References
Adomou, A. (2005). Vegetation patterns and environmental gradient
in Benin: implications for biogeography and conservation . Wageningen
University.
An-ning, S., Tian Zhen, J., & Jian Ping, G. (2008). Relationship
between species richness and biomass on environmental gradient in
natural forest communities on Mt. Xiaolongshan, northwest China.Forestry Studies in China , 10 (4), 212–219.
https://doi.org/10.1007/s11632-008-0041-7
Barrufol, M., Schmid, B., Bruelheide, H., Chi, X., Hector, A., Ma, K.,
… Niklaus, P. A. (2013). Biodiversity promotes tree growth during
succession in subtropical forest. PLoS ONE , 8 (11), 1–9.
https://doi.org/10.1371/journal.pone.0081246
Barton, K. (2018). MuMIn: Multi-Model Inference. R package version
1.42.1. Retrieved from
https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf
Bastin, J. F., Barbier, N., Réjou-Méchain, M., Fayolle, A.,
Gourlet-Fleury, S., Maniatis, D., … Bogaert, J. (2015). Seeing
Central African forests through their largest trees. Scientific
Reports , 5 . https://doi.org/10.1038/srep13156
Bauhus, J., Forrester, D. I., Gardiner, B., Jactel, H., Vallejo, R., &
Pretzsch, H. (2017). Ecological stability of mixed-species forests. InMixed-Species Forests: Ecology and Management (pp. 337–382).
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-54553-9_7
Cardinale, B. J., Srivastava, D. S., Duffy, J. E., Wright, J. P.,
Downing, A. L., Sankaran, M., & Jouseau, C. (2006). Effects of
biodiversity on the functioning of trophic groups and ecosystems.Nature , 443 (7114), 989–992.
https://doi.org/10.1038/nature05202
Cavanaugh, K. C., Gosnell, J. S., Davis, S. L., Ahumada, J., Boundja,
P., Clark, D. B., … Andelman, S. (2014). Carbon storage in
tropical forests correlates with taxonomic diversity and functional
dominance on a global scale. Global Ecology and Biogeography ,23 (5), 563–573. https://doi.org/10.1111/geb.12143
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S.,
Delitti, W. B. C., … Vieilledent, G. (2014). Improved allometric
models to estimate the aboveground biomass of tropical trees.Global Change Biology , 20 , 3177–3190.
https://doi.org/10.1111/gcb.12629
Cheng, Y., Zhang, C., Zhao, X., & von Gadow, K. (2018).
Biomass-dominant species shape the productivity-diversity relationship
in two temperate forests. Annals of Forest Science , 75 (4).
https://doi.org/10.1007/s13595-018-0780-0
Con, V. T., Thang, N. T., Ha, D. T. T., Khiem, C. C., Quy, T. H., Lam,
V. T., … Sato, T. (2013). Relationship between aboveground
biomass and measures of structure and species diversity in tropical
forests of Vietnam. Forest Ecology and Management , 310 ,
213–218. https://doi.org/10.1016/j.foreco.2013.08.034
Conti, G., & Díaz, S. (2013). Plant functional diversity and carbon
storage - an empirical test in semi-arid forest ecosystems.Journal of Ecology , 101 (1), 18–28.
https://doi.org/10.1111/1365-2745.12012
Dimobe, K., Kuyah, S., Dabré, Z., Ouédraogo, A., & Thiombiano, A.
(2019). Diversity-carbon stock relationship across vegetation types in W
National park in Burkina Faso. Forest Ecology and Management ,438 (November 2018), 243–254.
https://doi.org/10.1016/j.foreco.2019.02.027
Erskine, P. D., Lamb, D., & Bristow, M. (2006). Tree species diversity
and ecosystem function: Can tropical multi-species plantations generate
greater productivity? Forest Ecology and Management ,233 (2–3), 205–210. https://doi.org/10.1016/j.foreco.2006.05.013
Falster, D. S., Duursma, R. A., & FitzJohn, R. G. (2018). How
functional traits influence plant growth and shade tolerance across the
life cycle. Proceedings of the National Academy of Sciences of the
United States of America , 115 (29), E6789–E6798.
https://doi.org/10.1073/pnas.1714044115
Fargione, J., Tilman, D., Dybzinski, R., Lambers, J. H. R., Clark, C.,
Harpole, W. S., … Loreau, M. (2007). From selection to
complementarity: shifts in the causes of biodiversity-productivity
relationships in a long-term biodiversity experiment. Proceedings
of the Royal Society B , 274 , 871–876.
https://doi.org/10.1098/rspb.2006.0351
Felton, A., Nilsson, U., Sonesson, J., Felton, A. M., Roberge, J. M.,
Ranius, T., … Wallertz, K. (2016). Replacing monocultures with
mixed-species stands: Ecosystem service implications of two production
forest alternatives in Sweden. Ambio , 45 , 124–139.
https://doi.org/10.1007/s13280-015-0749-2
Finegan, B., Peña-Claros, M., de Oliveira, A., Ascarrunz, N.,
Bret-Harte, M. S., Carreño-Rocabado, G., … Poorter, L. (2015).
Does functional trait diversity predict above-ground biomass and
productivity of tropical forests? Testing three alternative hypotheses.Journal of Ecology , 103 (1), 191–201.
https://doi.org/10.1111/1365-2745.12346
Fotis, A. T., Murphy, S. J., Ricart, R. D., Krishnadas, M., Whitacre,
J., Wenzel, J. W., … Comita, L. S. (2018). Above-ground biomass
is driven by mass-ratio effects and stand structural attributes in a
temperate deciduous forest. Journal of Ecology , 106 (2),
561–570. https://doi.org/10.1111/1365-2745.12847
Gamfeldt, L., Snäll, T., Bagchi, R., Jonsson, M., Gustafsson, L.,
Kjellander, P., … Bengtsson, J. (2013). Higher levels of multiple
ecosystem services are found in forests with more tree species.Nature Communications , 4 , 1340.
https://doi.org/10.1038/ncomms2328
Grace, J. B., & Bollen, K. A. (2005). Interpreting the results from
multiple regression and structural equation models. Bulletin of
the Ecological Society of America , 86 (October), 283–295.
https://doi.org/10.1890/0012-9623(2007)88[50:UFCAFW]2.0.CO;2
Hao, M. H., Zhang, C., Zhao, X., & von Gadow, K. (2018). Functional and
phylogenetic diversity determine woody productivity in a temperate
forest. Ecology and Evolution , 8 (5), 2395–2406.
https://doi.org/10.1002/ece3.3857
Heinrichs, S., Ammer, C., Mund, M., Boch, S., Budde, S., Fischer, M.,
… Schall, P. (2019). Landscape-scale mixtures of tree species are
more effective than stand-scale mixtures for biodiversity of vascular
plants, bryophytes and lichens. Forests , 10 (1).
https://doi.org/10.3390/f10010073
Hooper, D. U., Chapin III, F. S., & Ewel, J. J. (2005). Effects of
biodiversity on ecosystem functioning: a consensus of current knowledge.Ecological Monographs , 75 (1), 3–35.
https://doi.org/10.1890/04-0922
Houeto, G., Glele Kakaï, R., Salako, V., Fandohan, B., Assogbadjo, A.
E., Sinsin, B., & Palm, R. (2014). Effect of inventory plot patterns in
the floristic analysis of tropical woodland and dense forest.African Journal of Ecology , 52 (3), 257–264.
https://doi.org/10.1111/aje.12112
Huang, X., Su, J., Li, S., Liu, W., & Lang, X. (2019). Functional
diversity drives ecosystem multifunctionality in a Pinus yunnanensis
natural secondary forest. Scientific Reports , 9 (1), 6979.
https://doi.org/10.1038/s41598-019-43475-1
Huston, M. A. (1997). Hidden treatments in ecological experiments:
Re-evaluating the ecosystem function of biodiversity. Oecologia ,110 (4), 449–460. https://doi.org/10.1007/s004420050180
Isbell, F., Calcagno, V., Hector, A., Connolly, J., Harpole, W. S.,
Reich, P. B., … Loreau, M. (2011). High plant diversity is needed
to maintain ecosystem services. Nature , 477 (7363),
199–202. https://doi.org/10.1038/nature10282
Jactel, H., Gritti, E. S., Drössler, L., Forrester, D. I., Mason, W. L.,
Morin, X., … Castagneyrol, B. (2018). Positive
biodiversity–productivity relationships in forests: Climate matters.Biology Letters , 14 (4), 20170747.
https://doi.org/10.1098/rsbl.2017.0747
Kelemen, A., Tóthmérész, B., Valkó, O., Miglécz, T., Deák, B., & Török,
P. (2017). New aspects of grassland recovery in old-fields revealed by
trait-based analyses of perennial-crop-mediated succession.Ecology and Evolution , 7 (7), 2432–2440.
https://doi.org/10.1002/ece3.2869
Kelty, M. J. (1992). Comparative productivity of monocultures and
mixed-species stands. In M. J. Kelty (Ed.), The Ecology and
Silviculture of Mixed-Species Forests (pp. 125–141). Kluwer Academic
Publishers. https://doi.org/10.1007/978-94-015-8052-6_8
Kelty, Matthew J. (2006). The role of species mixtures in plantation
forestry. Forest Ecology and Management , 233 (2–3),
195–204. https://doi.org/10.1016/j.foreco.2006.05.011
Kirwan, L., Lüscher, A., Sebastià, M. T., Finn, J. A., Collins, R. P.,
Porqueddu, C., … Connolly, J. (2007). Evenness drives consistent
diversity effects in intensive grassland systems across 28 European
sites. Journal of Ecology , 95 (3), 530–539.
https://doi.org/10.1111/j.1365-2745.2007.01225.x
Laliberté, E., Legendre, P., & Shipley, B. (2015). Measuring functional
diversity (FD) from multiple traits, and other tools for functional
ecology. R package.
Lasky, J. R., Uriarte, M., Boukili, V. K., Erickson, D. L., John Kress,
W., & Chazdon, R. L. (2014). The relationship between tree biodiversity
and biomass dynamics changes with tropical forest succession.Ecology Letters , 17 , 1158–1167.
https://doi.org/10.1111/ele.12322
Li, S., Lang, X., Liu, W., Ou, G., Xu, H., & Su, J. (2018). The
relationship between species richness and aboveground biomass in a
primary Pinus kesiya forest of Yunnan, southwestern China. PLoS
ONE , 13 (1). https://doi.org/10.1371/journal.pone.0191140
Li, Y., Bao, W., Bongers, F., Chen, B., Chen, G., Guo, K., … Ma,
K. (2019). Drivers of tree carbon storage in subtropical forests.Science of the Total Environment , 654 (November), 684–693.
https://doi.org/10.1016/j.scitotenv.2018.11.024
Liang, J., Crowther, T. W., Picard, N., Wiser, S., Zhou, M., Alberti,
G., … Reich, P. B. (2016). Positive biodiversity-productivity
relationship predominant in global forests. Science ,354 (6309). https://doi.org/10.1126/science.aaf8957
Lin, D., Anderson-teixeira, K. J., Lai, J., Mi, X., Ren, H., & Ma, K.
(2016). Traits of dominant tree species predict local scale variation in
forest aboveground and topsoil carbon stocks. Plant and Soil ,409 (1–2), 435–446. https://doi.org/10.1007/s11104-016-2976-0
Liu, X., Trogisch, S., He, J. S., Niklaus, P. A., Bruelheide, H., Tang,
Z., … Ma, K. (2018). Tree species richness increases ecosystem
carbon storage in subtropical forests. Proceedings. Biological
Sciences , 285 (1885). https://doi.org/10.1098/rspb.2018.1240
Loreau, M., & Hector, A. (2001). Partitioning selection and
complementarity in biodiversity experiments. Nature ,412 (6842), 72–76. https://doi.org/10.1038/35083573
Mason, N. W. H., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005).
Functional richness, functional evenness and functional divergence: The
primary components of functional diversity. Oikos , 111 (1),
112–118. https://doi.org/10.1111/j.0030-1299.2005.13886.x
Mensah, S., du Toit, B., & Seifert, T. (2018). Diversity–biomass
relationship across forest layers: implications for niche
complementarity and selection effects. Oecologia , 187 (3),
783–795. https://doi.org/10.1007/s00442-018-4144-0
Mensah, S., Pienaar, O. L., Kunneke, A., du Toit, B., Seydack, A., Uhl,
E., … Seifert, T. (2018). Height – Diameter allometry in South
Africa’s indigenous high forests: Assessing generic models performance
and function forms. Forest Ecology and Management , 410 ,
1–11. https://doi.org/10.1016/j.foreco.2017.12.030
Mensah, S., Veldtman, R., Assogbadjo, A. E., Glèlè Kakaï, R., &
Seifert, T. (2016). Tree species diversity promotes aboveground carbon
storage through functional diversity and functional dominance.Ecology and Evolution , 6 (20), 7546–7557.
https://doi.org/10.1002/ece3.2525
Mensah, S., Veldtman, R., Du Toit, B., Kakaï, R. G., & Seifert, T.
(2016). Aboveground biomass and carbon in a South African Mistbelt
forest and the relationships with tree species diversity and forest
structures. Forests , 7 (4).
https://doi.org/10.3390/f7040079
Mensah, Sylvanus, Salako, V. K., Glèlè Kakaï, R., & Sinsin, B. (2020).
Multifunctionality is more responsive to trait diversity than dominance
in natural forests. Ecological In , In press .
Mensah, Sylvanus, Veldtman, R., & Seifert, T. (2017). Allometric models
for height and aboveground biomass of dominant tree species in South
African Mistbelt forests. Southern Forests , 79 (1), 19–30.
https://doi.org/10.2989/20702620.2016.1225187
Mittelbach, G. G., Steiner, C. F., Scheiner, S. M., Gross, K. L.,
Reynolds, H. L., Waide, R. B., … Gough, L. (2001). What is the
observed relationship between species richness and productivity?Ecology , 82 (9), 2381–2396.
https://doi.org/10.1890/03-8021
Morin, X., Fahse, L., Scherer-Lorenzen, M., & Bugmann, H. (2011). Tree
species richness promotes productivity in temperate forests through
strong complementarity between species. Ecology Letters ,14 , 1211–1219. https://doi.org/10.1111/j.1461-0248.2011.01691.x
Mouchet, M. A., Villéger, S., Mason, N. W. H., & Mouillot, D. (2010).
Functional diversity measures: An overview of their redundancy and their
ability to discriminate community assembly rules. Functional
Ecology , 24 (4), 867–876.
https://doi.org/10.1111/j.1365-2435.2010.01695.x
Nijs, I., & Roy, J. (2000). How important are species richness, species
evenness and interspecific differences to productivity? A mathematical
model. Oikos , 88 (1), 57–66.
https://doi.org/10.1034/j.1600-0706.2000.880107.x
Ouyang, S., Xiang, W., Wang, X., Xiao, W., Chen, L., Li, S., …
Peng, C. (2019). Effects of stand age, richness and density on
productivity in subtropical forests in China. Journal of Ecology ,107 , 2266–2277. https://doi.org/10.1111/1365-2745.13194
Paquette, A., & Messier, C. (2011). The effect of biodiversity on tree
productivity: from temperate to boreal forests. Global Ecology and
Biogeography , 20 (1), 170–180.
https://doi.org/10.1111/j.1466-8238.2010.00592.x
Polley, H. W., Wilsey, B. J., & Derner, J. D. (2003). Do species
evenness and plant density influence the magnitude of selection and
complementarity effects in annual plant species mixtures? Ecology
Letters , 6 (3), 248–256.
https://doi.org/10.1046/j.1461-0248.2003.00422.x
Polley, H. W., Wilsey, B. J., & Tischler, C. R. (2007). Species
abundances influence the net biodiversity effect in mixtures of two
plant species. Basic and Applied Ecology , 8 (3), 209–218.
https://doi.org/10.1016/j.baae.2006.02.006
Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., &
Mommer, L. (2012). Biomass allocation to leaves, stems and roots:
meta-analyses of interspecific variation and environmental control.New Phytologist , 193 (1), 30–50.
https://doi.org/10.1111/j.1469-8137.2011.03952.x
Potvin, C., & Gotelli, N. J. (2008). Biodiversity enhances individual
performance but does not affect survivorship in tropical trees.Ecology Letters , 11 , 217–223.
https://doi.org/10.1111/j.1461-0248.2007.01148.x
Prado-junior, J. A., Schiavini, I., Vale, V. S., Arantes, C. S., Sande,
M. T. Van Der, Lohbeck, M., & Poorter, L. (2016). Conservative species
drive biomass productivity in tropical dry forests. Journal of
Ecology , 104 , 817–827. https://doi.org/10.1111/1365-2745.12543
Prado-Junior, J. A., Schiavini, I., Vale, V. S., Raymundo, D., Lopes, S.
F., & Poorter, L. (2016). Functional traits shape size-dependent growth
and mortality rates of dry forest tree species. Journal of Plant
Ecology , 10 (6), 895–906. https://doi.org/10.1093/jpe/rtw103
Pretzsch, H., del Río, M., Ammer, C., Avdagic, A., Barbeito, I., Bielak,
K., … Bravo-Oviedo, A. (2015). Growth and yield of mixed versus
pure stands of Scots pine (Pinus sylvestris L.) and European beech
(Fagus sylvatica L.) analysed along a productivity gradient through
Europe. European Journal of Forest Research , 134 (5),
927–947. https://doi.org/10.1007/s10342-015-0900-4
Pretzsch, H, Steckel, M., Heym, M., Biber, P., Ammer, C., Ehbrecht, M.,
… del Rio, M. (2019). Stand growth and structure of mixed ‑
species and monospecific stands of Scots pine (Pinus sylvestris L.) and
oak (Q. robur L., Quercus petraea (Matt.) Liebl .) analysed along a
productivity gradient through Europe. European Journal of Forest
Research . https://doi.org/10.1007/s10342-019-01233-y
Pretzsch, Hans, Forrester, D. I., & Bauhus, J. (2017).Mixed-species forests: Ecology and management .Mixed-Species Forests: Ecology and Management . Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-662-54553-9
R Core Team. (2019). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
Retrieved from https://www.r-project.org/.%0A
Rawat, M., Arunachalam, K., Arunachalam, A., Alatalo, J., & Pandey, R.
(2019). Associations of plant functional diversity with carbon
accumulation in a temperate forest ecosystem in the Indian Himalayas.Ecological Indicators , 98 (November 2018), 861–868.
https://doi.org/10.1016/j.ecolind.2018.12.005
Ricotta, C., & Moretti, M. (2011). CWM and Rao’s quadratic diversity: A
unified framework for functional ecology. Oecologia ,167 (1), 181–188. https://doi.org/10.1007/s00442-011-1965-5
Rosseel, Y. (2012). lavaan: An R package for structural equation
modeling. Journal of Statistical Software , 48 , 1–36.
Ruiz-Benito, P., Gómez-Aparicio, L., Paquette, A., Messier, C., Kattge,
J., & Zavala, M. a. (2014). Diversity increases carbon storage and tree
productivity in Spanish forests. Global Ecology and Biogeography ,23 (3), 311–322. https://doi.org/10.1111/geb.12126
Ruiz-Jaen, M. C., & Potvin, C. (2010). Tree diversity explains
variation in ecosystem function in a neotropical forest in Panama.Biotropica , 42 (6), 638–646.
https://doi.org/10.1111/j.1744-7429.2010.00631.x
Ruiz-Jaen, M. C., & Potvin, C. (2011). Can we predict carbon stocks in
tropical ecosystems from tree diversity? Comparing species and
functional diversity in a plantation and a natural forest. New
Phytologist , 189 (4), 978–987.
https://doi.org/10.1111/j.1469-8137.2010.03501.x
Salako, V. K., Glele Kakaï, R. L., Assogbadjo, A. E., Fandohan, B.,
Houinato, M., & Palm, R. (2013). Efficiency of inventory plot patterns
in quantitative analysis of vegetation: A case study of tropical
woodland and dense forest in Benin. Southern Forests ,75 (3), 137–143. https://doi.org/10.2989/20702620.2013.816232
Satdichanh, M., Ma, H., Yan, K., Dossa, G. G. O., Winowiecki, L., Vågen,
T. G., … Harrison, R. D. (2019). Phylogenetic diversity
correlated with above-ground biomass production during forest
succession: Evidence from tropical forests in Southeast Asia.Journal of Ecology , 107 (3), 1419–1432.
https://doi.org/10.1111/1365-2745.13112
Seidel, D., Ehbrecht, M., Dorji, Y., Jambay, J., Ammer, C., &
Annighöfer, P. (2019). Identifying architectural characteristics that
determine tree structural complexity. Trees - Structure and
Function , 33 (3), 911–919.
https://doi.org/10.1007/s00468-019-01827-4
Szwagrzyk, J., & Gazda, A. (2007). Above-ground standing biomass and
tree species diversity in natural stands of Central Europe.Journal of Vegetation Science , 18 , 555–562.
https://doi.org/10.1658/1100-9233(2007)18[555:ASBATS]2.0.CO;2
Thom, D., & Keeton, W. S. (2019). Stand structure drives disparities in
carbon storage in northern hardwood-conifer forests. Forest
Ecology and Management , 442 (November 2018), 10–20.
https://doi.org/10.1016/j.foreco.2019.03.053
Tilman, D. (1982). Resource competition and community structure .
Princeton University Press.
Tilman, D., Lheman, C. L., & Thomson, K. T. (1997). Plant diversity and
ecosystem productivity : Theoretical considerations. Proceedings
of the National Academy of Sciences , 94 , 1857–1861.
Vilà, M., Vayreda, J., Comas, L., Ibánez, J. J., Mata, T., & Obón, B.
(2007). Species richness and wood production: a positive association in
Mediterranean forests. Ecology Letters , 10 , 241–250.
https://doi.org/10.1111/j.1461-0248.2007.01016.x
Villéger, S., Mason, N. W. H., & Mouillot, D. (2008). New
multidimensional functional diversity indices for a multifaceted
framework in functional ecology. Ecology , 89 (8),
2290–2301. https://doi.org/10.1890/07-1206.1
Waide, R. B., Willig, M. R., Steiner, C. F., Mittelbach, G., Gough, L.,
Dodson, S. I., … Parmenter, R. (1999). The relationship between
productivity and species richness. Annual Review of Ecology and
Systematics , 30 , 257–300.
https://doi.org/10.1146/annurev.ecolsys.30.1.257
Wang, W., Lei, X., Ma, Z., Kneeshaw, D. D., & Peng, C. (2011). Positive
relationship between aboveground carbon stocks and structural diversity
in spruce-dominated forest stands in New Brunswick, Canada. Forest
Science , 57 (6), 506–515. https://doi.org/10.1111/oik.01525
Wasof, S., Lenoir, J., Hattab, T., Jamoneau, A., Gallet-Moron, E.,
Ampoorter, E., … Decocq, G. (2018). Dominance of individual plant
species is more important than diversity in explaining plant biomass in
the forest understorey. Journal of Vegetation Science ,29 (3), 521–531. https://doi.org/10.1111/jvs.12624
Wen, Z., Zheng, H., Smith, J. R., Zhao, H., Liu, L., & Ouyang, Z.
(2019). Functional diversity overrides community-weighted mean traits in
liking land-use intensity to hydrological ecosystem services.Science of the Total Environment , 682 , 583–590.
https://doi.org/10.1016/j.scitotenv.2019.05.160
Wilsey, B. J., & Potvin, C. (2000). Biodiversity and ecosystem
functioning: Importance of species evenness in an old field.Ecology , 81 (4), 887–892.
https://doi.org/10.1890/0012-9658(2000)081[0887:BAEFIO]2.0.CO;2
Wu, X., Wang, X., Tang, Z., Shen, Z., Zheng, C., Xia, X., & Fang, J.
(2015). The relationship between species richness and biomass changes
from boreal to subtropical forests in China. Ecography ,38 (6), 602–613. https://doi.org/10.1111/ecog.00940
Xu, W., Luo, W., Zhang, C., Zhao, X., von Gadow, K., & Zhang, Z.
(2019). Biodiversity-ecosystem functioning relationships of overstorey
versus understorey trees in an old-growth temperate forest. Annals
of Forest Science , 76 (3).
https://doi.org/10.1007/s13595-019-0845-8
Yachi, S., & Loreau, M. (2007). Does complementary resource use enhance
ecosystem functioning? A model of light competition in plant
communities. Ecology Letters , 10 , 54–62.
https://doi.org/10.1111/j.1461-0248.2006.00994.x
Yan, Y., Zhang, C., Wang, Y., Zhao, X., & Gadow, K. Von. (2015).
Drivers of seedling survival in a temperate forest and their relative
importance at three stages of succession. Ecology and Evolution ,5 (19), 4287–4299. https://doi.org/10.1002/ece3.1688
Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S.,
Lewis, S. L., … Chave, J. (2009). Data from: Towards a worldwide
wood economics spectrum. Dryad Digital Repository .
https://doi.org/10.5061/dryad.234
Zhang, Y., & Chen, H. Y. H. (2015). Individual size inequality links
forest diversity and above-ground biomass. Journal of Ecology ,103 , 1245–1252. https://doi.org/10.1111/1365-2745.12425