) = A† + FAUAA
†, (2.10)

A(1,2,4) = A† +A†AUEA, (2.11)

A(1,3,4) = A† + FAUEA, (2.12)

where U, U1, U2 ∈ Cn×m are arbitrary.

(c) The following matrix equalities hold

AA(1) = AA(1,2) = AA(1,4) = AA(1,2,4) = AA† +AUEA, (2.13)

AA(1,3) = AA(1,2,3) = AA(1,3,4) = AA†, (2.14)

A(1)A = A(1,2)A = A(1,3)A = A(1,2,3)A = A†A+ FAUA, (2.15)

A(1,4)A = A(1,2,4)A = A(1,3,4)A = A†A, (2.16)

where U ∈ Cn×m is arbitrary.

(d) The following set inclusions hold

A† ∈ {A(1,2,3)} ⊆ {A(1,2)} ⊆ {A(1)}, (2.17)

A† ∈ {A(1,2,3)} ⊆ {A(1,3)} ⊆ {A(1)}, (2.18)

A† ∈ {A(1,2,4)} ⊆ {A(1,2)} ⊆ {A(1)}, (2.19)

A† ∈ {A(1,2,4)} ⊆ {A(1,4)} ⊆ {A(1)}, (2.20)

A† ∈ {A(1,3,4)} ⊆ {A(1,3)} ⊆ {A(1)}. (2.21)

A† ∈ {A(1,3,4)} ⊆ {A(1,4)} ⊆ {A(1)}, (2.22)

(e) The following matrix set equalities hold

{(A(1,3,4))∗} = {(A∗)(1,3,4)}, {(A(1,2,4))∗} = {(A∗)(1,2,3)}, (2.23)

{(A(1,2,3))∗} = {(A∗)(1,2,4)}, {(A(1,4))∗} = {(A∗)(1,3)}, (2.24)

{(A(1,3))∗} = {(A∗)(1,4)}, {(A(1,2))∗} = {(A∗)(1,2)}, (2.25)

{(A(1))∗} = {(A∗)(1)}. (2.26)

(f) The following rank equalities

r(A(1,2,4)) = r(A(1,2,3)) = r(A(1,2)) = r(A†) = r(A) (2.27)

hold for all A(1,2,4)), A(1,2,3), and A(1,2)), and the following rank equalities hold

max
A(1)

r(A(1)) = max
A(1,3)

r(A(1,3)) = max
A(1,4)

r(A(1,4)) = max
A(1,3,4)

r(A(1,3,4)) = min{m, n}, (2.28)

min
A(1)

r(A(1)) = min
A(1,3)

r(A(1,3)) = min
A(1,4)

r(A(1,4)) = min
A(1,3,4)

r(A(1,3,4)) = r(A). (2.29)

(g) The following equivalent facts hold

3



Lemma 2.2 ( [28]). Let A ∈ Cm×n and G ∈ Cn×m. Then

min
A(1)

r(A(1) −G) = r(A−AGA), (2.30)

min
A(1,2)

r(A(1,2) −G) = max{ r(A−AGA), r(G) + r(A)− r(GA)− r(AG) }, (2.31)

min
A(1,3)

r(A(1,3) −G) = r(A∗AG−A∗), (2.32)

min
A(1,4)

r(A(1,4) −G) = r(GAA∗ −A∗), (2.33)

min
A(1,2,3)

r(A(1,2,3) −G) = r(A∗AG−A∗) + r

[
A∗

G

]
− r
[
A∗

AG

]
, (2.34)

min
A(1,2,4)

r(A(1,2,4) −G) = r(GAA∗ −A∗) + r[A∗, G]− r[A∗, GA], (2.35)

min
A(1,3,4)

r(A(1,3,4) −G) = r(A∗AG−A∗) + r(GAA∗ −A∗)− r(A−AGA), (2.36)

r(A† −G) = r

[
A∗AA∗ A∗

A∗ G

]
− r(A). (2.37)

In particular,

G ∈ {A(1)} ⇔ AGA = A, (2.38)

G ∈ {A(1,2)} ⇔ AGA = A and r(G) = r(A), (2.39)

G ∈ {A(1,3)} ⇔ A∗AG = A∗, (2.40)

G ∈ {A(1,4)} ⇔ GAA∗ = A∗, (2.41)

G ∈ {A(1,2,3)} ⇔ A∗AG = A∗ and r(G) = r(A)⇔ A∗AG = A∗ and GEA = 0, (2.42)

G ∈ {A(1,2,4)} ⇔ GAA∗ = A∗and r(G) = r(A)⇔ GAA∗ = A∗ and FAG = 0, (2.43)

G ∈ {A(1,3,4)} ⇔ A∗AG = A∗ and GAA∗ = A∗, (2.44)

G = A† ⇔ A∗AG = A∗, GAA∗ = A∗, and r(G) = r(A)

⇔ A∗AG = A∗, GAA∗ = A∗, GEA = 0, FAG = 0. (2.45)

Lemma 2.3 ( [15]). Let A ∈ Cm×n, B ∈ Cm×k, and C ∈ Cl×n. Then

r[A, B] = r(A) + r(B −AA(1)B), r

[
A
C

]
= r(A) + r(C − CA(1)A) (2.46)

hold for all A(1).

Lemma 2.4 ( [15]). Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q. Then

r(AB) = r(A) + r(B)− n+ r[(In −BB(1))(Ip −A(1)A)], (2.47)

r(ABC) = r(AB) + r(BC)− r(B) + r[(In − (BC)(BC)(1))B(Ip − (AB)(1)(AB))] (2.48)

hold for all A(1), B(1), (AB)(1), and (BC)(1).

Lemma 2.5 ( [28]). Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n, and D ∈ Cl×k. Then

max
A(1,2)

r(D − CA(1,2)B) = min

{
r(A) + r(D), r[C, D], r

[
B
D

]
, r

[
A B
C D

]
− r(A)

}
, (2.49)

min
A(1,2)

r(D − CA(1,2)B) = r

[
B
D

]
+ r[C, D ] + r(A) + max{ r1, r2}, (2.50)

where

r1 = r

[
A B
C D

]
− r
[
A 0 B
0 C D

]
− r

A 0
0 B
C D

, r2 = r(D)−r
[
A 0
C D

]
− r
[
A B
0 D

]
.

Lemma 2.6 ( [35]). Let A ∈ Cm×n, B ∈ Cm×q, and C ∈ Cp×q. Then the following two formulas hold

max
A(1,2),C(1,2)

r(A(1,2)BC(1,2)) = min{ r(A), r(B), r(C) }, (2.51)

min
A(1,2),C(1,2)

r(A(1,2)BC(1,2)) = max{ 0, r(A) + r(B) + r(C)− r[A, B]− r[B∗, C∗]}. (2.52)
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We also use the following results to establish matrix equalities that involve generalized inverses.

Lemma 2.7 ( [27,28]). Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n, and D ∈ Cl×k. Then the following results hold.

(a) There exists an A(1) such that CA(1)B = D holds if and only if

R(D) ⊆ R(C), R(D∗) ⊆ R(B∗), and r

[
A B
C D

]
= r

[
A
C

]
+ r[A, B]− r(A); (2.53)

CA(1)B = D holds for all A(1) if and only if

[C, D] = 0 or

[
B
D

]
= 0 or r

[
A B
C D

]
= r(A). (2.54)

(b) CA(1,2)B = D holds for all A(1,2) if and only if[
A 0
0 D

]
= 0 or [C, D] = 0 or

[
B
D

]
= 0 or r

[
A B
C D

]
= r(A). (2.55)

(c) CA(1,3)B = D holds for all A(1,3) if and only if[
B
D

]
= 0 or r

[
A∗A A∗B
C D

]
= r(A). (2.56)

(d) CA(1,4)B = D holds for all A(1,4) if and only if

[C, D] = 0 or r

[
AA∗ B
CA∗ D

]
= r(A). (2.57)

(e) CA(1,2,3)B = D holds for all A(1,2,3) if and only if[
A∗B
D

]
= 0 or r

[
A∗A A∗B
C D

]
= r(A). (2.58)

(f) CA(1,2,4)B = D holds for all A(1,2,4) if and only if

[CA∗, D] = 0 or r

[
AA∗ B
CA∗ D

]
= r(A). (2.59)

(g) CA(1,3,4)B = D holds for all A(1,3,4) if and only if

r

[
A∗A A∗B
C D

]
= r(A) or r

[
AA∗ B
CA∗ D

]
= r(A). (2.60)

(h) CA†B = D holds if and only if

r

[
A∗AA∗ A∗B
CA∗ D

]
= r(A). (2.61)

We next give a specified introduction to the MRM. Recall a basic fact about the link between the nullity of
matrix and its rank that A = 0 holds if and only if r(A) = 0 holds. Thus, two matrices A and B of the same
size are equal, namely, A = B, if and only if r(A − B) = 0. Furthermore, assume that S1 and S2 are two sets
consisting of matrices of the same size. Then

S1 ∩ S2 6= ∅ ⇔ min
A∈S1, B∈S2

r(A−B) = 0;

S1 ⊆ S2 ⇔ max
A∈S1

min
B∈S2

r(A−B) = 0

hold obviously in view of the MRM. The basic facts are quite familiar to the reader with common background
in linear algebra, but they provide a highly flexible framework for characterizing equalities of matrices under
many situations, precisely, if certain formulas for calculating the rank of X − Y are derived, we can use the
formulas to characterize relationships between two matrices X and Y and to obtain many valuable results on
relationships between two matrix sets. This method, called the matrix rank method, is available for studying
various matrix expressions involving generalized inverses of matrices. Perhaps, no methods in linear algebra
and matrix theory, as described above, is more elementary than the rank method in characterizing equalities of
matrices.
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3 Mixed Reverse Order Law for Generalized Inverses

We first give two groups of set inclusions associated with the matrix sets {(AB)(1)} and {(AB)(1,2)}.

Theorem 3.1. Let A ∈ Cm×n and B ∈ Cn×p be given. Then,

(a) the following set inclusions hold

{ (AB)(1)} ⊇ { (A(1)AB)(1)A(1)}, (3.1)

{ (AB)(1)} ⊇ {B(1)(ABB(1))(1)}, (3.2)

{ (AB)(1)} ⊇ { (A∗AB)(1)A∗}, (3.3)

{ (AB)(1)} ⊇ {B∗(ABB∗)(1)}, (3.4)

{ (AB)(1)} ⊇ { (AA∗AB)(1)AA∗}, (3.5)

{ (AB)(1)} ⊇ {B∗B(ABB∗B)(1)}, (3.6)

{ (AB)(1)} ⊇ {B(1)(A(1)ABB(1))(1)A(1)}, (3.7)

{ (AB)(1)} ⊇ {B∗(A∗ABB∗)(1)A∗}, (3.8)

{ (AB)(1)} ⊇ {B∗B(AA∗ABB∗B)(1)AA∗}; (3.9)

(b) the following set inclusions hold

{ (AB)(1,2)} ⊇ { (A(1,2)AB)(1,2)A(1,2)}, (3.10)

{ (AB)(1,2)} ⊇ {B(1,2)(ABB(1,2))(1,2)}, (3.11)

{ (AB)(1,2)} ⊇ { (A∗AB)(1,2)A∗}, (3.12)

{ (AB)(1,2)} ⊇ {B∗(ABB∗)(1,2)}, (3.13)

{ (AB)(1,2)} ⊇ { (AA∗AB)(1,2)AA∗}, (3.14)

{ (AB)(1,2)} ⊇ {B∗B(ABB∗B)(1,2)}, (3.15)

{ (AB)(1,2)} ⊇ {B(1,2)(A(1,2)ABB(1,2))(1,2)A(1,2)}, (3.16)

{ (AB)(1,2)} ⊇ {B∗(A∗ABB∗)(1,2)A∗}, (3.17)

{ (AB)(1,2)} ⊇ {B∗B(AA∗ABB∗B)(1,2)AA∗}. (3.18)

Proof. The whole proofs are based on the definitions of generalized inverses and direct verifications. For any gen-
eralized inverses A(1), B(1), (A(1)AB)(1), (ABB(1))(1), (A∗AB)(1), (ABB∗)(1), (A(1)ABB(1))(1), (A∗ABB∗)(1),
and (AA∗ABB∗A)(1), it is easy to verify by definition and Lemma 2.1(a) that

AB[(A(1)AB)(1)A(1)]AB = A(A(1)AB)(A(1)AB)(1)(A(1)AB) = A(A(1)AB) = AB,

AB[B(1)(ABB(1))(1)]AB = (ABB(1))(ABB(1))(1)(ABB(1))B = (ABB(1))B = AB,

AB[(A∗AB)(1)A∗]AB = (A†)∗(A∗AB)(A∗AB)(1)(A∗AB) = (A†)∗(A∗AB) = AB,

AB[B∗(ABB∗)(1)]AB = (ABB∗)(ABB∗)(1)(ABB∗)(B†)∗ = (ABB∗)(B†)∗ = AB,

AB[AA∗AB)(1)AA∗]AB = [(AA∗)†]∗(AA∗AB)(AA∗AB)(1)(AA∗AB) = [(AA∗)†]∗AA∗AB = AB,

ABB∗B(ABB∗B)(1)AB = (ABB∗B)(ABB∗B)(1)(ABB∗B)[(B∗B)†]∗ = ABB∗B[(B∗B)†]∗ = AB,

and

AB[B(1)(A(1)ABB(1))(1)A(1)]AB = A(A(1)ABB(1))(A(1)ABB(1))(1)(A(1)ABB(1))B

= A(A(1)ABB(1))B = AB,

AB[B∗(A∗ABB∗)(1)A∗]AB = (A†)∗(A∗ABB∗)(A∗ABB∗)(1)(A∗ABB∗)(B†)∗(A†)∗(A∗ABB∗)(B†)∗

= AB,

AB[B∗B(AA∗ABB∗B)(1)AA∗]AB = [(AA∗)†]∗(AA∗ABB∗B)(AA∗ABB∗B)(1)(AA∗ABB∗B)[(B∗B)†]∗

= [(AA∗)†]∗(AA∗ABB∗B)[(B∗B)†]∗ = AB,

establishing (3.1)–(3.9).
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Since {M (1)} ⊇ {M (1,2)} for any matrix M , it is easy to see from (3.1)–(3.9) that

{ (AB)(1)} ⊇ { (A(1)AB)(1)A(1)} ⊇ { (A(1,2)AB)(1,2)A(1,2)}, (3.19)

{ (AB)(1)} ⊇ {B(1)(ABB(1))(1)} ⊇ {B(1,2)(ABB(1,2))(1,2)}, (3.20)

{ (AB)(1)} ⊇ { (A∗AB)(1)A∗} ⊇ { (A∗AB)(1,2)A∗}, (3.21)

{ (AB)(1)} ⊇ {B∗(ABB∗)(1)} ⊇ {B∗(ABB∗)(1,2)}, (3.22)

{ (AB)(1)} ⊇ { (AA∗AB)(1)AA∗} ⊇ { (AA∗AB)(1,2)AA∗}, (3.23)

{ (AB)(1)} ⊇ {B∗B(ABB∗B)(1)} ⊇ {B∗B(ABB∗B)(1,2)}, (3.24)

{ (AB)(1)} ⊇ {B(1)(A(1)ABB(1))(1)A(1)} ⊇ {B(1,2)(A(1,2)ABB(1,2))(1,2)A(1,2)}, (3.25)

{ (AB)(1)} ⊇ {B∗(A∗ABB∗)(1)A∗} ⊇ {B∗(A∗ABB∗)(1,2)A∗}, (3.26)

{ (AB)(1)} ⊇ {B∗B(AA∗ABB∗B)(1,2)AA∗} ⊇ {B∗B(AA∗ABB∗B)(1,2)AA∗} (3.27)

hold. Also by definition,

(A(1,2)AB)(1,2)A(1,2)AB(A(1,2)AB)(1,2)A(1,2) = (A(1,2)AB)(1,2)A(1,2), (3.28)

B(1,2)(ABB(1,2))(1,2)ABB(1,2)(ABB(1,2))(1,2) = B(1,2)(ABB(1,2))(1,2), (3.29)

(A∗AB)(1,2)A∗AB(A∗AB)(1,2) = (A∗AB)(1,2), (3.30)

B∗(ABB∗)(1,2)ABB∗(ABB∗)(1,2) = B∗(ABB∗)(1,2), (3.31)

(AA∗AB)(1,2)AA∗AB(AA∗AB)(1,2)AA∗ = (AA∗AB)(1,2)AA∗, (3.32)

B∗B(ABB∗B)(1,2)ABB∗B(ABB∗B)(1,2) = B∗B(ABB∗B)(1,2), (3.33)

B(1,2)(A(1,2)ABB(1,2))(1,2)A(1,2)ABB(1,2)(A(1,2)ABB(1,2))(1,2)A(1,2) = B(1,2)(A(1,2)ABB(1,2))(1,2)A(1,2),
(3.34)

B∗(A∗ABB∗)(1,2)A∗ABB∗(A∗ABB∗)(1,2)A∗ = B∗(A∗ABB∗)(1,2)A∗, (3.35)

B∗B(AA∗ABB∗B)(1,2)AA∗ABB∗B(AA∗ABB∗B)(1,2)AA∗ = B∗B(AA∗ABB∗B)(1,2)AA∗. (3.36)

Combining (3.19)–(3.27) with (3.28)–(3.36) leads to (3.10)–(3.18).

Theorem 3.2. Let A ∈ Cm×n and B ∈ Cn×p be given. and denote P = In − A(1)A, Q = In − BB(1),
U = In −A(1,2)A, and V = In −BB(1,2). Then,

(a) the set inclusion { (AB)(1)} ⊇ {B(1)A(1) −B(1)P (QP )(1)QA(1) } always holds;

(b) { (AB)(1,2)} ⊇ {B(1,2)A(1,2) − B(1,2)U(V U)(1,2)V A(1,2)} ⇔ r(AB) = r(A) = r(B) ⇔ R(AB) = R(A)
and R[(AB)∗] = R(B∗).

Proof. Noting QP (QP )(1)QP = QP and pre- and post-multiplying with A and B, we obtain

AQP (QP )(1)QPB = AQPB, (3.37)

where both sides are given by

AQPB = A(In −BB(1))(In −A(1)A)B = A(In −A(1)A−BB(1) +BB(1)A(1)A)B

= AB −ABB(1)A(1)AB,

AQP (QP )(1)QPB = A(In −BB(1))P (QP )(1)Q(In −A(1)A)B

= AP (QP )(1)QB −AP (QP )(1)QA(1)AB −ABB(1)P (QP )(1)QB

+ABB(1)P (QP )(1)QA(1)AB

= ABB(1)P (QP )(1)QA(1)AB.

Substituting these equalities into (3.37) yields AB[B(1)A(1) −B(1)P (QP )(1)QA(1)]AB = AB. Thus (a) holds.
Since {M (1)} ⊇ {M (1,2)} for any matrix M , thus it is easy to see from (3.36) that

{ (AB)(1)} ⊇ {B(1)A(1) −B(1)U(V U)(1)V A(1)} ⊇ {B(1,2)A(1,2) −B(1,2)U(V U)(1,2)V A(1,2)}. (3.38)

We next determine the maximum and minimum ranks of B(1,2)A(1,2) − B(1,2)U(V U)(1,2)V A(1,2). Since
r[(V U)(1,2)] = r(V U) and V U(V U)(1,2)V U = V U , it follows that r[U(V U)(1,2)V ] = r[V U(V U)(1,2)V U ] =
r(V U). Also note that (U(V U)(1,2))2 = U(V U)(1,2), namely, U(V U)(1,2)V is idempotent, we obtain

r[In − U(V U)(1,2)V ] = n− r[U(V U)(1,2)V ] = n− r[(V U)(1,2)] = n− r(V U) = r(A) + r(B)− r(AB) (3.39)
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holds for all (V U)(1,2) by (2.47). By (2.46) and elementary block matrix operations,

r[B, In − U(V U)(1,2)V ] = r(B) + r[V − (V U)(V U)(1,2)V ] = r(B) + r[V U, V ]− r(V U)

= r(B) + (V )− r(V U) = n− r(V U) = r(A) + r(B)− r(AB), (3.40)

r

[
A

In − U(V U)(1,2)V

]
= r(A) + r[U − U(V U)(1,2)(V U)] = r(A) + r

[
U
V U

]
− r(V U)

= r(A) + r(U)− r(V U) = n− r(V U) = r(A) + r(B)− r(AB). (3.41)

Next by (2.51), (2.52), (3.39), (3.40), and (3.41),

max
A(1,2),B(1,2)

r[B(1,2)A(1,2) −B(1,2)U(V U)(1,2)V A(1,2)] = min
A(1,2),B(1,2)

r[B(1,2)(In − U(V U)(1,2)V )A(1,2)]

= min{r(A(1,2)), r(B(1,2)), r(In − U(V U)(1,2)V )} = min{r(A), r(B), r(A) + r(B)− r(AB)}
= min{r(A), r(B)}, (3.42)

and

min
A(1,2),B(1,2)

r[B(1,2)A(1,2) −B(1,2)U(V U)(1,2)V A(1,2)]

= min
A(1,2),B(1,2)

r[B(1,2)(In − U(V U)(1,2)V )A(1,2)]

= max

{
0, r(A(1,2)) + r(B(1,2)) + r[In − U(V U)(1,2)V ]− r[B, In − U(V U)(1,2)V ]− r

[
A

In − U(V U)(1,2)V

]}
= max{0, r(AB)} = r(AB). (3.43)

Combining (3.42) and (3.43), we see that r[B(1,2)A(1,2)−B(1,2)U(V U)(1,2)V A(1,2)] = r(AB) holds for all A(1,2),
B(1,2), and (V U)(1,2) if and only if r(AB) = r(A) = r(B). Combining this fact with (3.38) and applying (2.39),
we obtain (b).

The mixed reverse order law (AB)† = B†A†−B†[(In−BB†)(In−A†A)]†A† for the Moore–Penrose inverses
was proposed and approached by the present author in [29] using the matrix rank methodology.

We turn now to the case for generalized inverses of a triple matrix product. There are a large variety of
mixed-type reverse-order laws that can be formulated mostly by try and fail method. Here we present such a
list as follows.

Theorem 3.3. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q be given, and denote M = ABC. Then,

(a) the following set inclusions hold

{M (1)} ⊇ { (A(1)M)(1)A(1)},
{M (1)} ⊇ {C(1)(MC(1))(1)},
{M (1)} ⊇ { (A∗M)(1)A∗},
{M (1)} ⊇ {C∗(MC∗)(1)},
{M (1)} ⊇ { (AA∗M)(1)AA∗},
{M (1)} ⊇ {C∗C(MC∗C)(1)},
{M (1)} ⊇ {C(1)(A(1)MC(1))(1)A(1)},
{M (1)} ⊇ {C∗(A∗MC∗)(1)A∗},
{M (1)} ⊇ { [(AB)(1)M ](1)(AB)(1)},
{M (1)} ⊇ { (BC)(1)[M(BC)(1)](1)},
{M (1)} ⊇ { [(AB)∗M ](1)(AB)∗},
{M (1)} ⊇ { (BC)∗[M(BC)∗](1)},
{M (1)} ⊇ { [(ABB(1))(1)M ](1)(ABB(1))(1)},
{M (1)} ⊇ { (B(1)BC)(1)[M(B(1)BC)(1)](1)},
{M (1)} ⊇ { [(ABB∗)(1)M ](1)(ABB∗)(1)},
{M (1)} ⊇ { (B∗BC)(1)[M(B∗BC)(1)](1)},
{M (1)} ⊇ {C∗C(AA∗MC∗C)(1)AA∗},
{M (1)} ⊇ { (BC)(1)[(AB)(1)M(BC)(1)](1)(AB)(1)},
{M (1)} ⊇ { (BC)∗[(AB)∗M(BC)∗](1)(AB)∗},
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{M (1)} ⊇ { (B(1)BC)(1)[(ABB(1))(1)M(B(1)BC)(1)](1)(ABB(1))(1)},
{M (1)} ⊇ { (B∗BC)(1)[(ABB∗)(1)M(B∗BC)(1)](1)(ABB∗)(1)},
{M (1)} ⊇ { (B(1)BC)∗[(ABB(1))∗M(B(1)BC)∗](1)(ABB(1))∗},
{M (1)} ⊇ { (B∗BC)∗[(ABB∗)∗M(B∗BC)∗](1)(ABB∗)∗};

(b) the following set inclusions hold

{M (1,2)} ⊇ { (A(1,2)M)(1,2)A(1,2)},
{M (1,2)} ⊇ {C(1,2)(MC(1,2))(1,2)},
{M (1,2)} ⊇ { (A∗M)(1,2)A∗},
{M (1,2)} ⊇ {C∗(MC∗)(1,2)},
{M (1,2)} ⊇ { (AA∗M)(1,2)AA∗},
{M (1,2)} ⊇ {C∗C(MC∗C)(1,2)},
{M (1,2)} ⊇ {C(1,2)(A(1,2)MC(1,2))(1,2)A(1,2)},
{M (1,2)} ⊇ {C∗(A∗MC∗)(1,2)A∗},
{M (1,2)} ⊇ { [(AB)(1,2)M ](1,2)(AB)(1,2)},
{M (1,2)} ⊇ { (BC)(1,2)[M(BC)(1,2)](1,2)},
{M (1,2)} ⊇ { [(AB)∗M ](1,2)(AB)∗},
{M (1,2)} ⊇ { (BC)∗[M(BC)∗](1,2)},
{M (1,2)} ⊇ { [(ABB(1,2))(1,2)M ](1,2)(ABB(1,2))(1,2)},
{M (1,2)} ⊇ { (B(1,2)BC)(1,2)[M(B(1,2)BC)(1,2)](1,2)},
{M (1,2)} ⊇ { [(ABB∗)(1,2)M ](1,2)(ABB∗)(1,2)},
{M (1,2)} ⊇ { (B∗BC)(1,2)[M(B∗BC)(1,2)](1,2)},
{M (1,2)} ⊇ {C∗C(AA∗MC∗C)(1,2)AA∗},
{M (1,2)} ⊇ { (BC)(1,2)[(AB)(1,2)M(BC)(1,2)](1,2)(AB)(1,2)},

{M (1,2)} ⊇ { (BC)∗[(AB)∗M(BC)∗](1,2)(AB)∗},
{M (1,2)} ⊇ { (B(1,2)BC)(1,2)[(ABB(1,2))(1,2)M(B(1,2)BC)(1,2)](1,2)(ABB(1,2))(1,2)},
{M (1,2)} ⊇ { (B(1,2)BC)∗[(ABB(1,2))∗M(B(1,2)BC)∗](1,2)(ABB(1,2))∗},
{M (1,2)} ⊇ { (B∗BC)(1,2)[(ABB∗)(1,2)M(B∗BC)(1,2)](1,2)(ABB∗)(1,2)},
{M (1,2)} ⊇ { (B∗BC)∗[(ABB∗)∗M(B∗BC)∗](1,2)(ABB∗)∗}.

Proof. It follows from the direct verification and the definitions of {1}- and {1, 2}-generalized inverse of matrices.

We next prove two results related to the mixed reverse order laws:

(ABC)(1) = (BC)(1)B(AB)(1) − (BC)(1)BP (QBP )(1)QB(AB)(1),

(ABC)(1,2) = (BC)(1,2)B(AB)(1,2) − (BC)(1,2)BU(V BU)(1,2)V B(AB)(1,2)

using definitions and the matrix rank formulas, where P = Ip − (AB)(1)AB, Q = In − BC(BC)(1), U =
Ip − (AB)(1,2)AB, and V = In −BC(BC)(1,2).

Theorem 3.4. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q be given, and denote M = ABC. Then,

(a) {M (1)} ⊇ { (BC)(1)B(AB)(1) − (BC)(1)BP (QBP )(1)QB(AB)(1)} always hold;

(b) {M (1,2)} ⊇ { (BC)(1,2)B(AB)(1,2) − (BC)(1,2)BU(V BU)(1,2)V B(AB)(1,2)} ⇔ r(M) = r(AB) =
r(BC)⇔ R(M) = R(AB) and R(M∗) = R[(BC)∗].

Proof. Noting V BU = (V BU)(V BU)(1)(V BU) and pre- and post-multiplying A and C, we obtain

AV BUC = AV BU(V BU)(1)V BUC, (3.44)
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where

AV BUC = ABC −ABC(BC)(1)BC −AB(AB)(1)ABC +ABC(BC)(1)B(AB)(1)ABC

= ABC(BC)(1)B(AB)(1)ABC −ABC,
AV BU(V BU)(1)V BUC = (A−ABC(BC)(1))BU(V BU)(1)V B(C − (AB)(1)ABC)

= ABU(V BU)(1)V BC −ABC(BC)(1)BU(V BU)(1)V BC

−ABU(V BU)(1)V B(AB)(1)ABC +ABC(BC)(1)BU(V BU)(1)(AB)(1)ABC

= ABC(BC)(1)BU(V BU)(1)(AB)(1)ABC.

Substituting these two equalities into (3.44) yields M [(BC)(1)B(AB)(1)−(BC)(1)BU(V BU)(1)(AB)(1)]M = M ,
establishing (a).

Result (a) obviously implies that

{M (1)} ⊇ { (BC)(1,2)B(AB)(1,2) − (BC)(1,2)BU(V BU)(1,2)V B(AB)(1,2)} (3.45)

We next determine the maximum and minimum rank of (BC)(1,2)[B −BU(V BU)(1,2)V B](AB)(1,2). By (2.46)
and elementary block matrix operations,

r(V B) = r[B − (BC)(BC)(1,2)B] = r[BC, B]− r(BC) = r(B)− r(BC), (3.46)

r(BU) = r[B −B(AB)(1,2)AB] = r[(AB)∗, B∗]− r(AB) = r(B)− r(AB). (3.47)

By (2.46) and elementary block matrix operations,

max
(V BU)(1,2)

r[B −BU(V BU)(1,2)V B]

= min

{
r[BU, B], r

[
V B
B

]
, r

[
V BU V B
BU B

]
− r(V BU)

}
= min{r(B), r(B)− r(V BU)}
= r(B)− r(V BU) = r(AB) + r(AB)− r(ABC) (by (2.48)); (3.48)

min
(V BU)(1,2)

r[B −BU(V BU)(1,2)V B]

= r

[
V B
B

]
+ r[BU, B] + r(V BU)

+ max

r
[
V BU V B
BU B

]
− r
[
V BU 0 V B

0 BU B

]
− r

V BU 0
0 V B
BU B

 , r(B)−r
[
V BU 0
BU B

]
− r
[
V BU V B

0 B

]
= 2r(B) + r(V BU) + min{−2r(V BU)− r(B), −2r(V BU)− r(B)}
= r(B)− r(V BU) = r(AB) + r(AB)− r(ABC) (by (2.48)). (3.49)

Combining (3.48) and (3.49), we see that

r[B −BU(V BU)(1,2)V B] = r(AB) + r(AB)− r(ABC) (3.50)

holds for all (V BU)(1,2). By (2.51), (2.52), (3.46), (3.47), and elementary block matrix operations,

r[BC, B −BU(V BU)(1,2)V B] = r(BC) + r[V B − (V BU)(V BU)(1,2)V B]

= r(BC) + r[V BU, V B]− r(V BU) = r(B)− r(V BU) = r(AB) + r(AB)− r(ABC), (3.51)

r[(AB)∗, (B −BU(V BU)(1,2)V B)]∗] = r(AB) + r(AB)− r(ABC). (3.52)

Also by (2.51) and (2.52),

max
(AB)(1,2),(BC)(1,2)

r[(BC)(1,2)B(AB)(1,2) − (BC)(1,2)BU(V BU)(1,2)V B(AB)(1,2)]

= max
(AB)(1,2),(BC)(1,2)

r{(BC)(1,2)[B −BU(V BU)(1,2)V B](AB)(1,2)}

= max
(AB)(1,2), (BC)(1,2)

{r((AB)(1,2)), r((BC)(1,2)), r[B −BU(V BU)(1,2)V B)]}

= min{r(AB), r(BC), r(AB) + r(ABC)− r(ABC)} (by (3.50))

= min{r(AB), r(BC)}, (3.53)
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and

min
(AB)(1,2),(BC)(1,2)

r[(BC)(1,2)B(AB)(1,2) − (BC)(1,2)BU(V BU)(1,2)V B(AB)(1,2)]

= min
(AB)(1,2),(BC)(1,2)

r{(BC)(1,2)[B −BU(V BU)(1,2)V B](AB)(1,2)}

= max{0, r(AB) + r((BC) + r[B −BU(V BU)(1,2)V B]

− r[BC, B −BU(V BU)(1,2)V B]− r[(AB)∗, (B −BU(V BU)(1,2)V B)]∗}
= max{0, r(ABC)} (by (3.50), (3.51), and (3.52))

= r(ABC). (3.54)

Combining (3.53) and (3.54), we see that r[(BC)(1,2)B(AB)(1,2) − (BC)(1,2)BU(V BU)(1,2)V B(AB)(1,2)] =
r(ABC) holds for all (AB)(1,2), (BC)(1,2), and (V U)(1,2) if and only if r(ABC) = r(AB) = r(BC). Combining
this fact with (3.45) and applying (2.39) lead to (b).

4 Reverse Order Laws for Generalized Inverses of a Triple Matrix
Product

We first prepare some formulas associated with various fundamental matrix calculations in (1.10)–(1.13).

Lemma 4.1. Let A ∈ Cm×m, B ∈ Cm×n, and C ∈ Cn×n be given and assume that A and C are nonsingular.
Also denote M = ABC. Then,

(a) the following rank equalities

r(M) = r(B), r(CM (i,...,j)A) = r(M (i,...,j)), r(C−1B(k,...,l)A−1) = r(B(k,...,l)) (4.1)

hold for all M (i,...,j) and B(k,...,l);

(b) the following set inclusions hold

C−1B†A−1 ∈ {C−1B(1,3,4)A−1} ⊆ {C−1B(1,4)A−1} ⊆ {C−1B(1)A−1}, (4.2)

C−1B†A−1 ∈ {C−1B(1,3,4)A−1} ⊆ {C−1B(1,3)A−1} ⊆ {C−1B(1)A−1}, (4.3)

C−1B†A−1 ∈ {C−1B(1,2,4)A−1} ⊆ {C−1B(1,4)A−1} ⊆ {C−1B(1)A−1}, (4.4)

C−1B†A−1 ∈ {C−1B(1,2,4)A−1} ⊆ {C−1B(1,2)A−1} ⊆ {C−1B(1)A−1}, (4.5)

C−1B†A−1 ∈ {C−1B(1,2,3)A−1} ⊆ {C−1B(1,3)A−1} ⊆ {C−1B(1)A−1}, (4.6)

C−1B†A−1 ∈ {C−1B(1,2,3)A−1} ⊆ {C−1B(1,2)A−1} ⊆ {C−1B(1)A−1}; (4.7)

(c) the following equivalent facts hold

{M (i,...,j)} ∩ {C−1B(k,...,l)A−1} 6= ∅ ⇔ {CM (i,...,j)A} ∩ {B(k,...,l)} 6= ∅, (4.8)

{M (i,...,j)} ⊇ {C−1B(k,...,l)A−1} ⇔ {CM (i,...,j)A} ⊇ {B(k,...,l)}, (4.9)

{M (i,...,j)} ⊆ {C−1B(k,...,l)A−1} ⇔ {CM (i,...,j)A} ⊆ {B(k,...,l)}, (4.10)

{M (i,...,j)} = {C−1B(k,...,l)A−1} ⇔ {CM (i,...,j)A} = {B(k,...,l)} (4.11)

hold for the eight common-used generalized inverses of B and M ;

(d) the following equalities

MC−1B(1)A−1M = MC−1B(1,2)A−1M = MC−1B(1,3)A−1M

= MC−1B(1,4)A−1M = MC−1B(1,2,3)A−1M

= MC−1B(1,2,4)A−1M = MC−1B(1,3,4)A−1M

= MC−1B†A−1M = M (4.12)

hold for all the eight commonly-used types of generalized inverses of B, and

BCM (1)AB = BCM (1,2)AB = BCM (1,3)AB = BCM (1,4)AB

= BCM (1,2,3)AB = BCM (1,2,4)AB = BCM (1,3,4)AB

= BCM†AB = B (4.13)

hold for all the eight commonly-used types of generalized inverses of M ;
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(e) M∗MC−1B(1)A−1 = M∗MC−1B(1,2)A−1 = M∗MC−1B(1,4)A−1 = M∗MC−1B(1,2,4)A−1 = M∗ hold for
some B(1), B(1,2), B(1,4), and B(1,2,4);

(f) M∗MC−1B(1)A−1 = M∗MC−1B(1,2)A−1 = M∗MC−1B(1,4)A−1 = M∗MC−1B(1,2,4)A−1 = M∗ hold for
all B(1), B(1,2), B(1,4), and B(1,2,4) ⇔ B = 0 or r(B) = m;

(g) M∗MC−1B(1,3)A−1 = M∗MC−1B(1,2,3)A−1 = M∗MC−1B(1,3,4)A−1 = M∗MC−1B†A−1 = M∗ ⇔
R(A∗AB) = R(B);

(h) B∗BCM (1)A = B∗BCM (1,2)A = B∗BCM (1,4)A = B∗BCM (1,2,4)A = B∗ hold for all M (1), M (1,2),
M (1,4), and M (1,2,4) ⇔ B = 0 or r(B) = m;

(i) B∗BCM (1,3)A = B∗BCM (1,2,3)A = B∗BCM (1,3,4)A = B∗BCM†A = B∗ ⇔ R(A∗AB) = R(B).

Proof. Result (a) follows from the nonsingularity of A and C. Pre- and post-multiplying (2.22)–(2.17) with
C−1 and A−1 respectively yield the set inclusions in Result (b). Pre- and post-multiplying (1.10)–(1.13) with C
and A respectively yield the following equivalent facts in Result (c). Result (d) follows from direct verification.

The following results

M∗MC−1B(1)A−1 = M∗MC−1B(1,2)A−1 = M∗MC−1B(1,4)A−1 = M∗MC−1B(1,2,4)A−1 = M∗

⇔ (AB)∗ABB(1) = (AB)∗ABB(1,2) = (AB)∗ABB(1,4) = (AB)∗ABB(1,2,4) = (AB)∗A, (4.14)

and

M∗MC−1B(1,3)A−1 = M∗MC−1B(1,2,3)A−1 = M∗MC−1B(1,3,4)A−1 = M∗MC−1B†A−1 = M∗

⇔ (AB)∗ABB† = (AB)∗A (4.15)

follow from (2.13)–(2.16) and the nonsingularity of A and C. Furthermore, it is easy to derive from Lemma 2.7
that

(AB)∗ABB(1) = (AB)∗ABB(1,2) = (AB)∗ABB(1,4) = (AB)∗ABB(1,2,4) = (AB)∗A

are solvable for some B(1), B(1,2), B(1,4), and B(1,2,4), (4.16)

combining this fact with (4.14) leads to Result (e);

(AB)∗ABB(1) = (AB)∗ABB(1,2) = (AB)∗ABB(1,4) = (AB)∗ABB(1,2,4) = (AB)∗A

are solvable for all B(1), B(1,2), B(1,4), and B(1,2,4) ⇔ B = 0 or r(B) = m, (4.17)

combining this facts with (4.14) leads to Result (f);

(AB)∗ABB† = (AB)∗A⇔ R(A∗AB) = R(B). (4.18)

combining it with (4.15) leads to Result (g).
Results (h) and (i) are also derived from Lemma 2.7.

Armed with the preceding results and facts, we can derive the main results in the paper. For the sake of
convenience of reference, we will present a complete list of results for all the situations in (1.10)–(1.13).

Theorem 4.2. Let A ∈ Cm×m, B ∈ Cm×n, and C ∈ Cn×n be given and assume that A and C are nonsingular.
Also denote M = ABC. Then the following 64 groups of results hold.

(1) {M (1)} = {C−1B(1)A−1} holds.

(2a) {M (1)} ⊇ {C−1B(1,2)A−1} holds.

(2b) {M (1)} ⊆ {C−1B(1,2)A−1} ⇔ {M (1)} = {C−1B(1,2)A−1} ⇔ r(B) = min{m, n}.

(3a) {M (1)} ⊇ {C−1B(1,3)A−1} holds.

(3b) {M (1)} ⊆ {C−1B(1,3)A−1} ⇔ {M (1)} = {C−1B(1,3)A−1} ⇔ B = 0 or r(B) = m.

(4a) {M (1)} ⊇ {C−1B(1,4)A−1} holds.

(4b) {M (1)} ⊆ {C−1B(1,4)A−1} ⇔ {M (1)} = {C−1B(1,4)A−1} ⇔ B = 0 or r(B) = n.

(5a) {M (1)} ⊇ {C−1B(1,2,3)A−1} holds.

(5b) {M (1)} ⊆ {C−1B(1,2,3)A−1} ⇔ {M (1)} = {C−1B(1,2,3)A−1} ⇔ r(B) = m.
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(6a) {M (1)} ⊇ {C−1B(1,2,4)A−1} holds.

(6b) {M (1)} ⊆ {C−1B(1,2,4)A−1} ⇔ {M (1)} = {C−1B(1,2,4)A−1} ⇔ r(B) = n.

(7a) {M (1)} ⊇ {C−1B(1,3,4)A−1} holds.

(7b) {M (1)} ⊆ {C−1B(1,3,4)A−1} ⇔ {M (1)} = {C−1B(1,3,4)A−1} ⇔ B = 0 or r(B) = m = n.

(8) {M (1)} 3 C−1B†A−1 holds.

(9a) {M (1,2)} ⊆ {C−1B(1)A−1} holds.

(9b) {M (1,2)} ⊇ {C−1B(1)A−1} ⇔ {M (1,2)} = {C−1B(1)A−1} ⇔ r(B) = m or r(B) = n.

(10) {M (1,2)} = {C−1B(1,2)A−1} holds.

(11a) {M (1,2)} ∩ {C−1B(1,3)A−1} 6= ∅ holds.

(11b) {M (1,2)} ⊇ {C−1B(1,3)A−1} ⇔ r(B) = m or r(B) = n.

(11c) {M (1,2)} ⊆ {C−1B(1,3)A−1} ⇔ B = 0 or r(B) = m.

(11d) {M (1,2)} = {C−1B(1,3)A−1} ⇔ r(B) = m.

(12a) {M (1,2)} ∩ {C−1B(1,4)A−1} 6= ∅. holds.

(12b) {M (1,2)} ⊇ {C−1B(1,4)A−1} ⇔ r(B) = m or r(B) = n.

(12c) {M (1,2)} ⊆ {C−1B(1,4)A−1} ⇔ B = 0 or r(B) = n.

(12d) {M (1,2)} = {C−1B(1,4)A−1} ⇔ r(B) = n.

(13a) {M (1,2)} ⊇ {C−1B(1,2,3)A−1} holds.

(13b) {M (1,2)} ⊆ {C−1B(1,2,3)A−1} ⇔ {M (1,2)} = {C−1B(1,2,3)A−1} ⇔ B = 0 or r(B) = m.

(14a) {M (1,2)} ⊇ {C−1B(1,2,4)A−1} holds.

(14c) {M (1,2)} ⊆ {C−1B(1,2,4)A−1} ⇔ {M (1,2)} = {C−1B(1,2,4)A−1} ⇔ B = 0 or r(B) = n.

(15a) {M (1,2)} ∩ {C−1B(1,3,4)A−1} 6= ∅ holds.

(15b) {M (1,2)} ⊇ {C−1B(1,3,4)A−1} ⇔ r(B) = m or r(B) = n.

(15c) {M (1,2)} ⊆ {C−1B(1,3,4)A−1} ⇔ B = 0 or r(B) = m = n.

(15d) {M (1,2)} = {C−1B(1,3,4)A−1} ⇔ r(B) = m = n.

(16) {M (1,2)} 3 C−1B†A−1 holds.

(17a) {M (1,3)} ⊆ {C−1B(1)A−1} holds.

(17b) {M (1,3)} ⊇ {C−1B(1)A−1} ⇔ {M (1,3)} = {C−1B(1)A−1} ⇔ B = 0 or r(B) = m.

(18a) {M (1,3)} ∩ {C−1B(1,2)A−1} 6= ∅ holds.

(18b) {M (1,3)} ⊇ {C−1B(1,2)A−1} ⇔ B = 0 or r(B) = m.

(18c) {M (1,3)} ⊆ {C−1B(1,2)A−1} ⇔ r(B) = m or r(B) = n.

(18d) {M (1,3)} = {C−1B(1,2)A−1} ⇔ r(B) = m.

(19a) {M (1,3)} ∩ {C−1B(1,3)A−1} 6= ∅ holds.

(19b) {M (1,3)} ⊇ {C−1B(1,3)A−1} ⇔ {M (1,3)} ⊆ {C−1B(1,3)A−1} ⇔ {M (1,3)} = {C−1B(1,3)A−1} ⇔
R(A∗AB) = R(B).

(20a) {M (1,3)} ∩ {C−1B(1,4)A−1} 6= ∅ holds.

(20b) {M (1,3)} ⊇ {C−1B(1,4)A−1} ⇔ B = 0 or r(B) = m.

(20c) {M (1,3)} ⊆ {C−1B(1,4)A−1} ⇔ B = 0 or r(B) = n.

(20d) {M (1,3)} = {C−1B(1,4)A−1} ⇔ B = 0 or r(B) = m = n.
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(21a) {M (1,3)} ∩ {C−1B(1,2,3)A−1} 6= ∅ ⇔ {M (1,3)} ⊇ {C−1B(1,2,3)A−1} ⇔ R(A∗AB) = R(B).

(21b) {M (1,3)} ⊆ {C−1B(1,2,3)A−1} ⇔ {M (1,3)} = {C−1B(1,2,3)A−1} ⇔ R(A∗AB) = R(B) and r(B) =
min{m, n}.

(22a) {M (1,3)} ∩ {C−1B(1,2,4)A−1} 6= ∅ holds.

(22b) {M (1,3)} ⊇ {C−1B(1,2,4)A−1} ⇔ B = 0 or r(B) = m.

(22c) {M (1,3)} ⊆ {C−1B(1,2,4)A−1} ⇔ r(B) = n.

(22d) {M (1,3)} = {C−1B(1,2,4)A−1} ⇔ r(B) = m = n.

(23a) {M (1,3)} ∩ {C−1B(1,3,4)A−1} 6= ∅ ⇔ {M (1,3)} ⊇ {C−1B(1,3,4)A−1} ⇔ R(A∗AB) = R(B).

(23b) {M (1,3)} ⊆ {C−1B(1,3,4)A−1} 6= ∅ ⇔ {M (1,3)} = {C−1B(1,3,4)A−1} ⇔ B = 0 or {r(B) = n and
R(A∗AB) = R(B)}.

(24) {M (1,3)} 3 C−1B†A−1 ⇔ R(A∗AB) = R(B).

(25a) {M (1,4)} ⊆ {C−1B(1)A−1} holds.

(25b) {M (1,4)} ⊇ {C−1B(1)A−1} ⇔ {M (1,3)} = {C−1B(1)A−1} ⇔ B = 0 or r(B) = n.

(26a) {M (1,4)} ∩ {C−1B(1,2)A−1} 6= ∅ holds.

(26b) {M (1,4)} ⊇ {C−1B(1,2)A−1} ⇔ B = 0 or r(B) = n.

(26c) {M (1,4)} ⊆ {C−1B(1,2)A−1} ⇔ r(B) = m or r(B) = n.

(26d) {M (1,4)} = {C−1B(1,2)A−1} ⇔ r(B) = n.

(27a) {M (1,4)} ∩ {C−1B(1,3)A−1} 6= ∅ holds.

(27b) {M (1,4)} ⊇ {C−1B(1,3)A−1} ⇔ B = 0 or r(B) = n.

(27c) {M (1,4)} ⊆ {C−1B(1,3)A−1} ⇔ B = 0 or r(B) = m.

(27d) {M (1,4)} = {C−1B(1,3)A−1} ⇔ B = 0 or r(B) = m = n.

(28a) {M (1,4)} ∩ {C−1B(1,4)A−1} 6= ∅ holds.

(28b) {M (1,4)} ⊇ {C−1B(1,4)A−1} ⇔ {M (1,4)} ⊆ {C−1B(1,4)A−1} ⇔{M (1,4)} = {C−1B(1,4)A−1} ⇔
R(CC∗B∗) = R(B∗).

(29a) {M (1,4)} ∩ {C−1B(1,2,3)A−1} 6= ∅ holds.

(29b) {M (1,4)} ⊇ {C−1B(1,2,3)A−1} ⇔ B = 0 or r(B) = n.

(29c) {M (1,4)} ⊆ {C−1B(1,2,3)A−1} ⇔ r(B) = m.

(29d) {M (1,4)} = {C−1B(1,2,3)A−1} ⇔ r(B) = m = n.

(30a) {M (1,4)} ∩ {C−1B(1,2,4)A−1} 6= ∅ ⇔ {M (1,4)} ⊇ {C−1B(1,2,4)A−1} ⇔ R(CC∗B∗) = R(B∗).

(30b) {M (1,4)} ⊆ {C−1B(1,2,4)A−1} ⇔ {M (1,4)} = {C−1B(1,2,4)A−1} ⇔ R(CC∗B∗) = R(B∗) and r(B) =
min{m, n}.

(31a) {M (1,4)} ∩ {C−1B(1,3,4)A−1} 6= ∅ ⇔ {M (1,4)} ⊇ {C−1B(1,3,4)A−1} ⇔ R(CC∗B∗) = R(B∗).

(31b) {M (1,4)} ⊆ {C−1B(1,3,4)A−1} ⇔ {M (1,4)} = {C−1B(1,3,4)A−1} ⇔ B = 0 or {r(B) = m and
R(CC∗B∗) = R(B∗)}.

(32) {M (1,4)} 3 C−1B†A−1 ⇔ R(CC∗B∗) = R(B∗).

(33a) {M (1,2,3)} ⊆ {C−1B(1)A−1} holds.

(33b) {M (1,2,3)} ⊇ {C−1B(1)A−1} ⇔ {M (1,2,3)} = {C−1B(1)A−1} ⇔ r(B) = m.

(34a) {M (1,2,3)} ⊆ {C−1B(1,2)A−1} holds.

(34b) {M (1,2,3)} ⊇ {C−1B(1,2)A−1} ⇔ {M (1,2,3)} = {C−1B(1,2)A−1} ⇔ B = 0 or r(B) = m.

(35a) {M (1,2,3)} ∩ {C−1B(1,3)A−1} 6= ∅ ⇔ {M (1,2,3)} ⊆ {C−1B(1,3)A−1} ⇔ R(A∗AB) = R(B).
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(35b) {M (1,2,3)} ⊇ {C−1B(1,3)A−1} ⇔ {M (1,2,3)} = {C−1B(1,3)A−1} ⇔ R(A∗AB) = R(B) and r(B) =
min{m, n}.

(36a) {M (1,2,3)} ∩ {C−1B(1,4)A−1} 6= ∅ holds.

(36b) {M (1,2,3)} ⊇ {C−1B(1,4)A−1} ⇔ r(B) = m.

(36c) {M (1,2,3)} ⊆ {C−1B(1,4)A−1} ⇔ B = 0 or r(B) = n.

(36d) {M (1,2,3)} = {C−1B(1,4)A−1} ⇔ r(B) = m = n.

(37) {M (1,2,3)} ∩ {C−1B(1,2,3)A−1} 6= ∅ ⇔ {M (1,2,3)} = {C−1B(1,2,3)A−1} ⇔ R(A∗AB) = R(B).

(38a) {M (1,2,3)} ∩ {C−1B(1,2,4)A−1} 6= ∅ holds.

(38b) {M (1,2,3)} ⊇ {C−1B(1,2,4)A−1} ⇔ B = 0 or r(B) = m.

(38c) {M (1,2,3)} ⊆ {C−1B(1,2,4)A−1} ⇔ B = 0 or r(B) = n.

(38d) {M (1,2,3)} = {C−1B(1,2,4)A−1} ⇔ B = 0 or r(B) = m = n.

(39a) {M (1,2,3)} ∩ {C−1B(1,3,4)A−1} 6= ∅ ⇔ R(A∗AB) = R(B).

(39b) {M (1,2,3)} ⊇ {C−1B(1,3,4)A−1} ⇔ R(A∗AB) = R(B) and r(B) = min{m, n}.

(39c) {M (1,2,3)} ⊆ {C−1B(1,3,4)A−1} ⇔ B = 0 or {R(A∗AB) = R(B) and r(B) = n}.

(39d) {M (1,2,3)} ⊆ {C−1B(1,3,4)A−1} ⇔ R(A∗AB) = R(B) and r(B) = n.

(40) {M (1,2,3)} 3 C−1B†A−1 ⇔ R(A∗AB) = R(B).

(41a) {M (1,2,4)} ⊆ {C−1B(1)A−1} holds.

(41b) {M (1,2,4)} ⊇ {C−1B(1)A−1} ⇔ {M (1,2,4)} = {C−1B(1)A−1} ⇔ r(B) = n.

(42a) {M (1,2,4)} ⊆ {C−1B(1,2)A−1} holds.

(42b) {M (1,2,4)} ⊇ {C−1B(1,2)A−1} ⇔ {M (1,2,4)} = {C−1B(1,2)A−1} ⇔ ⇔ B = 0 or r(B) = n.

(43a) {M (1,2,4)} ∩ {C−1B(1,3)A−1} 6= ∅ holds.

(43b) {M (1,2,4)} ⊇ {C−1B(1,3)A−1} ⇔ r(B) = n.

(43c) {M (1,2,4)} ⊆ {C−1B(1,3)A−1} ⇔ B = 0 or r(B) = m.

(43d) {M (1,2,4)} = {C−1B(1,3)A−1} ⇔ r(B) = m = n.

(44a) {M (1,2,4)} ∩ {C−1B(1,4)A−1} 6= ∅ ⇔ {M (1,2,4)} ⊆ {C−1B(1,4)A−1} ⇔ R(CC∗B∗) = R(B∗).

(44b) {M (1,2,4)} ⊇ {C−1B(1,4)A−1} ⇔ {M (1,2,4)} = {C−1B(1,4)A−1} ⇔ R(CC∗B∗) = R(B∗) and r(B) =
min{m, n}.

(45a) {M (1,2,4)} ∩ {C−1B(1,2,3)A−1} 6= ∅ holds.

(45b) {M (1,2,4)} ⊇ {C−1B(1,2,3)A−1} ⇔ B = 0 or r(B) = n.

(45c) {M (1,2,4)} ⊆ {C−1B(1,2,3)A−1} ⇔ B = 0 or r(B) = m.

(45d) {M (1,2,4)} = {C−1B(1,2,3)A−1} ⇔ B = 0 or r(B) = m = n.

(46) {M (1,2,4)} ∩ {C−1B(1,2,4)A−1} 6= ∅ ⇔ {M (1,2,4)} = {C−1B(1,2,4)A−1} ⇔ R(CC∗B∗) = R(B∗).

(47a) {M (1,2,4)} ∩ {C−1B(1,3,4)A−1} 6= ∅ ⇔ R(CC∗B∗) = R(B∗).

(47b) {M (1,2,4)} ⊇ {C−1B(1,3,4)A−1} ⇔ R(CC∗B∗) = R(B∗) and r(B) = min{m, n}.

(47c) {M (1,2,4)} ⊆ {C−1B(1,3,4)A−1} ⇔ B = 0 or {R(CC∗B∗) = R(B∗) and r(B) = m}.

(47d) {M (1,2,4)} = {C−1B(1,3,4)A−1} ⇔ R(CC∗B∗) = R(B∗) and r(B) = m.

(48) {M (1,2,4)} 3 C−1B†A−1 ⇔ R(CC∗B∗) = R(B∗).

(49a) {M (1,3,4)} ⊆ {C−1B(1)A−1} holds.
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(49b) {M (1,3,4)} ⊇ {C−1B(1)A−1} ⇔ {M (1,3,4)} = {C−1B(1)A−1} ⇔ B = 0 or r(B) = m = n.

(50a) {M (1,3,4)} ∩ {C−1B(1,2)A−1} 6= ∅.

(50b) {M (1,3,4)} ⊇ {C−1B(1,2)A−1} ⇔ B = 0 or r(B) = m = n.

(50c) {M (1,3,4)} ⊆ {C−1B(1,2)A−1} ⇔ r(B) = m or r(B) = n.

(50d) {M (1,3,4)} = {C−1B(1,2)A−1} ⇔ r(B) = m = n.

(51a) {M (1,3,4)} ∩ {C−1B(1,3)A−1} 6= ∅ ⇔ {M (1,3,4)} ⊆ {C−1B(1,3)A−1} ⇔ R(A∗AB) = R(B).

(51b) {M (1,3,4)} ⊇ {C−1B(1,3)A−1} ⇔ {M (1,3,4)} = {C−1B(1,3)A−1} ⇔ B = 0 or {r(B) = n and R(A∗AB) =
R(B)}.

(52a) {M (1,3,4)} ∩ {C−1B(1,4)A−1} 6= ∅ ⇔ {M (1,3,4)} ⊆ {C−1B(1,4)A−1} ⇔ R(CC∗B∗) = R(B∗).

(52b) {M (1,3,4)} ⊇ {C−1B(1,4)A−1} ⇔ {M (1,3,4)} = {C−1B(1,4)A−1} ⇔ B = 0 or {r(B) = m and
R(CC∗B∗) = R(B∗)}.

(53a) {M (1,3,4)} ∩ {C−1B(1,2,3)A−1} 6= ∅ ⇔ R(A∗AB) = R(B).

(53b) {M (1,3,4)} ⊇ {C−1B(1,2,3)A−1} ⇔ B = 0 or {r(B) = n and R(A∗AB) = R(B)}.

(53c) {M (1,3,4)} ⊆ {C−1B(1,2,3)A−1} ⇔ R(A∗AB) = R(B) and r(B) = min{m, n}.

(53d) {M (1,3,4)} = {C−1B(1,2,3)A−1} ⇔ r(B) = n and R(A∗AB) = R(B).

(54a) {M (1,3,4)} ∩ {C−1B(1,2,4)A−1} 6= ∅ ⇔ R(CC∗B∗) = R(B∗).

(54b) {M (1,3,4)} ⊇ {C−1B(1,2,4)A−1} ⇔ B = 0 or {r(B) = m and R(CC∗B∗) = R(B∗)}.

(54c) {M (1,3,4)} ⊆ {C−1B(1,2,4)A−1} ⇔ R(CC∗B∗) = R(B∗) and r(B) = min{m, n}.

(54d) {M (1,3,4)} = {C−1B(1,2,4)A−1} ⇔ r(B) = m and R(CC∗B∗) = R(B∗).

(55) {M (1,3,4)} ∩ {C−1B(1,3,4)A−1} 6= ∅ ⇔ {M (1,3,4)} = {C−1B(1,3,4)A−1} ⇔ R(A∗AB) = R(B) and
R(CC∗B∗) = R(B∗).

(56) {M (1,3,4)} 3 C−1B†A−1 ⇔ R(A∗AB) = R(B) and R(CC∗B∗) = R(B∗).

(57) M† ∈ {C−1B(1)A−1} holds.

(58) M† ∈ {C−1B(1,2)A−1} holds.

(59) M† ∈ {C−1B(1,3)A−1} ⇔ R(A∗AB) = R(B).

(60) M† ∈ {C−1B(1,4)A−1} ⇔ R(CC∗B∗) = R(B∗).

(61) M† ∈ {C−1B(1,2,3)A−1} ⇔ R(A∗AB) = R(B).

(62) M† ∈ {C−1B(1,2,4)A−1} ⇔ R(CC∗B∗) = R(B∗).

(63) M† ∈ {C−1B(1,3,4)A−1} ⇔ R(A∗AB) = R(B) and R(CC∗B∗) = R(B∗).

(64) [12, Case 2] M† = C−1B†A−1 ⇔ R(A∗AB) = R(B) and R(CC∗B∗) = R(B∗) ⇔ R(AA∗M) = R(M)
and R(C∗CM∗) = R(M∗) ⇔ (A∗AB)(A∗AB)† = BB† and (BCC∗)†(BCC∗) = B†B ⇔ A∗ABB∗ and
B∗BCC∗ are EP ⇔ AA∗MM∗ and M∗MC∗C are EP.

Proof. By (4.12) and (4.13),

{M (1)} ⊇ {C−1B(1)A−1} and {CM (1)A} ⊆ {B(1)} (4.19)

hold. Combining (4.19) with (4.10) yields Result (1).
Result (2a) follows from (4.12). By (4.10),

{M (1)} ⊆ {C−1B(1,2)A−1} ⇔ {CM (1)A} ⊆ {B(1,2)}
⇔ BCM (1)AB = B and r(CM (1)A) = r(B) for all M (1) (by (2.39))

⇔ r(M (1)) = r(B) for all M (1)

⇔ min{m, n} = r(B) (by (2.28) and (2.29))

⇔ r(B) = m or r(B) = n, (4.20)
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establishing the equivalence the first and third terms in Result (2b). Combining this fact with Result (2a) leads
to the second equivalence in Result (2b).

Result (3a) follows from (4.12). By (2.40) and (4.10),

{M (1)} ⊆ {C−1B(1,3)A−1} ⇔ {CM (1)A} ⊆ {B(1,3)}
⇔ B∗BCM (1)A = B∗ for all M (1)

⇔ B = 0 or r(B) = m (by Lemma 4.1(h)), (4.21)

establishing the equivalence the first and third terms in Result (3b). Combining this fact with Result (3a) leads
to the second equivalence in Result (3b).

Result (5a) follows from (4.12). By (4.10),

{M (1)} ⊆ {C−1B(1,2,3)A−1} ⇔ {CM (1)A} ⊆ {B(1,2,3)}
⇔ B∗BCM (1)A = B∗ and r(CM (1)A) = r(B) for all M (1) (by (2.42))

⇔ {B = 0 or r(B) = m} and r(B) = min{m, n} (by (2.28), (2.29), (4.1), and Lemma 4.1(h))

⇔ r(B) = m, (4.22)

establishing the equivalence the first and third terms in Result (5b). Combining this fact with Result (5a) leads
to the second equivalence in Result (5b).

Result (7a) follows from (4.12). By (4.10),

{M (1)} ⊆ {C−1B(1,3,4)A−1} ⇔ {CM (1)A} ⊆ {B(1,3,4)}
⇔ B∗BCM (1)A = B∗ and CM (1)ABB∗ = B∗for all M (1,3,4) (by (2.44))

⇔ {B = 0 or r(B) = m} and {B = 0 or r(B) = n} (by Lemma 4.1(h))

⇔ B = 0 or r(B) = m = n, (4.23)

establishing the equivalence the first and third terms in Result (7b). Combining this fact with Result (7a) leads
to the second equivalence in Result (7b).

Result (8) follows from (4.12).
Result (9a) follows from (2.19) and Result (1). By (4.10),

{M (1,2)} ⊇ {C−1B(1)A−1}
⇔ {M (1)} ⊇ {C−1B(1)A−1} and r(C−1B(1)A−1) = r(M) for all B(1) (by (2.39))

⇔ r(B(1)) = r(B) for all B(1) (by (4.1) and (4.12))

⇔ r(B) = min{m, n} (by (2.28) and (2.29))

⇔ r(B) = m or r(B) = n, (4.24)

establishing the equivalence the first and third terms in Result (9b). Combining this fact with Result (9a) leads
to the second equivalence in Result (9b).

By (4.1),

r(C−1B(1,2)A−1) = r(B(1,2)) = r(B) (4.25)

holds for all B(1,2). Combining this fact with Result (2a) leads to

{M (1,2)} ⊇ {C−1B(1,2)A−1}. (4.26)

On the other hand, both BCM (1,2)AB = B and r(CM (1,2)A) = r(M (1,2)) = r(M) = r(B) for all M (1,2)

hold by (4.12), which implies {CM (1,2)A} ⊆ {B(1,2)} by (2.39), so that {M (1,2)} ⊆ {C−1B(1,2)A−1} by (4.10).
Combining this fact with (4.25) leads to the set equality in Result (10).

By (2.29), there exists a B(1,3) such that r(C−1B(1,3)A−1) = r(B(1,3)) = r(B) = r(M). Combining this
fact with (4.12), we see that the product satisfies C−1B(1,3)A−1 ∈ {M (1,2)}, thus establishing Result (11a). By
(2.39),

{M (1,2)} ⊇ {C−1B(1,3)A−1}
⇔MC−1B(1,3)A−1M = M and r(C−1B(1,3)A−1) = r(M) for all B(1,3)

⇔ r(B(1,3)) = r(B) for all B(1,3) (by (4.1) and (4.12))

⇔ min{m, n} = r(B) (by (2.28) and (2.29))

⇔ r(B) = m or r(B) = n, (4.27)
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thus establishing Result (11b). By (4.10),

{M (1,2)} ⊆ {C−1B(1,3)A−1} ⇔ {CM (1,2)A} ⊆ {B(1,3)}
⇔ B∗BCM (1,2)A = B∗ for all M (1,2) (by (2.40))

⇔ B = 0 or r(B) = m (by Lemma 4.1(h)), (4.28)

thus establishing Result (11c). Combining Results (11b) and (11c) leads to Result (11d).
Results (13a) follows from (4.7) and Result (10). By (4.10),

{M (1,2)} ⊆ {C−1B(1,2,3)A−1} ⇔ {CM (1,2)A} ⊆ {B(1,2,3)}
⇔ B∗BCM (1,2)A = B∗ and r(CM (1,2)A) = r(B) for all M (1,2) (by (2.42))

⇔ B = 0 or r(B) = m (by Lemma 4.1(h)), (4.29)

establishing the equivalence the first and third terms in Result (13b). Combining this fact with Result (13a)
leads to the second equivalence in Result (13b).

By (2.29), there exists a B(1,3,4) such that r(C−1B(1,3,4)A−1) = r(B(1,3,4)) = r(B) = r(M). Combining this
fact with (4.12), we see that the product satisfies C−1B(1,3,4)A−1 ∈ {M (1,2)}, thus establishing Result (15a).
By (2.39),

{M (1,2)} ⊇ {C−1B(1,3,4)A−1}
⇔MC−1B(1,3,4)A−1M = M and r(C−1B(1,3,4)A−1) = r(M) for all B(1,3,4)

⇔ r(B(1,3,4)) = r(B) for all B(1,3,4) (by (4.1) and (4.12))

⇔ r(B) = min{m, n} (by (2.28) and (2.29))

⇔ r(B) = m or r(B) = n, (4.30)

thus establishing Result (15b). By (4.10),

{M (1,2)} ⊆ {C−1B(1,3,4)A−1} ⇔ {CM (1,2)A} ⊆ {B(1,3,4)}
⇔ B∗BCM (1,2)A = B∗ and CM (1,2)ABB∗ = B∗ for all M (1,2) (by (2.44))

⇔ {B = 0 or r(B) = m} and {B = 0 or r(B) = n} (by Lemma 4.1(h))

⇔ B = 0 or r(B) = m = n, (4.31)

thus establishing Result (15c). Combining Results (11b) and (15c) leads to Result (15d).
Result (16) follows from (4.12), r(C−1B†A−1) = r(B), and (2.39).
Result (17a) follows from (4.10) and (4.13). By (2.40),

{M (1,3)} ⊇ {C−1B(1)A−1} ⇔M∗MC−1B(1)A−1 = M∗ for all B(1)

⇔ B = 0 or r(B) = m (by Lemma 4.1(f)), (4.32)

thus establishing the equivalence the first and third terms in Result (17b). Combining this fact with Result
(17a) leads to the second equivalence in Result (17b).

Result (18a) follows from Lemma 4.1(e). By (2.40),

{M (1,3)} ⊇ {C−1B(1,2)A−1} ⇔M∗MC−1B(1,2)A−1 = M∗ for all B(1,2)

⇔ B = 0 or r(B) = m (by Lemma 4.1(f)), (4.33)

thus establishing Result (18b). By (4.10),

{M (1,3)} ⊆ {C−1B(1,2)A−1} ⇔ {CM (1,3)A} ⊆ {B(1,2)}
⇔ BCM (1,3)AB = B and r(CM (1,3)A) = r(B)for all M (1,3)

⇔ r(M (1,3)) = r(B) for all M (1,3) (by (4.1) and (4.13))

⇔ r(B) = m or r(B) = n (by (2.28) and (2.29)), (4.34)

thus establishing Result (18c). Combining Results (18b) and (18c) leads to Result (18d).
Result (19a) follows from Lemma 4.1(e). By (2.40),

{M (1,3)} ⊇ {C−1B(1,3)A−1} ⇔M∗MC−1B(1,3)A−1 = M∗ for all B(1,3)

⇔ R(A∗AB) = R(B) (by Lemma 4.1(g)). (4.35)
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Also by (4.10),

{M (1,3)} ⊆ {C−1B(1,3)A−1} ⇔ {CM (1,3)A} ⊆ {B(1,3)}
⇔ B∗BCM (1,3)A = B∗ for all M (1,3)

⇔ R(A∗AB) = R(B) (by Lemma 4.1(i)), (4.36)

Combining (4.35) and (4.36) leads to Result (19b).
Result (20a) follows from Lemma 4.1(e). By (2.40),

{M (1,3)} ⊇ {C−1B(1,4)A−1} ⇔M∗MC−1B(1,4)A−1 = M∗ for all B(1,4)

⇔ B = 0 or r(B) = m (by Lemma 4.1(f)), (4.37)

thus establishing Result (20b). By (4.10),

{M (1,3)} ⊆ {C−1B(1,4)A−1} ⇔ {CM (1,3)A} ⊆ {B(1,4)}
⇔ CM (1,3)ABB∗ = B∗ for all M (1,3)

⇔ B = 0 or r(B) = n (by Lemma 4.1(f)), (4.38)

thus establishing Result (20c).
Combining (4.41) and (4.42) leads to Result (20c). Combining Results (20b) and (20c) leads to Result (20d).
By (2.40),

{M (1,3)} ∩ {C−1B(1,2,3)A−1} 6= ∅ ⇔M∗MC−1B(1,2,3)A−1 = M∗ for a B(1,2,3)

⇔ {M (1,3)} ⊇ {C−1B(1,2,3)A−1}
⇔M∗MC−1B(1,2,3)A−1 = M∗ for all B(1,2,3)

⇔ R(A∗AB) = R(B) (by Lemma 4.1(g)). (4.39)

establishing Result (21a). By (4.10) and By (2.42),

{M (1,3)} ⊆ {C−1B(1,2,3)A−1} ⇔ {CM (1,3)A} ⊆ {B(1,2,3)}
⇔ B∗BCM (1,3)A = B∗ and r(CM (1,3)A) = r(B) for all M (1,3)

⇔ R(A∗AB) = R(B) and r(B) = min{m, n} (by Lemma 4.1(i), (2.28) and (2.29)), (4.40)

establishing the equivalence the first and third terms in Result (21b). Combining this fact with Result (21a)
leads to the second equivalence in Result (21b).

Result (22a) follows from Lemma 4.1(e). By (2.40),

{M (1,3)} ⊇ {C−1B(1,2,4)A−1} ⇔M∗MC−1B(1,2,4)A−1 = M∗ for all B(1,2,4)

⇔ B = 0 or r(B) = m (by Lemma 4.1(f)), (4.41)

thus establishing Result (22b). By (4.10),

{M (1,3)} ⊆ {C−1B(1,2,4)A−1} ⇔ {CM (1,3)A} ⊆ {B(1,2,4)}
⇔ CM (1,3)ABB∗ = B∗ and r(CM (1,3)A) = r(B) for all M (1,3)

⇔ {B = 0 or r(B) = n} and r(B) = min{m, n} (by Lemma 4.1(f), (2.28) and (2.29))

⇔ r(B) = n, (4.42)

thus establishing Result (22c). Combining Results (22b) and (22c) leads to Result (22d).
By (2.40),

{M (1,3)} ∩ {C−1B(1,3,4)A−1} 6= ∅ ⇔M∗MC−1B(1,3,4)A−1 = M∗ for a B(1,3,4)

{M (1,3)} ⊇ {C−1B(1,3,4)A−1}
⇔M∗MC−1B(1,3,4)A−1 = M∗ for all B(1,3,4)

⇔ R(A∗AB) = R(B) (by Lemma 4.1(g)), (4.43)

thus establishing Result (23a).
Also by (4.10),

{M (1,3)} ⊆ {C−1B(1,3,4)A−1} ⇔ {CM (1,3)A} ⊆ {B(1,3,4)}
⇔ B∗BCM (1,3)A = B∗ and CM (1,3)ABB∗ = B∗for all M (1,3) (by (2.44))

⇔ R(A∗AB) = R(B) and {B = 0 or r(B) = n} (by Lemma 4.1(h) and (i))

⇔ B = 0 or {r(B) = n and R(A∗AB) = R(B)}. (4.44)
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establishing the equivalence the first and third terms in Result (23b). Combining this fact with Result (23a)
leads to the second equivalence in Result (23b).

Result (24) follows from (2.40) and Lemma 4.1(g).
Results (25a)–(32) are obtained from Lemma 2.1, Results (17a)–(24), and matrix replacements.
Result (33a) follows from (4.10) and (4.13). By (2.42),

{M (1,2,3)} ⊇ {C−1B(1)A−1}
⇔M∗MC−1B(1)A−1 = M∗ and r(C−1B(1)A−1) = r(M) for all B(1)

⇔ {B = 0 or r(B) = m} and r(B) = min{m, n} (by Lemma 4.1(f), (2.28) and (2.29))

⇔ r(B) = m, (4.45)

thus establishing the equivalence the first and third terms in Result (33b). Combining this fact with Result
(33a) leads to the second equivalence in Result (33b).

Result (34a) follows from (4.10), (4.13) and r(M (1,2,3)) = r(M) = r(B). By (2.42),

{M (1,2,3)} ⊇ {C−1B(1,2)A−1}
⇔M∗MC−1B(1,2)A−1 = M∗ and r(C−1B(1,2)A−1) = r(M) for all B(1,2)

⇔ B = 0 or r(B) = m (by Lemma 4.1(f)), (4.46)

thus establishing the equivalence the first and third terms in Result (34b). Combining this fact with Result
(34a) leads to the second equivalence in Result (34b).

By (2.42),

{M (1,2,3)} ∩ {C−1B(1,3)A−1} 6= ∅ ⇔M∗MC−1B(1,3)A−1 = M∗ for a B(1,3)

⇔ R(A∗AB) = R(B) (by Lemma 4.1(g)), (4.47)

and by (4.10),

{M (1,2,3)} ⊆ {C−1B(1,3)A−1} ⇔ {CM (1,2,3)A} ⊆ {B(1,3)}
⇔ B∗BCM (1,2,3)A = B∗ for all M (1,2,3)

⇔ R(A∗AB) = R(B) (by Lemma 4.1(i)), (4.48)

Combining (4.47) and (4.48) leads to Result (35a). By (2.42),

{M (1,2,3)} ⊇ {C−1B(1,3)A−1}
M∗MC−1B(1,3)A−1 = M∗ and r(C−1B(1,3)A−1) = r(M) for all B(1,3)

⇔ R(A∗AB) = R(B) and r(B) = min{m, n} (by Lemma 4.1(g), (2.28) and (2.29)). (4.49)

thus establishing the equivalence the first and third terms in Result (35b). Combining this fact with Result
(35a) leads to the second equivalence in Result (35b).

Result (36a) follows from (4.10) and Lemma 4.1(e). By (2.42),

{M (1,2,3)} ⊇ {C−1B(1,4)A−1}
⇔M∗MC−1B(1,4)A−1 = M∗ and r(C−1B(1,4)A−1) = r(M)for all B(1,4)

⇔M∗MC−1B(1,4)A−1 = M∗ and r(B(1,4)) = r(B)for all B(1,4) (by Lemma 4.1(g))

⇔ {B = 0 or r(B) = m} and r(B) = min{m, n} (by Lemma 4.1(f), (2.28) and (2.29))

⇔ r(B) = m, (4.50)

thus establishing Result (36b). Also by (4.10),

{M (1,2,3)} ⊆ {C−1B(1,4)A−1} ⇔ {CM (1,2,3)A} ⊆ {B(1,4)}
⇔ CM (1,2,3)ABB∗ = B∗ for all M (1,2,3)

⇔ B = 0 or r(B) = n (by Lemma 4.1(h)), (4.51)

thus establishing Result (36c). Combining Results (36b) and (36c) leads to Result (36d).
By (4.10),

{M (1,2,3)} ∩ {C−1B(1,2,3)A−1} 6= ∅
⇔M∗MC−1B(1,2,3)A−1 = M∗ and r(C−1B(1,2,3)A−1) = r(M) for a B(1,2,3)

⇔ {M (1,2,3)} ⊇ {C−1B(1,2,3)A−1}
⇔M∗MC−1B(1,2,3)A−1 = M∗ and r(C−1B(1,2,3)A−1) = r(M) for all B(1,2,3)

⇔M∗MC−1B(1,2,3)A−1 = M∗

⇔ R(A∗AB) = R(B) (by Lemma 4.1(g)), (4.52)

20



and by (4.10),

{M (1,2,3)} ⊆ {C−1B(1,2,3)A−1} ⇔ {CM (1,2,3)A} ⊆ {B(1,2,3)}
⇔ B∗BCM (1,2,3)A = B∗ for all M (1,2,3)

⇔ R(A∗AB) = R(B) (by Lemma 4.1(i)), (4.53)

Combining (4.52) and (4.53) leads to Result (37).
Result (38a) follows from (4.10) and Lemma 4.1(e). By (2.42),

{M (1,2,3)} ⊇ {C−1B(1,2,4)A−1} ⇔M∗MC−1B(1,2,4)A−1 = M∗ for all B(1,2,4)

⇔ B = 0 or r(B) = m (by Lemma 4.1(h)), (4.54)

thus establishing Result (38b). By (4.10),

{M (1,2,3)} ⊆ {C−1B(1,2,4)A−1} ⇔ {CM (1,2,3)A} ⊆ {B(1,2,4)}
⇔ CM (1,2,3)ABB∗ = B∗ for all M (1,2,3) (by (2.43))

⇔ B = 0 or r(B) = n (by Lemma 4.1(h)), (4.55)

thus establishing Result (38c). Combining Results (38b) and (38c) leads to Result (38d).
By (2.42),

{M (1,2,3)} ∩ {C−1B(1,3,4)A−1} 6= ∅
⇔M∗MC−1B(1,3,4)A−1 = M∗ and r(C−1B(1,3,4)A−1) = r(M)for a B(1,3,4)

⇔ R(A∗AB) = R(B) (by Lemma 4.1(g)), (4.56)

thus establishing Result (39a). Also by (2.42),

{M (1,2,3)} ⊇ {C−1B(1,3,4)A−1}
⇔M∗MC−1B(1,3,4)A−1 = M∗ and r(C−1B(1,3,4)A−1) = r(M) for all B(1,3,4)

⇔ R(A∗AB) = R(B) and r(B) = min{m, n} (by Lemma 4.1(g), (2.28) and (2.29)), (4.57)

thus establishing Result (39b). and by (4.10),

{M (1,2,3)} ⊆ {C−1B(1,3,4)A−1} ⇔ {CM (1,2,3)A} ⊆ {B(1,3,4)}
⇔ B∗BCM (1,2,3)A = B∗ and CM (1,2,3)ABB∗ = B∗ for all M (1,2,3) (by (2.44))

⇔ R(A∗AB) = R(B) and {B = 0 or r(B) = n} (by Lemma 4.1(h) and (i)), (4.58)

thus establishing Result (39c).
Result (40) follows from (2.42) and Lemma 4.1(g).
Results (41a)–(48) are obtained from Lemma 2.1, Results (33a)–(40), and matrix replacements.
Result (49a) follows from (2.38), (4.10), and (4.13). By (2.44),

{M (1,3,4)} ⊇ {C−1B(1)A−1}
⇔M∗MC−1B(1)A−1 = M∗ and C−1B(1)A−1MM∗ = M∗ for all B(1)

⇔ {B = 0 or r(B) = m} and {B = 0 or r(B) = n} (by Lemma 4.1(f))

⇔ B = 0 or r(B) = m = n, (4.59)

thus establishing the equivalence the first and third terms in Result (49b). Combining this fact with Result
(49a) leads to the second equivalence in Result (49b).

Result (50a) follows from (4.8) and (4.13). By (2.44),

{M (1,3,4)} ⊇ {C−1B(1,2)A−1}
⇔M∗MC−1B(1,2)A−1 = M∗ and C−1B(1,2)A−1MM∗ = M∗ for all B(1,2)

⇔ {B = 0 or r(B) = m} and {B = 0 or r(B) = n} (by Lemma 4.1(f))

⇔ B = 0 or r(B) = m = n, (4.60)

thus establishing Result (50b). By (4.10),

{M (1,3,4)} ⊆ {C−1B(1,2)A−1} ⇔ {CM (1,3,4)A} ⊇ {B(1,2)}
⇔ BCM (1,3,4)AB = B and r(CM (1,3,4)AB) = r(B) for all M (1,3,4)

⇔ r(B) = min{m, n} (by (4.13), (2.28) and (2.29))

⇔ r(B) = m or r(B) = n, (4.61)
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thus establishing Result (50c). Combining Results (50b) and (50c) leads to Result (50d).
By (2.44),

{M (1,3,4)} ∩ {C−1B(1,3)A−1} 6= ∅
⇔M∗MC−1B(1,3)A−1 = M∗ and C−1B(1,3)A−1MM∗ = M∗for a B(1,3)

⇔ R(A∗AB) = R(B) (by Lemma 4.1(e) and (g)), (4.62)

and by (4.10),

{M (1,3,4)} ⊆ {C−1B(1,3)A−1} ⇔ {CM (1,3,4)A} ⊆ {B(1,3)}
⇔ B∗BCM (1,3,4)A = B∗ for all M (1,3,4)

⇔ R(A∗AB) = R(B) (by Lemma 4.1(i)). (4.63)

Combining (4.62) and (4.63) leads to Result (51a). by (4.10),

{M (1,3,4)} ⊇ {C−1B(1,3)A−1}
⇔M∗MC−1B(1,3)A−1 = M∗ and C−1B(1,3)A−1MM∗ = M∗ for all B(1,3)

⇔ R(A∗AB) = R(B) and {B = 0 or r(B) = n} (by Lemma 4.1(f) and (g))

⇔ B = 0 or {r(B) = n and R(A∗AB) = R(B)}, (4.64)

thus establishing Result (51b).
Results (52a) and (52b) are obtained from Lemma 2.1(e), Results (51a) and (51), and matrix replacements.
By (2.44),

{M (1,3,4)} ∩ {C−1B(1,2,3)A−1} 6= ∅
⇔M∗MC−1B(1,2,3)A−1 = M∗ and C−1B(1,2,3)A−1MM∗ = M∗for a B(1,2,3)

⇔ R(A∗AB) = R(B) (by Lemma 4.1(e) and (g)), (4.65)

thus establishing Result (53a). By (4.10),

{M (1,3,4)} ⊇ {C−1B(1,2,3)A−1}
⇔M∗MC−1B(1,2,3)A−1 = M∗ and C−1B(1,2,3)A−1MM∗ = M∗ for all B(1,2,3)

⇔ R(A∗AB) = R(B) and {B = 0 or r(B) = n} (by Lemma 4.1(f) and (g))

⇔ B = 0 or {r(B) = n and R(A∗AB) = R(B)}, (4.66)

thus establishing Result (53b). By (4.10),

{M (1,3,4)} ⊆ {C−1B(1,2,3)A−1} ⇔ {CM (1,3,4)A} ⊆ {B(1,2,3)}
⇔ B∗BCM (1,3,4)A = B∗ and r(CM (1,3,4)A) = r(B) for all M (1,3,4)

⇔ R(A∗AB) = R(B) and r(B) = min{m, n} (by Lemma 4.1(g), (2.28) and (2.29)), (4.67)

thus establishing Result (53c). Combining Results (53b) and (53c) leads to Result (53d).
Results (54a)–(54d) are obtained from Lemma 2.1(e), Results (53a)–(53d), and matrix replacements.
By (2.44),

{M (1,3,4)} ∩ {C−1B(1,3,4)A−1} 6= ∅
⇔M∗MC−1B(1,3,4)A−1 = M∗ and C−1B(1,3,4)A−1MM∗ = M∗ for a B(1,3,4)

{M (1,3,4)} ⊇ {C−1B(1,3,4)A−1}
⇔M∗MC−1B(1,3)A−1 = M∗ and C−1B(1,3)A−1MM∗ = M∗ for all B(1,3,4)

⇔ R(A∗AB) = R(B) and R(CC∗B∗) = R(B∗) (by Lemma 4.1(g)), (4.68)

and by (4.10),

{M (1,3,4)} ⊆ {C−1B(1,3,4)A−1} ⇔ {CM (1,3,4)A} ⊆ {B(1,3,4)}
⇔ B∗BCM (1,3,4)A = B∗ and CM (1,3,4)ABB∗ = B∗ for all M (1,3,4)

⇔ R(A∗AB) = R(B) and R(CC∗B∗) = R(B∗) (by Lemma 4.1(i)). (4.69)

Combining (4.68) and (4.69) leads to Result (55).
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By (4.10),

{M (1,3,4)} 3 C−1B†A−1 ⇔M∗MC−1B†A−1 = M∗ and C−1B†A−1MM∗ = M∗

⇔ R(A∗AB) = R(B) and R(CC∗B∗) = R(B∗) (by Lemma 4.1(g)), (4.70)

establishing Result (56).
Finally, we leave the verifications of Results (57)–(64) to the reader.

We have presented a classification analysis to (1.5) using the elementary matrix range and rank method
and established hundreds of necessary and sufficient conditions for (1.5) to hold for the eight commonly-used
types of generalized inverses of matrices. With doubt, we can use the previous results to solve many calculation
problems on generalized inverses of matrix products, for example, when both A and C are unitary matrices,
that is, If AA∗ = A∗A = Im and CC∗ = C∗C = In, then Theorem 4.2 reduces to a family of trivial results. If
A, B, and C happen to be square matrices of the same size, and C = A−1, then (1.5) can be written as

(ABA−1)(i,...,j) = AB(k,...,l)A−1, (4.71)

which are covariance equalities for generalized inverses of matrices. The special case (ABA−1)† = AB†A−1 was
approached by several authors; see, e.g., [1, 16,20–22], and the relevant literature quoted there.

Corollary 4.3. Let A, B ∈ Cm×m and assume that A is nonsingular. Also denote M = ABA−1. Then

(a) The following results hold

{M (1)} = {AB(1)A−1}, {M (1)} ⊇ {AB(1,2)A−1},
{M (1)} ⊇ {AB(1,3)A−1} {M (1)} ⊇ {AB(1,4)A−1},
{M (1)} ⊇ {AB(1,2,3)A−1}, {M (1)} ⊇ {AB(1,2,4)A−1},
{M (1)} ⊇ {AB(1,3,4)A−1}, {M (1)} 3 AB†A−1,
{M (1,2)} ⊆ {AB(1)A−1}, {M (1,2)} = {AB(1,2)A−1},
{M (1,2)} ∩ {AB(1,3)A−1} 6= ∅, {M (1,2)} ∩ {AB(1,4)A−1} 6= ∅,
{M (1,2)} ⊇ {AB(1,2,3)A−1}, {M (1,2)} ⊇ {AB(1,2,4)A−1},
{M (1,2)} ∩ {AB(1,3,4)A−1} 6= ∅, {M (1,2)} 3 AB†A−1,
{M (1,3)} ⊆ {AB(1)A−1}, {M (1,3)} ∩ {AB(1,2)A−1} 6= ∅,
{M (1,3)} ∩ {AB(1,3)A−1} 6= ∅, {M (1,3)} ∩ {AB(1,4)A−1} 6= ∅,
{M (1,3)} ∩ {AB(1,2,4)A−1} 6= ∅, {M (1,4)} ⊆ {AB(1)A−1},
{M (1,4)} ∩ {AB(1,2)A−1} 6= ∅, {M (1,4)} ∩ {AB(1,3)A−1} 6= ∅,
{M (1,4)} ∩ {AB(1,4)A−1} 6= ∅, {M (1,4)} ∩ {AB(1,2,3)A−1} 6= ∅,
{M (1,2,3)} ⊆ {AB(1)A−1}, {M (1,2,3)} ⊆ {AB(1,2)A−1},
{M (1,2,3)} ∩ {AB(1,4)A−1} 6= ∅, {M (1,2,3)} ∩ {AB(1,2,4)A−1} 6= ∅,
{M (1,2,4)} ⊆ {AB(1)A−1}, {M (1,2,4)} ⊆ {AB(1,2)A−1},
{M (1,2,4)} ∩ {AB(1,3)A−1} 6= ∅, {M (1,2,4)} ∩ {AB(1,2,3)A−1} 6= ∅,
{M (1,3,4)} ⊆ {AB(1)A−1}, {M (1,3,4)} ∩ {AB(1,2)A−1} 6= ∅,
M† ∈ {AB(1)A−1}, M† ∈ {AB(1,2)A−1}.

(b) The following equivalent statements hold

{M (1)} ⊆ {AB(1,2)A−1} ⇔ {M (1)} = {AB(1,2)A−1} ⇔ {M (1)} ⊆ {AB(1,2,3)A−1}
⇔ {M (1)} = {AB(1,2,3)A−1} ⇔ {M (1)} ⊆ {AB(1,2,4)A−1} ⇔ {M (1)} = {AB(1,2,4)A−1}
⇔ {M (1,2)} ⊇ {AB(1)A−1} ⇔ {M (1,2)} = {AB(1)A−1} ⇔ {M (1,2)} ⊇ {AB(1,3)A−1}
⇔ {M (1,2)} = {AB(1,3)A−1} ⇔ {M (1,2)} ⊇ {AB(1,4)A−1} ⇔ {M (1,2)} = {AB(1,4)A−1}
⇔ {M (1,2)} ⊇ {AB(1,3,4)A−1} ⇔ {M (1,2)} = {AB(1,3,4)A−1} ⇔ {M (1,3)} = {AB(1,2)A−1}
⇔ {M (1,3)} ⊆ {AB(1,2,4)A−1} ⇔ {M (1,3)} = {AB(1,2,4)A−1} ⇔ {M (1,4)} ⊆ {AB(1,2)A−1}
⇔ {M (1,4)} = {AB(1,2)A−1} ⇔ {M (1,4)} ⊆ {AB(1,2,3)A−1} ⇔ {M (1,4)} = {AB(1,2,3)A−1}
⇔ {M (1,2,3)} ⊇ {AB(1)A−1} ⇔ {M (1,2,3)} = {AB(1)A−1} ⇔ {M (1,2,3)} ⊇ {AB(1,4)A−1}
⇔ {M (1,2,3)} = {AB(1,4)A−1} ⇔ {M (1,2,3)} ⊇ {AB(1,3,4)A−1} ⇔ {M (1,2,3)} ⊆ {AB(1,3,4)A−1}
⇔ {M (1,2,4)} ⊇ {AB(1)A−1} ⇔ {M (1,2,4)} = {AB(1)A−1} ⇔ {M (1,2,4)} ⊇ {AB(1,3)A−1}
⇔ {M (1,2,4)} = {AB(1,3)A−1} ⇔ {M (1,2,4)} ⊇ {AB(1,3,4)A−1} ⇔ {M (1,2,4)} = {AB(1,3,4)A−1}
⇔ {M (1,3,4)} ⊆ {AB(1,2)A−1} ⇔ {M (1,3,4)} = {AB(1,2)A−1} ⇔ {M (1,3,4)} ⊆ {AB(1,2,3)A−1}
⇔ {M (1,3,4)} = {AB(1,2,3)A−1} ⇔ {M (1,3,4)} ⊆ {AB(1,2,4)A−1} ⇔ {M (1,3,4)} = {AB(1,2,4)A−1}
⇔ r(B) = m.
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(c) The following equivalent statements hold

{M (1)} ⊆ {AB(1,3)A−1} ⇔ {M (1)} = {AB(1,3)A−1} ⇔ {M (1)} ⊆ {AB(1,4)A−1}
⇔ {M (1)} = {AB(1,4)A−1} ⇔ {M (1)} ⊆ {AB(1,3,4)A−1} ⇔ {M (1)} = {AB(1,3,4)A−1}
⇔ {M (1,2)} ⊆ {AB(1,3)A−1} ⇔ {M (1,2)} ⊆ {AB(1,4)A−1} ⇔ {M (1,2)} ⊆ {AB(1,2,3)A−1}
⇔ {M (1,2)} = {AB(1,2,3)A−1} ⇔ {M (1,2)} ⊆ {AB(1,2,4)A−1} ⇔ {M (1,2)} = {AB(1,2,4)A−1}
⇔ {M (1,2)} ⊆ {AB(1,3,4)A−1} ⇔ {M (1,3)} ⊇ {AB(1)A−1} ⇔ {M (1,3)} = {AB(1)A−1}
⇔ {M (1,3)} ⊇ {AB(1,2)A−1} ⇔ {M (1,3)} ⊇ {AB(1,4)A−1} ⇔ {M (1,3)} ⊆ {AB(1,4)A−1}
⇔ {M (1,3)} = {AB(1,4)A−1} ⇔ {M (1,3)} ⊇ {AB(1,2,4)A−1} ⇔ {M (1,4)} ⊇ {AB(1)A−1}
⇔ {M (1,3)} = {AB(1)A−1} ⇔ {M (1,4)} ⊇ {AB(1,2)A−1} ⇔ {M (1,4)} ⊇ {AB(1,3)A−1}
⇔ {M (1,4)} ⊆ {AB(1,3)A−1} ⇔ {M (1,4)} = {AB(1,3)A−1} ⇔ {M (1,4)} ⊇ {AB(1,2,3)A−1}
⇔ {M (1,2,3)} ⊇ {AB(1,2)A−1} ⇔ {M (1,2,3)} = {AB(1,2)A−1} ⇔ {M (1,2,3)} ⊆ {AB(1,4)A−1}
⇔ {M (1,2,3)} ⊇ {AB(1,2,4)A−1} ⇔ {M (1,2,3)} ⊆ {AB(1,2,4)A−1} ⇔ {M (1,2,3)} = {AB(1,2,4)A−1}
⇔ {M (1,2,3)} ⊆ {AB(1,3,4)A−1} ⇔ {M (1,2,4)} ⊇ {AB(1,2)A−1} ⇔ {M (1,2,4)} = {AB(1,2)A−1}
⇔ {M (1,2,4)} ⊆ {AB(1,3)A−1} ⇔ {M (1,2,4)} ⊇ {AB(1,2,3)A−1} ⇔ {M (1,2,4)} ⊆ {AB(1,2,3)A−1}
⇔ {M (1,2,4)} = {AB(1,2,3)A−1} ⇔ {M (1,2,4)} ⊆ {AB(1,3,4)A−1} ⇔ {M (1,3,4)} ⊇ {AB(1)A−1}
⇔ {M (1,3,4)} = {AB(1)A−1} ⇔ {M (1,3,4)} ⊇ {AB(1,2)A−1} ⇔ {M (1,3,4)} ⊇ {AB(1,3)A−1}
⇔ {M (1,3,4)} = {AB(1,3)A−1} ⇔ {M (1,3,4)} ⊇ {AB(1,4)A−1} ⇔ {M (1,3,4)} = {AB(1,4)A−1}
⇔ {M (1,3,4)} ⊇ {AB(1,2,3)A−1} ⇔ {M (1,3,4)} ⊇ {AB(1,2,4)A−1} ⇔ B = 0 or r(B) = m.

(d) The following equivalent statements hold

{M (1,3)} ⊇ {AB(1,3)A−1} ⇔ {M (1,3)} ⊆ {AB(1,3)A−1} ⇔ {M (1,3)} = {AB(1,3)A−1}
⇔ {M (1,3)} ∩ {AB(1,2,3)A−1} 6= ∅ ⇔ {M (1,3)} = {AB(1,2,3)A−1} ⇔ {M (1,3)} ∩ {AB(1,3,4)A−1} 6= ∅
⇔ {M (1,3)} = {AB(1,3,4)A−1} ⇔ {M (1,3)} 3 AB†A−1 ⇔ {M (1,2,3)} ∩ {AB(1,3)A−1} 6= ∅
⇔ {M (1,2,3)} = {AB(1,3)A−1} ⇔ {M (1,2,3)} ∩ {AB(1,2,3)A−1} 6= ∅ ⇔ {M (1,2,3)} = {AB(1,2,3)A−1}
⇔ {M (1,2,3)} ∩ {AB(1,3,4)A−1} 6= ∅ ⇔ {M (1,2,3)} 3 AB†A−1 ⇔ {M (1,3,4)} ∩ {AB(1,3)A−1} 6= ∅
⇔ {M (1,3,4)} ⊆ {AB(1,3)A−1} ⇔ {M (1,3,4)} ∩ {AB(1,2,3)A−1} 6= ∅ ⇔M† ∈ {AB(1,3)A−1}
⇔M† ∈ {AB(1,2,3)A−1} ⇔ R(A∗AB) = R(B).

(e) The following equivalent statements hold

{M (1,4)} ⊇ {AB(1,4)A−1} ⇔ {M (1,4)} ⊆ {AB(1,4)A−1} ⇔ {M (1,4)} = {AB(1,4)A−1}
⇔ {M (1,4)} ∩ {AB(1,2,4)A−1} 6= ∅ ⇔ {M (1,4)} = {AB(1,2,4)A−1} ⇔ {M (1,4)} ∩ {AB(1,3,4)A−1} 6= ∅
⇔ {M (1,4)} = {AB(1,3,4)A−1} ⇔ {M (1,4)} 3 AB†A−1 ⇔ {M (1,2,4)} ∩ {AB(1,4)A−1} 6= ∅
⇔ {M (1,2,4)} = {AB(1,4)A−1} ⇔ {M (1,2,4)} ∩ {AB(1,2,4)A−1} 6= ∅ ⇔ {M (1,2,4)} = {AB(1,2,4)A−1}
⇔ {M (1,2,4)} ∩ {AB(1,3,4)A−1} 6= ∅ ⇔ {M (1,2,4)} 3 AB†A−1 ⇔ {M (1,3,4)} ∩ {AB(1,4)A−1} 6= ∅
⇔ {M (1,3,4)} ⊆ {AB(1,4)A−1} ⇔ {M (1,3,4)} ∩ {AB(1,2,4)A−1} 6= ∅ ⇔M† ∈ {AB(1,4)A−1}
⇔M† ∈ {AB(1,2,4)A−1} ⇔ R(A∗AB∗) = R(B∗).

(f) The following equivalent statements hold

{M (1,3,4)} ∩ {AB(1,3,4)A−1} 6= ∅ ⇔ {M (1,3,4)} = {AB(1,3,4)A−1} ⇔ {M (1,3,4)} 3 AB†A−1

⇔M† ∈ {AB(1,3,4)A−1} ⇔M† = AB†A−1 ⇔ R(A∗AB) = R(B) and R(A∗AB∗) = R(B∗).

(g) Under A∗A = Im, the following equalities hold

{(ABA∗)(1)} = {AB(1)A∗}, {(ABA∗)(1,2)} = {AB(1,2)A∗},
{(ABA∗)(1,3)} = {AB(1,3)A∗}, {(ABA∗)(1,4)} = {AB(1,4)A∗},
{(ABA∗)(1,2,3)} = {AB(1,2,3)A∗}, {M (1,2,4)} = {AB(1,2,4)A∗},
{(ABA∗)(1,3,4)} = {AB(1,3,4)A∗}, (ABA∗)† = AB†A∗.
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Finally, we give two consequences. Let A, B ∈ Cm×n. Then it is easy to verify

A+B =
1

2
[Im, Im]

[
A B
B A

] [
In
In

]
=

1

2
PNQ, P † =

1√
2

[
Im
Im

]
, Q† =

1√
2

[In, In]. (4.72)

Corollary 4.4. Let A, B ∈ Cm×n and N be as given in (4.72). Then the following seven set equalities and a
matrix equality hold

{(A+B)(1)} =

{
1

2
[In, In]N (1)

[
Im
Im

]}
, {(A+B)(1,2)} =

{
1

2
[In, In]N (1,2)

[
Im
Im

]}
,

{(A+B)(1,3)} =

{
1

2
[In, In]N (1,3)

[
Im
Im

]}
, {(A+B)(1,4)} =

{
1

2
[In, In]N (1,4)

[
Im
Im

]}
,

{(A+B)(1,2,3)} =

{
1

2
[In, In]N (1,2,3)

[
Im
Im

]}
, {(A+B)(1,2,4)} =

{
1

2
[In, In]N (1,2,4)

[
Im
Im

]}
,

{(A+B)(1,3,4)} =

{
1

2
[In, In]N (1,3,4)

[
Im
Im

]}
, (A+B)† =

1

2
[In, In]N†

[
Im
Im

]
.

Substituting concrete expressions of generalized inverse of N into the above equalities will yield various
formulas for calculating generalized inverses of A+B. Some previous results on this topic can be found in [31].

Another pair of examples are given below. It is easy to verify that following two identities

(Im + αA+ βB) = (Im + αA)[Im − (αβ)(1 + α)−1(1 + β)−1AB](Im + βB), (4.73)

(Im + αA+ βB) = (Im + βB)[Im − (αβ)(1 + α)−1(1 + β)−1BA](Im + αA) (4.74)

hold for two idempotents A and B, where α 6= −1, 0 and β 6= −1, 0; see [39]. In this case, Im +αA and Im +βB
are nonsingular, and thus two families of reverse order laws for generalized inverses associated with (4.73) and
(4.74) are given by

(Im − λAB)(i,...,j) = (Im + βB)(Im + αA+ βB)(k,...,l)(Im + αA),

(Im − λBA)(i,...,j) = (Im + αA)(Im + αA+ βB)(k,...,l)(Im + βB),

where λ = (αβ)(1 + α)−1(1 + β)−1. Applying Theorem 4.2 to (4.73), we obtain the following consequence.

Corollary 4.5. Let A, B ∈ Cm×m be two idempotent matrices, assume α 6= −1, 0 and β 6= −1, 0, and denote
λ = αβ(1− α)−1(1− β)−1. Then the following matrix set equality

{(Im − λAB)(1)} = {(Im + βB)(Im + αA+ βB)(1)(Im + αA)}

holds. In particular, the reverse order law

(Im − λAB)† = (Im + βB)(Im + αA+ βB)†(Im + αA)

holds if and only if R[(Im + βB)(Im + βB)∗(Im + αA + βB)] = R(Im + αA + βB) and R[(Im + αA)∗(Im +
αA)(Im + αA+ βB)∗] = R[(Im + αA+ βB)∗].

5 Cancellation Laws for Generalized Inverses of a Triple Matrix
Product

Let P ∈ Cm×n, A ∈ Cn×p, and Q ∈ Cp×q. Then the product PAQ is defined. In particular, if P and Q
satisfy the orthogonality conditions P ∗P = In and QQ∗ = Ip, which may occur in decompositions of matrices
involving orthogonal matrices, then it is easy to verify by definition that the following two reverse order laws
and cancellation laws

(PAQ)† = Q∗A†P ∗, Q(PAQ)†P = A† (5.1)

hold. In addition, the following matrix identities

PAQ(PAQ)† = PAA†P ∗, (PAQ)†(PAQ) = Q∗A†AQ, (5.2)

AQ(PAQ)†P = AA†, Q(PAQ)†PA = A†A (5.3)

hold as well. In this section, we consider the following several equalities

(PAQ)(1) = Q∗A(1)P ∗, Q(PAQ)(1)P = A(1), (5.4)

PAQ(PAQ)(1) = PAA(1)P ∗, (PAQ)(1)PAQ = Q∗A(1)AQ, (5.5)

AQ(PAQ)(1)P = AA(1), Q(PAQ)(1)PA = A(1)A (5.6)
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under the assumptions P ∗P = In andQQ∗ = Ip, which are the extensions of (5.1)–(5.3) to {1}-inverse situations.
Since g-inverses of a singular matrix are not unique, we need to describe the relationships between the matrix
sets composed by both sides of (5.4)–(5.6), and derive necessary and sufficient conditions for the set inclusions
and set equalities to hold.

Lemma 5.1 ( [37]). Let X ∈ Cm×n, N ∈ Ck×l, S ∈ Cn×l and T ∈ Ck×m be given with r(S) = n and r(T ) = m.
Then the set inclusion

{X(1)} ⊆ {SN (1)T}

holds if and only if R(N) ∩R(T ) = {0}, or R(N∗) ∩R(S∗) = {0}, or

r(N − TXS) = r

[
N
S

]
+ r[N, T ]− r(N) + r(X)−m− n.

The main results are given below.

Theorem 5.2. Let P ∈ Cm×n, A ∈ Cn×p, and Q ∈ Cp×q be given with P ∗P = In and QQ∗ = Ip. Also denote
M = PAQ. Then the following results hold.

(a) {M (1)} ⊇ {Q∗A(1)P ∗} always holds.

(b) {M (1)} ⊆ {Q∗A(1)P ∗} ⇔ {M (1)} = {Q∗A(1)P ∗} ⇔ m = n and p = q.

(c) {MM (1)} ⊇ {PAA(1)P ∗} always holds.

(d) {MM (1)} ⊆ {PAA(1)P ∗} ⇔ {MM (1)} = {PA(1)AP ∗} ⇔ A = 0 or m = n.

(e) {M (1)M} ⊇ {Q∗A(1)AQ} always holds.

(f) {M (1)M} ⊆ {Q∗A(1)AQ} ⇔ {M (1)M} = {Q∗A(1)AQ} ⇔ A = 0 or p = q.

Proof. By definition, MQ∗A(1)P ∗M = PAQQ∗A(1)P ∗PAQ = PAA(1)AQ = PAQ = M holds for all A(1), thus
establishing (a).

Applying Lemma 5.1 to {M (1)} ⊆ {Q∗A(1)P ∗} and simplifying leads to the equivalence of the first term and
last term in (b). Combining this fact with (a) leads to the second equivalence in (b).

Pre- and post-multiplying the set inclusion in (a) with M yields (c) and (e), respectively.
By Lemma 2.1(b),

{PAA(1)P ∗} = {PAA†P ∗ + PAU1EAP
∗}, (5.7)

{Q∗A(1)AQ} = {Q∗A†AQ+Q∗FAU2AQ}, (5.8)

{MM (1)} = {MM† +MV1EM}, (5.9)

{M (1)M} = {M†M + FMV2M}, (5.10)

where U1, U2 ∈ Cp×n and V1, V2 ∈ Cq×m are arbitrary. In these cases, applying Lemma 4.2 to (5.7)–(5.10) and
simplifying by Lemma 2.1 leads to (d) and (f), respectively.

Theorem 5.3. Let P ∈ Cm×n, A ∈ Cn×p, and Q ∈ Cp×q be given with P ∗P = In and QQ∗ = Ip. Also denote
M = PAQ. Then the following three set equalities

{QM (1)P} = {A(1)}, {AQM (1)P} = {AA(1)}, {QM (1)PA} = {A(1)A} (5.11)

always hold.

Proof. Pre- and post-multiplying the set inclusion in Theorem 5.2(a) with Q and P yields {QM (1)P} ⊇ {A(1)}.
By definition, AQM (1)PA = P ∗PAQM (1)PAQQ∗ = P ∗PAQM (1)PAQQ∗ = P ∗MQ∗ = A holds for all M (1),
thus {QM (1)P} ⊆ {A(1)} holds. Combining the two facts leads to the first set equality in (5.11). Pre- and
post-multiplying first set equality in (5.11) with A yields the second and third set equalities in (5.11).

6 Final Remarks

We have formulated some general research problems on equalities and reverse order laws for generalized inverses
of matrices, approached many specified reverse order laws for the products of two and triple matrices the
definitions of generalized inverses, the BMRM, and the MRM; obtained various identifying conditions for the
reverse order laws to hold under various assumptions; and featured several examples that involve generalized
inverses of matrices. We believe all the preceding results and facts can be used in the computations of various
matrix expressions that involve products of matrices and their generalized inverses.
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As a direct extension of the Moore–Penrose inverse, the weighted Moore–Penrose inverse of a matrix A ∈
Cm×n with respect to two Hermitian positive semi-definite matrices M ∈ Cm×m and N ∈ Cn×n is defined to
be the solution X satisfying the following four equations

(i) MAXA = MA, (ii) NXAX = NX, (iii) (MAX)∗ = MAX, (iv) (NXA)∗ = NXA,

see page 118, Exercise 33 in [4]. A matrix X is called a weighted {i, . . . , j}-generalized inverse of A, denoted

by A
(i,...,j)
M,N , if it satisfies the ith,. . . , jth equations in (1.1). The collection of all weighted {i, . . . , j}-generalized

inverses of A is denoted by {A(i,...,j)
M,N }. There are also 15 types of weighted {i, . . . , j}-generalized inverses of A

by definitions. In this situation, it would be of interest to consider the extensions of the preceding results to
various reverse order laws for weighted generalized inverses of a matrix product. In addition to (5.1)–(5.6), it
would also be of interest to consider the following reasonable matrix equalities

(PAQ)(i,...,j) = Q∗A(i,...,j)P ∗, Q(PAQ)(i,...,j)P = A(i,...,j),

PAQ(PAQ)(i,...,j) = PAA(i,...,j)P ∗, (PAQ)(i,...,j)}PAQ = Q∗A(i,...,j)AQ,

AQ(PAQ)(i,...,j)P = AA(i,...,j), Q(PAQ)(i,...,j)PA = A(i,...,j)A

for other types of generalized inverses of the matrices under the conditions P ∗P = In and QQ∗ = Ip. Both
sides of these equalities are all linear or multilinear matrix-valued functions that involve one or two variables.
Thus more matrix analysis tools are needed to characterize these equalities that involve variable matrices.

Recall moreover that generalized inverses of elements can be defined in many other algebraic structures in
the same manner as in matrix case. Thus it would be of interest to consider the equality problems for generalized
inverses of elements in other algebraic structures.
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