Fig 1. Macroevolutionary patterns in Saccharomycotina. A) Crabtree
positive (green) and negative (red) yeasts associated with fermentative
capacity, indicated here as ethanol yield (grams of ethanol production
per gram of glucose consumed, horizontal bars). Two major genomic
rearrangements that affected the lineage are denoted with the arrows,
the purple diamond indicate the loss of the URA1 gene inEremothecium clade and the whole genomic duplication is indicated
by the blue branches. B) A measure of phylogenetic signal for the
Crabtree effect as a categorical trait. The arrow denotes the minimum
number of transitions needed to explain the character state, which is
significantly less than a randomized distribution (1000 randomizations;
p<0.0001). LCP+ = Long-Term Crabtree positive yeast. LCP- =
Long-Term Crabtree negative yeast.
Fig 2. A heatmap of trait values as a descriptive statistic for trait
distribution (see Table A1 for the complete dataset).
Fig 3. Phenograms (i.e., plots combining trait values and phylogenetic
relationship across time) showing the phenotypic differentiation between
WGD- (black line) and WGD+ (blue line) species, in a) dry matter growth
rate, b) rate of glycerol production, c) respiratory quotient and d)
ethanol yield. The time scale corresponds to the original calibration,
ordered backwards, where zero represents the origin of the clade.
Fig 4. Location of adaptive shifts, according to the OU-lasso method and
assuming a maximum of k=3 shifts, for each variable: a) growth rate, b)
glycerol production, c) respiratory quotient and d) ethanol yield. For
growth rate, k=0 and k=3 were statistically indistinguishable (see Table
1).
References
Albertyn, J., Hohmann, S., Thevelein, J. M. & Prior, B. A. 1994. GPD1,
WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR
GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS
EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE
PATHWAY. Molecular and Cellular Biology 14 : 4135-4144.
Aslankoohi, E., Rezaei, M. N., Vervoort, Y., Courtin, C. M. &
Verstrepen, K. J. 2015. Glycerol Production by Fermenting Yeast Cells Is
Essential for Optimal Bread Dough Fermentation. Plos One10 : 13.
Blomberg, S. P., Garland, T. & Ives, A. R. 2003. Testing for
phylogenetic signal in comparative data: Behavioral traits are more
labile. Evolution 57 : 717-745.
Chen, H., Xu, L. & Gu, Z. L. 2008. Regulation Dynamics of WGD Genes
during Yeast Metabolic Oscillation. Molecular Biology and
Evolution 25 : 2513-2516.
Conant, G. C. & Wolfe, K. H. 2007. Increased glycolytic flux as an
outcome of whole-genome duplication in yeast. Molecular Systems
Biology 3 : 12.
Cressler, C. E., Butler, M. A. & King, A. A. 2015. Detecting Adaptive
Evolution in Phylogenetic Comparative Analysis Using the
Ornstein-Uhlenbeck Model. Systematic Biology 64 :
953-968.
Dashko, S., Zhou, N., Compagno, C. & Piskur, J. 2014. Why, when, and
how did yeast evolve alcoholic fermentation? Fems Yeast Research14 : 826-832.
Dong, D., Yuan, Z. N. & Zhang, Z. L. 2011. Evidences for increased
expression variation of duplicate genes in budding yeast: from cis- to
trans-regulation effects. Nucleic Acids Research 39 :
837-847.
Dujon, B. 2010. Yeast evolutionary genomics. Nature Reviews
Genetics 11 : 512-524.
Ernst, A., Becker, S., Wollenzien, U. I. A. & Postius, C. 2003.
Ecosystem-dependent adaptive radiations of picocyanobacteria inferred
from 16S rRNA and ITS-1 sequence analysis. Microbiology-Sgm149 : 217-228.
Felsenstein, J. 1973. Maximum likelihood estimation of evolutionary
trees from continuous characters. American Journal of Human
Genetics 25 : 471-492.
Felsenstein, J. 1985. Phylogenies and the comparative method. The
American Naturalist 125 : 1-15.
Fisher, K. J., Buskirk, S. W., Vignogna, R. C., Marad, D. A. & Lang, G.
I. 2018. Adaptive genome duplication affects patterns of molecular
evolution in Saccharomyces cerevisiae. Plos Genetics 14 :
22.
Gallone, B., Steensels, J., Prahl, T., Soriaga, L., Saels, V.,
Herrera-Malaver, B., Merlevede, A., Roncoroni, M., Voordeckers, K.,
Miraglia, L., Teiling, C., Steffy, B., Taylor, M., Schwartz, A.,
Richardson, T., White, C., Baele, G., Maere, S. & Verstrepen, K. J.
2016. Domestication and Divergence of Saccharomyces cerevisiae Beer
Yeasts. Cell 166 : 1397-+.
Goddard, M. & Grieg, D. 2015. Saccharomyces cerevisiae: a nomadic yeast
with no niche? Fems Yeast Research 15 : in press.
Gubry-Rangin, C., Kratsch, C., Williams, T. A., McHardy, A. C., Embley,
T. M., Prosser, J. I. & Macqueen, D. J. 2015. Coupling of
diversification and pH adaptation during the evolution of terrestrial
Thaumarchaeota. Proceedings of the National Academy of Sciences of
the United States of America 112 : 9370-9375.
Gutierrez, A., Sancho, M., Beltran, G., Guillamon, J. M. & Warringer,
J. 2016. Replenishment and mobilization of intracellular nitrogen pools
decouples wine yeast nitrogen uptake from growth. Applied
Microbiology and Biotechnology 100 : 3255-3265.
Hagman, A. & Piskur, J. 2015. A Study on the Fundamental Mechanism and
the Evolutionary Driving Forces behind Aerobic Fermentation in Yeast.Plos One 10 : 24.
Hagman, A., Sall, T., Compagno, C. & Piskur, J. 2013. Yeast
”Make-Accumulate-Consume” Life Strategy Evolved as a Multi-Step Process
That Predates the Whole Genome Duplication. Plos One 8 :
12.
Hagman, A., Sall, T. & Piskur, J. 2014. Analysis of the yeast
short-term Crabtree effect and its origin. Febs Journal281 : 4805-4814.
Hansen, T. F. 1997. Stabilizing selection and the comparative analysis
of adaptation. Evolution 51 : 1341-1351.
James, T. Y., Kauff, F., Schoch, C. L., Matheny, P. B., Hofstetter, V.,
Cox, C. J., Celio, G., Gueidan, C., Fraker, E., Miadlikowska, J.,
Lumbsch, H. T., Rauhut, A., Reeb, V., Arnold, A. E., Amtoft, A.,
Stajich, J. E., Hosaka, K., Sung, G. H., Johnson, D., O’Rourke, B.,
Crockett, M., Binder, M., Curtis, J. M., Slot, J. C., Wang, Z., Wilson,
A. W., Schussler, A., Longcore, J. E., O’Donnell, K., Mozley-Standridge,
S., Porter, D., Letcher, P. M., Powell, M. J., Taylor, J. W., White, M.
M., Griffith, G. W., Davies, D. R., Humber, R. A., Morton, J. B.,
Sugiyama, J., Rossman, A. Y., Rogers, J. D., Pfister, D. H., Hewitt, D.,
Hansen, K., Hambleton, S., Shoemaker, R. A., Kohlmeyer, J.,
Volkmann-Kohlmeyer, B., Spotts, R. A., Serdani, M., Crous, P. W.,
Hughes, K. W., Matsuura, K., Langer, E., Langer, G., Untereiner, W. A.,
Lucking, R., Budel, B., Geiser, D. M., Aptroot, A., Diederich, P.,
Schmitt, I., Schultz, M., Yahr, R., Hibbett, D. S., Lutzoni, F.,
McLaughlin, D. J., Spatafora, J. W. & Vilgalys, R. 2006. Reconstructing
the early evolution of Fungi using a six-gene phylogeny. Nature443 : 818-822.
Kawecki, T. J. & Ebert, D. 2004. Conceptual issues in local adaptation.Ecology Letters 7 : 1225-1241.
Khabbazian, M., Kriebel, R., Rohe, K. & Ane, C. 2016. Fast and accurate
detection of evolutionary shifts in Ornstein-Uhlenbeck models.Methods in Ecology and Evolution 7 : 811-824.
Kurtzman, C. P., Fell, J. W. & Boekhout, T. 2011. The Yeasts: a
taxonomic study . Elsevier, London.
Kurtzman, C. P. & Robnett, C. J. 2003. Phylogenetic relationships among
yeasts of the ’Saccharomyces complex’ determined from multigene sequence
analyses. Fems Yeast Research 3 : 417-432.
Libkind, D., Hittinger, C. T., Valerio, E., Goncalves, C., Dover, J.,
Johnston, M., Goncalves, P. & Sampaio, J. P. 2011. Microbe
domestication and the identification of the wild genetic stock of
lager-brewing yeast. Proceedings of the National Academy of
Sciences of the United States of America 108 : 14539-14544.
Lin, Z. G. & Li, W. H. 2011. Expansion of Hexose Transporter Genes Was
Associated with the Evolution of Aerobic Fermentation in Yeasts.Molecular Biology and Evolution 28 : 131-142.
Linhart, Y. B. & Grant, M. C. 1996. Evolutionary significance of local
genetic differentiation in plants. Annual Review of Ecology and
Systematics 27 : 237-277.
Luyten, K., Riou, C. & Blondin, B. 2002. The hexose transporters of
Saccharomyces cerevisiae play different roles during enological
fermentation. Yeast 19 : 713-726.
Maddison, D. R. & Maddison, W. P. 2000. MacClade 4 . Sinauer.
Marcet-Houben, M. & Gabaldon, T. 2015. Beyond the Whole-Genome
Duplication: Phylogenetic Evidence for an Ancient Interspecies
Hybridization in the Baker’s Yeast Lineage. Plos Biology13 : 26.
Marcet-Houben, M., Marceddu, G. & Gabaldon, T. 2009. Phylogenomics of
the oxidative phosphorylation in fungi reveals extensive gene
duplication followed by functional divergence. Bmc Evolutionary
Biology 9 : 12.
Nakov, T., Theriot, E. C. & Alverson, A. J. 2014. Using phylogeny to
model cell size evolution in marine and freshwater diatoms.Limnology and Oceanography 59 : 79-86.
Nurcholis, M., Lertwattanasakul, N., Rodrussamee, N., Kosaka, T.,
Murata, M. & Yamada, M. Integration of comprehensive data and
biotechnological tools for industrial applications of Kluyveromyces
marxianus. Applied Microbiology and Biotechnology : 14.
Paleo-Lopez, R., Quintero-Galvis, J. F., Solano-Iguaran, J. J.,
Sanchez-Salazar, A. M., Gaitan-Espitia, J. D. & Nespolo, R. F. 2016. A
phylogenetic analysis of macroevolutionary patterns in fermentative
yeasts. Ecology and Evolution 6 : 3851-3861.
Paradis, E. 2012. Analysis of phylogenetics and evolution with R.
Second Edition . Springer.
Piskur, J. 2001. Origin of the duplicated regions in the yeast genomes.Trends in Genetics 17 : 302-303.
Piskur, J., Rozpedowska, E., Polakova, S., Merico, A. & Compagno, C.
2006. How did Saccharomyces evolve to become a good brewer? Trends
in Genetics 22 : 183-186.
Querol, A., Fernandez-Espinar, M. T., del Olmo, M. & Barrio, E. 2003.
Adaptive evolution of wine yeast. International Journal of Food
Microbiology 86 : 3-10.
Ravot, G., Ollivier, B., Fardeau, M. L., Patel, B. K. C., Andrews, K.
T., Magot, M. & Garcia, J. L. 1996. L-Alanine production from glucose
fermentation by hyperthermophilic members of the domains Bacteria and
Archaea: A remnant of an ancestral metabolism? Applied and
Environmental Microbiology 62 : 2657-2659.
Salichos, L. & Rokas, A. 2013. Inferring ancient divergences requires
genes with strong phylogenetic signals. Nature 497 :
327-+.
Scannell, D. R., Butler, G. & Wolfe, K. H. 2007. Yeast genome evolution
- the origin of the species. Yeast 24 : 929-942.
Shen, X. X., Opulente, D. A., Kominek, J., Zhou, X., Steenwyk, J. L.,
Buh, K. V., Haase, M. A. B., Wisecaver, J. H., Wang, M., Doering, D. T.,
Boudouris, J. T., Schneider, R. M., Langdon, Q. K., Ohkuma, M., Endoh,
R., Takashima, M., Manabe, R., Cadez, N., Libkind, D., Rosa, C. A.,
DeVirgilio, J., Hulfachor, A. B., Groenewald, M., Kurtzman, C. P.,
Hittinger, C. T. & Rokas, A. 2018. Tempo and Mode of Genome Evolution
in the Budding Yeast Subphylum. Cell 175 : 1533-+.
Starmer, W. T., Schmedicke, R. A. & Lachance, M. A. 2003. The origin of
the cactus-yeast community. Fems Yeast Research 3 :
441-448.
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013.
MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0.Molecular Biology and Evolution 30 : 2725-2729.
Thompson, D. A., Roy, S., Chan, M., Styczynski, M. P., Pfiffner, J.,
French, C., Socha, A., Thielke, A., Napolitano, S., Muller, P., Kellis,
M., Konieczka, J. H., Wapinski, I. & Regev, A. 2013. Evolutionary
principles of modular gene regulation in yeasts. Elife2 : 37.
Thomson, J. M., Gaucher, E. A., Burgan, M. F., De Kee, D. W., Li, T.,
Aris, J. P. & Benner, S. A. 2005. Resurrecting ancestral alcohol
dehydrogenases from yeast. Nature Genetics 37 : 630-635.
Tibshirani, R. 1996. Regression shrinkage and selection via the Lasso.Journal of the Royal Statistical Society Series B-Methodological58 : 267-288.
Voordeckers, K., Kominek, J., Das, A., Espinosa-Cantu, A., De Maeyer,
D., Arslan, A., Van Pee, M., van der Zande, E., Meert, W., Yang, Y. D.,
Zhu, B., Marchal, K., DeLuna, A., Van Noort, V., Jelier, R. &
Verstrepen, K. J. 2015. Adaptation to High Ethanol Reveals Complex
Evolutionary Pathways. Plos Genetics 11 : 31.
Wagenmakers, E. J. & Farrell, S. 2004. AIC model selection using Akaike
weights. Psychonomic Bulletin & Review 11 : 192-196.
Williams, K. M., Liu, P. & Fay, J. C. 2015. Evolution of ecological
dominance of yeast species in high-sugar environments. Evolution69 : 2079-2093.
Wolfe, K. H. & Shields, D. C. 1997. Molecular evidence for an ancient
duplication of the entire yeast genome. Nature 387 :
708-713.
Zhang, J. Z. 2003. Evolution by gene duplication: an update.Trends in Ecology & Evolution 18 : 292-298.
Zhou, N., Swamy, K. B. S., Leu, J. Y., McDonald, M. J., Galafassi, S.,
Compagno, C. & Piskur, J. 2017. Coevolution with bacteria drives the
evolution of aerobic fermentation in Lachancea kluyveri. Plos One12 : 19.