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Abstract

In this article, a numerical scheme is introduced for solving the fractional partial differential
equation (FPDE) arising from electromagnetic waves in dielectric media (EMWDM) by
using an efficient class of finite difference methods. The numerical scheme is based on the
Hermite formula. The Caputo’s fractional derivatives in time are discretized by a finite
difference scheme of order O(k“¥4=) & O(k“=9) 1 < B < a < 2. The stability and
the convergence analysis of the proposed methods are given by a procedure similar to the
standard von Neumann stability analysis under mild conditions. Also for FPDE, accuracy of
order O (k=% + k= 4+ h?) is investigated. Finally, several numerical experiments with
different fractional-order derivatives are provided and compared with the exact solutions to
illustrate the accuracy and efficiency of the scheme. A comparative numerical study is also
done to demonstrate the efficiency of the proposed scheme.

Keywords: Finite difference scheme, fractional wave model, Caputo fractional derivative,
Hermite formula, stability and convergence analysis.

1. Introduction

We analyze and present a precise numerical scheme for tackling an FPDE emerging from
EMWDM (see [1]). It is magnificent that the dielectric unwinding in solids described by
the complex frequency-dependent dielectric sensitivity builds up the complete power-law
dependence. Here, a conclusion seized FPDE for EMWDM with the support of Maxwell’s
condition. It is a power law reliance in the recurrence space that brings about the association
between the electric field and the polarization thickness detailed as a feebly solitary integral.
And thus the field conditions take a type of FPDE with Caputo derivative [1]:

(.DB)(x,t) — M(.DP B)(x,t) — \V?B(z,t) = f(z,t),z € Q,t € (0,T), (1.1)
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subject to initial condition

B(z,0) = g(x), 12
OB(,t) _ .
252] e,
and Dirichlet boundary conditions are

B(z,t) =0,z € 9Q,t € (0, T]. (1.3)

where B(t,z) is magnetic field induction, = [0, L], the constant coefficient \; and A,
depend on the frequency independent properties of a medium, f(¢,x) is the current den-
sity of free charges, and V? is Laplace operator with space variable  and B is unknown.
And (.D2€)(t,z) and (.D€)(t, z)denotes the Caputo fractional derivative of order o and 3
respectively with respect to time ¢ and defined by ([? |):

(CDgB)(m,t):F(Ql_a)/o (ff(:)’j)lds, ae(1,2), (1.4)
and
(.DPB)(z,t) = F(21—6)/o (ff(:)’;_)lds, Be(1,2). (1.5)

Since the singular kernel is a major drawback of the fractional derivative operator due to
which exact solutions of most of the fractional differential equation cannot be obtained. And
all fractional differential equations cannot be solved analytically so it is necessary to establish
some numerical schemes with symbolic accuracy to solve the type of problems numerically.
So, this article provides a finite difference scheme to obtain the numerical solution of FPDE
arising from EMWDM. We solve the FPDE using a finite difference scheme that is widely
used for its simplicity and intuition based on Caputo’s derivative in the temporal direction.
Caputo’s derivative follows the algebraic properties and possesses the Lipschitz condition.
Also, a derivative of a constant function is zero by the Caputo derivative. For numerical
solution, we have taken space domain at L. = 1 and temporal domain at 7' = 1 throughout
the article.

In recent years, a few scientists discovered that the fractional order models are more ap-
propriate than the integer-order. FPDESs provide a powerful and flexible device for modeling
and describing the behavior of real problems. Many problems in electromagnetic waves, elec-
trochemical process, viscoelastic fluid, control theory, finance, biological system, etc., theory
can be solved by the fractional calculus approach, which gives attractive applications as a
new modeling tool in a variety of engineering and scientific fields. In this article, the scalar
Eq.(1) can be analyzed as a speculation of the alleged Szabo condition [2]. It has a more
endorsed frame in the examination with Fq.(1), since the case 1 < f < a < 2 has been
viewed as and widely considered by [3]. The FPDE has been proposed for EMWDM by the
operational matrix [4]-[5], Grunwald-Lenikov discretization scheme [6] and finite difference
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scheme [7] only. Therefore, this article introduced a numerical scheme for Eq.(1) based on
finite difference.

The rest of the article is organized into 8 sections. In Section 2, we introduce a finite dif-
ference scheme for a fractional partial differential equation. We give the analysis of stability
and error estimates for the presented method in Section 3. Then in Section 4, we illustrate
some examples to validate the theory presented in section 3. The conclusion of the paper is
described in Section 5.

2. Finite difference scheme based on Hermite formula

Let h = Az = ﬁ, k=Ak = % be the space and time increment and let x; = ih, t, = nk
be a mesh point in [0, L] x [0, 7], where M and N are the total number of intervals in [0, L]
and [0, 7T, respectively. The set of mesh points (z;,¢,) in (0, L] x (0,7] and [0, L] x [0,T]
are denoted by € and € respectively. Define B} = B(xj,t,), and when no confusion arises
we write (j,n) instead of (z;,t,).

In the first step, the second order partial derivative operators are discretized as follows

623 . Bj—l,n — QBj’n + Bj+1,n

97 72 (2.1)

Now, we can derive an approximation technique for the time fractional partial derivative
operator (,D¥B)(x,t) and (,DP B)(x,t) with 1 < § < < 2 at the points (z;,,) as follows:

o 1 " o
(DFB)ash) = gy /0 Bu(3;,5)(tn — 5) " 1ds,

1 n rk B{”"rl —2B" + B?f—l ) L
:mZ/( . J k2j I — + O(k*)| (nk — s)"*"ds,
r=1 r—
IR Ve R e
r=1
e i [ (2.2
1 n ) . 3
_ mZ(B;H 9B B [(n—r )P0 — (- )]
r=1
1 n . B B
“FE Ay 2 [T )T (] Ok,
r=1

= Pag 0 (Bj 72 = 28]+ BIT) + O(K' ™),
r=1

where Py = 1 51 = p2ma (r — 1)2_0‘,(5,(~a) >0 and 6 > sV v =12, ...

S S
3—a)k®?



Similarly we can obtain discretization of operator (.Dy B)(z,t) as follows:
(.D?B)(z,t) = Psy, Z oD (B2 — 2B 4 BT + O(KY), (2.3)

where P@k = W, 5(ﬁ) = 7”2 p_ ( 1)27ﬁ, 67(»6) >0 and 57(«5) > 57(«/8—’—1) \V/ r = ]_7 2, 1\10\7\77

we are going to establish the finite difference scheme of the Fq.(1.1) using Hermite formula.
We calculate this equation to achieve this goal at the points of the grid (xz;,t,):

(CD?B)<C(IJ, ) /\1( D B)(IJ, ) )\2B$$<xj7tn) = f(l’j,tn). (24)
Using Fq¢s.(2.2) — (2.4), we have

Byo(zj,tn) = — akZd Bn T+2 _ B??—r+1 + B;l—’l‘)
A
+>\—;Pﬁ,k Z 5 (Brr+? — BTt 4 g (2.5)
r=1

1
—)\—f<.’L'j, tn) + O(lf4_a + k’4_/8).
2

Now, in order to use Hermite formula to get two additional equation, replace i by ¢+ — 1 and
i+ 1, respectively, in the Fq.(2.5), we get

Bua(j1,t ok Z o\ (Bj={** = 2B + Bi))
A
r=1

1
— o (@ tn) + O(k*=* + E*7),
2

and
Boo(Tji1,tn) = Pk Z 5 B;L+1rJr2 - 2Bgn+1rJrl B]n_Hr)
A
)\;PﬁkZ‘s(ﬁ (B —2B;7 " + BiY) 2.7
r=1

1
—/\—Qf($j+1, tn) + O(k’4_a + k’4_6>.

The Hermite formula for fractional partial derivatives at the grid point (z;,t,) is

0’B 9?’B  0°B 12 n n
G 1050+ S - 2B 4 B ) O =0 (29



Now using Eqgs.(2.5) — (2.7) into Eq.(2), denote B(z;,t,) by B! and after some simplifica-
tions, we can get the following form:

h2 - n—r—+2 n—r—+1 n—r n—r-+42 n—r+1 n—r
6—AQ)Q,,BZVVWﬁ [Bi ™2 — 2By 4+ By 410 (B — 2B + Bl
r=2

n n n h2 n
(7 +10f7 + f1y) —2 [1 + G_AQX”’] B

2
n—r-+2 n—r+1 n—r
+B —2Bj 1 ‘|‘BJ 1]"’

j+1 6
5h2 n h2 n h2 n+1 n—1 n+1 n—1
5h2 n n— —x —
+3—A2Xaﬁ (B + B + O(h* + K + k*P) = 0.
(2.9)

where WT,O@B = Pa,kdg —+ )\1P57k(5§ and Xa”g = Pa,k + )\1P/37k.

Omitting the high order terms from FEq.(2.9), we get the following difference scheme for
the problem (1.1) — (1.3):

h? -
6—A2Xaﬁ > Wias [Bi™? = 2By + By +10 (B} " —2B; " 4 By ™)
r=2

n—r n—r n—r h2 n n n —h2 "
+Bj+1+2 - 2Bj+1+1 + Bj+1] + 6 ( j-1 7t 1ij + j+1) —2 {1 + 6)\2Xa’ﬁ} Bj_l
5h? n h? n h? n+1 n—1 n+l n—1
=2 | =24 53 Xap| B =2 |14 g Xag| By + g-Xag [BI + Bl + B + B
5h? el n—1
+3_>\2Xa,5 (BT + BT =0.
(2.10)

Let b}" be the approximate solution, and let 77" = BY — 07,5 =1,2,..., M,n =1,2,..., N be

the error, then we have the error formula
h? - +2 +1 +2 +1
oo X D Wras [T = 20+ T 10 (7777 = 2137 4 T77)
r=2

n—r n—r n—r hQ n e iy h2 i
I T G (0 g =2 [ g X 77

5h’2 n h’2 n h2 n+1 n—1 n+1 n—1
2| =2+ o Xap| T =2 |1+ o Xap| Tjhy + - Xap [qu + ij1 + Tj+1 + Tj+1 }

3o 6o 6o
5h?
— X g TPt 1 = 0.
+3>\2 B [ J + J ]
(2.11)
with T = T3, = 0, n=12..N.



3. Stability and convergence analysis

We use the Von Neumann method to study th stability analysis of the finite difference
scheme (2.10) with the force free case (i.e., f(z,t) = 0). For stability, we need lemma as
follows

Lemma 3.1. Let the solution of (2.11) has the form T)" = A,e", then

o & Xop (cos(0h) +5) (ot + Gt + 3or s Wrap (Guopr —2Gn — 1+ 1+ G _y)

Yo
(3.1)
where Y, g = 2 <1 + %Xaﬁ> cos(0h) + %Xaﬂ —2,0=2mn and Xop5 = Por+ M Ppsy.

Proof. Substituting T/" = Grejh in (2.11) and after simplification, we get

h2 i0j5h + —i0jh n
o Ko (% + 5) S Wras (Guorrz —2Gn —r +1+ Gy
r=2

2 ci0ih 4 o=ifjh 5h2
2121+ +—X,, _ —X.5—2| G,
2 () (T )+

h2 z@jh + e—z@jh
_’_KX(),B (# + 5) (Gpi1 + Gnoa] =0,
2

(3.2)

Now using some trigonometric formulas in (?77) we can obtain as follows:

h? 1
6)\ Xa B (COS<0h) + 5) TZ:; Wr,a,ﬁ [Gn77~+2 - QG'R —r 4+ 1 + anr]
h? 5h?
— 121+ —X, Oh) + —X,5—2| G,
{ ( +6)\2 75)005( )—1-3)\2 B8 ]G
h2
+6TXQ,B (cos(Bh) +5) [Gri1 + Gnq] =0,
2

This implies
& Xa 5 (c0s(0h) +5) (Gt + Gt + on_y Wrap (Guorar — 2Gn — 1+ 1+ G,y)

G, =
Yoz
(3.3)
where Y, 3 =2 (1 + %Xa75> cos(0h) + gﬁXa — 2. O
Lemma 3.2. Let H* < gle— and H® < gli—, then

GhTQXa,ﬁ (cos(6h) + 5)
4 (1 + & X > cos(0h) + 3= X, 5 — 2

<1,

where Xaﬁ = Pa,k + )\1P57k.



Proof. Since P, = m and Pgj = m so this implies k% = m and kP =
m. Hence by given assumptions we can obtain as follow:
1 h? 1 h?
< — d —_— < —. 3.4
Pe -6 M Pon 6 (3.4)
So,
Lo 5.9
211+ éh (Pa,k + )\1P/37k) < gh (Pa,k + >\1Pg7k> -1, (35)
and hence
1 5
2 <1 + th (Pan + )\lpﬁ,k)> (1 — cos(@h)) <2 <6h2 (Pa,k —+ )\1P/37k) — 1) s (36)
which implies that
1 5
2 (1 + Ehz (Pa,k + )\1P57k)> (1 — cos(@h)) + <§h2 (Pa7k + >\1P/37k) — 2) > 0. (37)

Instantly, since
—3h2 (Pa,k + )\1P5,k> < 15h2 (Pa,k + )\1P5’k) and h2 (Pa,k + Alpg,k> — 4h2 (Pa’k + Alpg,k) —
24 < 20h* (P, + A1 Ps ) then we have

(h2 (Pa,k + Alpg’k) - 4]’L2 (Pa,k + >\1P5’k) - 24) COS(@h)

3.8
< 20h2 (Pa,k —+ )\1P137k> — 5h2 (Pa,k + Alpﬁ,k> — 24. ( )
this implies
h2 (P%k + Alpﬂ’k) (COS(Qh)) (3 9)
< 2[(12 4 2h* (Pay + M Psy)) cos(0h) + 10h* (P 4+ A1 P ) — 12] '
ie.
1
h*X, 5 (cos(6h)) < 12 {(2 + éthaﬁ) cos(6h) + 10h* X, 5 — 2| , (3.10)
where Xoc,,B = Poe,k + )\1P/37/§.
Using (3.7) and (3.10) completes the proof of lemma. O
Lemma 3.3. Let Gy be the solution of (3.1), with the conditions P, = m and

Pgj = 57 then Gy is bounded.

__ 1
KPT(3—

Proof. Since from 3.1 we have

o & X3 (c08(01) 4 5) (Gt + Gt + Xory Weap (G = 2Gn =1+ 1+ G, ) |

Yoz
(3.11)




Taking absolute value of (3.11) as follow:

h? n
) < et G 2 God] S (Wl (Goorial +21Gn = 7 4+1] + G

- Ya,s Yo 6l
(3.12)
Also,
| Xasl < [Pag| + M| Psx| < Ki(say),
h?X, 5h%X,,
Yos <2[1+ Bl 4|24 22208 < K (say), (3.13)
’ 6\ 3\

Wrasl < |Pasdy| + [\l | Posd] | < Ks(say).
Since K, Ky and K3 are positive real constant. So by using (3.12) and (3.13), G}, is bounded.

O
Theorem 3.1. If P, = m and Pgj, = m then the finite difference scheme
(2.10) is stable.
Proof. We know that
IT"l3="D_ IG.(V)". (3.14)

N=—00

So, from Lemma 3.3 and (3.14), T",n = 1,2,..., N is bounded, which means that the
difference scheme is stable. And by using the Lax equivalence theorem [8] we can obtain
that the numerical solution converges to the exact solution as h, k — 0. O]

4. Numerical examples

Now, we have discussed some examples to show the accuracy and efficiency of the pro-
posed schemes to validate our scheme which verifies the stability and convergence of the
finite difference scheme. Let B be the exact solution and B be the numerical solution then

Absolute error = |B — B

9

15— Bl,= || 3 186, T) ~ B, T

and
|B - BHOO = max |B(z;,T) — B(z;,T)|.

1<j<N

We have used the following formula for calculating the computational orders (COs) of the
proposed finite difference scheme:

En
Ent1

hny 7
hn 1

log
CO(N)

- log



where Ey and Ey,q are errors corresponding to the grids with mesh size hy and hyiq
respectively.

Example 4.1.
(D B)(x,t) = (D) B)(x,t) = V*B(x, 1) = f(z,1), (4.1)
subject to initial condition

{ B(I70) = g(ZL’),

[%} =0 Mz),

(4.2)

and Dirichlet boundary conditions are
B(z,t) = 0,2 € 09,t € (0,71, (4.3)

and the exact solution of the above test problem is B(z,t) = t*Pz!Te+5(1 — 2). The value
of source term f(x,t) is varies for different choices of a and (3.

We have solve Example 4.1 using proposed finite difference scheme is given in Fq.(2.10).
For Example 4.1, Figure 1 shows the behavior of exact solution, Figure 2 shows the behavior
of numerical solution, Figure 3 shows the comparison of exact and numerical solution at
T = 1 and Figure 4 shows absolute errors between exact and numerical solutions with
h = 1/100,k = 1/1000 and different values of o and 3, where E;, Ey and Ej3 represent the
absolute errors corresponding to a=1.5, f=1.1; a=17, f=15and a=1.9, f=1.3,
respectively. Lo & L, errors and temporal order of convergence for Example 4.1 with time
T =1 at fixed temporal step size k = 1/1000 and varies spatial step size h are given in
Table 1 and Table 2 respectively.

0.1
0.08 -

0.08 A

Exact Solution
[=]
E

0.02 A

Figure 1: The behavior of the exact solution of Example 4.1 of the fractional wave model (1.1) by means of
proposed scheme for o = 1.5, 8 = 1.1, and h = 100, k£ = 1000.

9



<
=
J

o

o=

®
i

0.06

Mumerical Solution
=1
E
I

0.02

=

0.2 - 0.2

Figure 2: The behavior of the numerical solution of Example 4.1 of the fractional wave model (1.1) by means
of proposed scheme for & = 1.5, 8 = 1.1, and h = 100, & = 1000.

0.09 T T T T

0.08 [ O Exact solution T
. Numerical solution

0.07 b

0.06

0.05

0.04

B(x,t)

0.03

0.02

0.01

Figure 3: The behavior of the exact solution and the numerical solution of Example 4.1 of the fractional
wave model (1.1) by means of proposed scheme for o = 1.5, = 1.1, h = 100,k = 1000 and T = 1.
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-4
2520

E,.0=15, f=1.1
E, 0=17, 3=15
E, 0=19, =13

151

Figure 4: Absolute errors of Fxampled.l at time T = 1 with spatial step size h = 100, temporal step size
k = 1000 and different values of o & S.

Table 1: Lo errors and order of convergence of Example 4.1 for different values of o and § at time T' =1
with £ = 1/1000

h  a=1508=11 a=17,=15 a=19,=13
|B - B|, COs |B - B|, COs |B - B, COs

1/5 2.1500E-02 2.02027 2.1700E-02 2.00666 1.3900E-02 1.83354
1/10 5.3000E-03 2.02748 5.4000E-03 2.05445 3.9000E-03 1.82595
1/20 1.3000E-03 1.97500 1.3000E-03 1.92337 1.1000E-03 1.75900
1/40 3.3068E-04 2.00584 3.4273E-04 1.89541 3.0632E-04 1.84439
1/80 8.2336E-05 2.02275 9.2125E-05 1.64386 9.5034E-05 1.04771
1/160 2.0262E-05 - 2.9480E-05 - 4.1134E-05 -
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Table 2: L., errors and order of convergence of Example 4.1 for different values of o and S at time T =1
with & = 1/1000

h  a=15/3=11 a=173=15 a=198=13
|B - B, COs |B - B|, COs |B - B|, COs

1/5 2.8900E-02 1.94611 2.9200E-02 1.94190 1.8700E-02 1.76553
1/10 7.5000E-03 1.98089 7.6000E-03 2.00000 5.5000E-03 1.45943
1/20 1.9000E-03 2.02247 1.9000E-03 1.97084 2.0000E-03 0.86249
1/40 4.6766E-04 2.00587 4.8470E-04 1.89548 1.1000E-03 1.39004
1/80 1.1644E-04 2.02273 1.3028E-04 1.64353 4.1971E-04 1.35078

1/160 2.8655E-05 - 4.1699E-05 - 1.6456E-04 -
Example 4.2.
(DfB)(x,t) = (D} B)(x,t) = V*B(z,t) = f(x,1), (4.4)

subject to initial condition

{ fa(]f(ﬁ?}_ gi),;(x% (4.5)

t
and Dirichlet boundary conditions are
B(z,t) = 0,2 € 0Q,t € (0,77, (4.6)

and the exact solution of the above test problem is B(x,t) = t*"Psin(nz). The value of source
term f(x,t) is varies for different choices of a and .

We have solve Example 4.2 using proposed finite difference scheme is given in Fq.(2.10).
For Example 4.2, Figure 5 shows the behavior of exact solution, Figure 6 shows the behavior
of numerical solution, Figure 7 shows the comparison of exact and numerical solution at
T = 1 and Figure 8 shows absolute errors between exact and numerical solutions with
h = 1/100, k = 1/1000 and different values of a and (3, where E;, Es and F3 represent the
absolute errors corresponding to a = 1.5, f=1.1; a=17 g=15and a =19, = 1.3,
respectively. Ly & L, errors and temporal order of convergence for Example 4.2 with time
T =1 at fixed temporal step size k = 1/1000 and varies spatial step size h are given in
Table 3 and Table 4 respectively.
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0.8

o
=]

Exact Solution
]
=9

0.2

=0

0.2 ; 0.2

Figure 5: The behavior of the exact solution of Example 4.2 of the fractional wave model (1.1) by means of
proposed scheme for « = 1.5, 8 = 1.1 and h = 100, k£ = 1000.

0.8

Mumerical Solution
=1 ]
Ry =]
I 1

o
P
'

=0

0.2 0.2

Figure 6: The behavior of the numerical solution of Example 4.2 of the fractional wave model (1.1) by means
of proposed scheme for « = 1.5, = 1.1 and h = 100, kK = 1000.

13



1.2 T T T T T T T T T

O Exact solution
Numerical solution

B(x,t)

Figure 7: The behavior of the exact solution and the numerical solution of Example 4.2 of the fractional
wave model (1.1) by means of proposed scheme for « = 1.5, = 1.1, h = 100,k = 1000 and T = 1.

-4
g Xlo T T T T 1 T T T T
8 - -
7' - E 015, =11 1
N E, 0=17, §=13 i
E, a=19, #=15
5 - -

Absolute Error

Figure 8: Absolute errors of Example 4.2 at time T" = 1 with spatial step size h = 100, temporal step size
k = 1000 and different values of o & S.
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Table 3: Ls errors and order of convergence of Example 4.2 for different values of o and § at time 7' = 1
with £ = 1/1000

h a=1508=11 a=17,3=15 a=198=13
|B - B, COs |B - B, COs |B - B|, COs

1/5 2.0100E-02 2.00720 2.2400E-02 2.02600 1.4700E-02 1.87774
1/10 5.0000E-03 2.05889 5.5000E-03 1.97400 4.0000E-03 1.62149
1/20 1.2000E-03 1.92253 1.4000E-03 2.05683 1.3000E-03 0.94124
1/40 3.1655E-04 1.91478 3.3648E-04 2.10794 6.7702E-04 1.14317
1/80 8.3953E-05 1.70148 7.8056E-05 2.53551 3.0653E-04 1.66347

1/160 2.5813E-05 - 1.3463E-05 - 9.6765E-05 -

Table 4: L., errors and order of convergence of Example 4.2 for different values of o and 3 at time T =1
with k = 1/1000

h a=15p=1.1 a=17,6=15 a=19=13
[5-B], cos  [B-B|, cOs  [B—B],_ COs

1/5 2.7000E-02 1.94753 3.0100E-02 1.94822 1.9800E-02 1.79647
1/10 7.0000E-03 1.95936 7.8000E-03 2.03747 5.7000E-03 1.58496
1/20 1.8000E-03 2.00746 1.9000E-03 1.99739 1.9000E-03 0.98871
1/40 4.4768E-04 1.91478 4.7586E-04 2.10793 9.5746E-04 1.16640
1/80 1.1873E-04 1.70152 1.1039E-04 2.53550 4.2658E-04 1.40253
1/160 3.6505E-05 - 1.9040E-05 - 1.6136E-04 -

5. Conclusions

This article presents a class of numerical schemes for solving the FPDE (1.1) arising
from EMWDM. This class of schemes depends on the finite difference scheme based on the
Hermite formula. To solve the proposed FPDE (1.1), first we applied a difference scheme
of order O(t=) & O(t“*=)), 1 < B < a < 2 and the Caputo’s derivative in time. Special
consideration is given to the study of the stability and the convergence of the fractional
finite difference scheme. To carry out this aim we have resorted to a kind of fractional
von Neumann stability analysis. From the theoretical examination, we can conclude that
the proposed scheme is suitable for FPDE (1.1) and leads to very good predictions for the
stability bounds. Moreover, numerical estimation of the COs and absolute errors are also
presented through tables 1-4 to validate the effectiveness of the proposed scheme. In this
article, we could not provide the results for nonlinear source terms and unbounded domain,
which is a topic for future study.
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