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Abstract: 11 

Interrogation of chromatin modifications, such as DNA methylation, has potential to 12 

improve forecasting and conservation of marine ecosystems. The standard method for assaying 13 

DNA methylation (Whole Genome Bisulfite Sequencing), however, is too costly to apply at the 14 

scales required for ecological research. Here we evaluate different methods for measuring DNA 15 

methylation for ecological epigenetics. We compare Whole Genome Bisulfite Sequencing 16 

(WGBS) with Methylated CpG Binding Domain Sequencing (MBD-seq), and a modified version of 17 

MethylRAD we term methylation-dependent Restriction site-Associated DNA sequencing 18 

(mdRAD). We evaluate these three assays in measuring variation in methylation across the 19 

genome, between genotypes, and between polyp types in the reef-building coral Acropora 20 

millepora. We find that all three assays measure absolute methylation levels similarly, with tight 21 

correlations for methylation of gene bodies (gbM), as well as exons and 1Kb windows. 22 

Correlations for differential gbM between genotypes were weaker, but still concurrent across 23 

assays. We detected little to no reproducible differences in gbM between polyp types. We 24 

conclude that MBD-seq and mdRAD are reliable cost-effective alternatives to WGBS. Moreover, 25 

the considerably lower sequencing effort required for mdRAD to produce comparable 26 

methylation estimates makes it particularly useful for ecological epigenetics. 27 

 28 
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Introduction: 32 

The alarming effects of climate change on marine environments have led to a growing interest 33 

in Ecological Epigenetics. This relatively new field, focused on the interrelationships between 34 

environment, epigenetic modification, gene expression, and phenotypic variation (Bossdorf et 35 

al. 2008), has potential to improve forecasting and conservation of marine ecosystems. For 36 

instance, epigenetic modifications are hypothesized to mediate phenotypic plasticity, a 37 

mechanism important for resilience to environmental change (Reusch 2013; Eirin-Lopez and 38 

Putnam 2019). In humans, individuals prenatally exposed to famine show persistent differences 39 

in DNA methylation at relevant genes alongside alterations in disease risk (Painter et al. 2005; 40 

Heijmans et al. 2008). There is evidence that effects may extend even to the grandchildren of 41 

those who experienced food shortage (Kaati et al. 2007). Evidence from other mammals adds 42 

further support for such intergenerational, and even transgenerational effects (Radford et al. 43 

2014; Irmler et al. 2020). In one remarkable case, traumatic olfactory conditioning in male mice 44 

was reported to produce epigenetic effects in F1s, and behavioral sensitivity even in F2s (Dias 45 

and Ressler 2014). Intergenerational effects and maternal effects have also been reported in 46 

plants (Feil and Fraga 2012), corals (Putnam and Gates 2015) and sea urchins (Wong et al. 2018; 47 

Strader et al. 2019; Wong et al. 2019). While such reports are exciting, it is important to 48 

maintain a reserved view on the overall importance of epigenetics for adaptation, especially as 49 

many published examples await independent replication (Horsthemke 2018) or have had 50 

attempts at replication fail to produce the same results (Irmler et al. 2020). 51 
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A notable feature found in plants and invertebrates is an association between gene body 52 

methylation (methylation of CpG sites within coding regions; gbM), and gene expression. In 53 

both groups, genes with gbM tend to be actively and stably expressed, whereas those without 54 

gbM tend toward less active, inducible expression (Zemach and Zilberman 2010; Sarda et al. 55 

2012; Takuno and Gaut 2012; Takuno and Gaut 2013; Dixon et al. 2014; Takuno et al. 2016). 56 

Although gbM does not systematically regulate gene expression in plants or animals (Bewick et 57 

al. 2016; Zilberman 2017; Bewick et al. 2018; Bewick et al. 2019; Harris et al. 2019; Choi et al. 58 

2020), comparisons between populations may still be ecologically informative. Indeed, in the 59 

coral Acropora millepora, comparative methylomics predicted fitness characteristics of 60 

transplanted corals better than either SNPs or gene expression (Dixon et al. 2018). The potential 61 

to predict fitness in novel conditions is especially important for conservation efforts involving 62 

outplanting individuals to maintain and rescue wild populations (van Oppen et al. 2015; van 63 

Oppen et al. 2017). Hence there is a need for cost-effective examination of chromatin 64 

modifications in ecological contexts. While chromatin marks such as histone modifications are 65 

undoubtedly important, DNA methylation is currently the easiest to measure, and the best-66 

studied (Hofmann 2017). 67 

Here, we use a model reef-building coral, Acropora millepora, to benchmark methods for 68 

assaying DNA methylation. Reef-building corals are prime candidates for the application of 69 

ecological epigenetics. They are exceptional both in their socio-ecological value, and sensitivity 70 

to anthropogenic change (Cesar 2000; Foden et al. 2013). As they are long-lived and sessile, 71 

they cannot migrate in response to suboptimal conditions, and must instead depend upon 72 
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plasticity. Using this system, we compare three assays for measuring DNA methylation: Whole 73 

Genome Bisulfite Sequencing (WGBS), Methylated CpG Binding Domain Sequencing (MBD-74 

seq)(Serre et al. 2009), and a modified version of the MethylRAD (Wang et al. 2015). WGBS, 75 

considered the gold standard for measuring DNA methylation, works by chemical conversion of 76 

unmethylated cytosines to uracils. Following PCR amplification, these bases are read as 77 

thymines. Hence, when mapped against a reference, fold coverage of reads indicating cytosine 78 

at a given site relative to fold coverage indicating thymines quantifies the rate at which the site 79 

was methylated in the original DNA isolation. MBD-seq works by capturing methylated DNA 80 

fragments with methyl-CpG-binding domains affixed to magnetic beads. This methodology has 81 

been used previously for ecological studies in A. millepora (Dixon et al. 2016; Dixon et al. 2018) 82 

and benchmarked against bisulfite sequencing in cultured embryonic stem cells (Harris et al. 83 

2010). MethylRAD selects for methylated DNA through the activity of methylation-dependent 84 

restriction enzymes. DNA is digested with these enzymes, producing sticky ends exclusively near 85 

methylated recognition sites that allow for adapter ligation and sequencing. Methylation is 86 

quantified based on resulting fold coverage within a given region. The original MethylRAD 87 

protocol involved size selection for short fragments that were cut on both sides of palindromic 88 

methylated recognition sequences (Wang et al. 2015). We have modified the protocol by size-89 

selecting for all digestion-derived fragments in the 170-700 bp range. The method is now 90 

conceptually similar to the genotyping by sequencing (GBS) protocol described in Elshire et al. 91 

(2011) and Andrews et al. (2016). To differentiate it from the original methylRAD, we refer to it 92 

as methylation-dependent Restriction site-Associated DNA sequencing (mdRAD). 93 
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With these three assays, we examine variation in methylation between genomic regions, 94 

between two polyp types (axial and radial), and between coral colonies (genotypes). We 95 

compare results from each assay to assess how consistently they measure methylation, and the 96 

optimal sequencing effort to maximize sensitivity while minimizing costs. 97 

 98 

Materials and Methods: 99 

Sample collection 100 

Two adult colonies of A. millepora were collected by SCUBA on November 25th, 2018, one from 101 

Northeast Orpheus (labeled N12), and one from Little Pioneer Bay (labeled L5), under the Great 102 

Barrier Reef Marine Park Authority permit G18/41245.1. Colonies were maintained in the same 103 

raceway with flow of unfiltered seawater for 22 days. Branches from each colony were 104 

submerged in 100% ethanol and immediately placed at -80°C for 48 hours. Samples were then 105 

maintained at -20 or on ice for approximately 48 hours during transport to the laboratory where 106 

they were again stored at -80°C until processing. 107 

 108 

DNA Isolation 109 

For each axial polyp sample, the very tips of four branches were cut off and pooled. For radial 110 

polyps, similar amounts of tissue were pooled from the sides of the same four branches. Tissue 111 

samples were lysed in Petri dishes with 2 ml of lysis buffer from an RNAqueous™ Total RNA 112 

Isolation Kit (cat no. AM1912). DNA was isolated using phenol:chloroform:isoamyl alcohol with 113 

additional purification using a Zymo DNA cleanup and concentrator kit (cat no. 114 
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D4011)(Supplemental Methods file). Isolations were quantified using a Quant-iT™ PicoGreen™ 115 

dsDNA Assay Kit (cat no. P7589). The same DNA isolations were used for each downstream 116 

methylation assay. We isolated three replicates from each genotype-tissue pairing, for a total of 117 

12 isolations (2 colonies, 2 tissues, 3 replicates per). In downstream analyses, we use treatment 118 

groups to refer to either coral colony (N12 vs L5), or polyp type (tip vs side). 119 

 120 

Whole genome bisulfite sequencing library preparation 121 

Whole genome bisulfite sequencing (WGBS) libraries were prepared using a Zymo Pico Methyl-122 

Seq Library Prep Kit (cat no. D5455). Each library was prepared from 100 ng of genomic DNA. 123 

For half the samples, we included 0.05 ng (0.05%) of λ phage standard DNA to estimate 124 

conversion efficiency. The final sample size was 8 (2 genotypes, 2 tissues, 2 replicates per; Table 125 

1). The 8 libraries were sequenced across four lanes on a Hiseq 2500 for single-end 50 bp reads 126 

at The University of Texas Austin Genome Sequencing and Analysis Facility (GSAF). Single-end 127 

sequencing was recommended in the Zymo Pico Methyl-Seq manual. 128 

 129 

mdRAD library preparation 130 

mdRAD libraries were prepared using a protocol based on Wang et al. (2015). Importantly, 131 

Wang et al. (2015) selected small sized fragments that had been cut on either end by the 132 

enzyme due to palindromic recognition sequences. Since in our hands the yield of the 133 

palindrome-derived product was very low, we instead sequenced any ligated fragments in the 134 

170-700 bp range. We also used different oligonucleotide sequences, designed for similarity to 135 
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those used in the current 2bRAD protocol (Table S1)(Dixon et al. 2015; Matz et al. 2018; Matz 136 

2019). A detailed version of the protocol used is included as a Supplemental Methods file. We 137 

prepared libraries using two different methylation-dependent endonucleases, FspE1 (NEB cat 138 

no. R0662S) and MspJ1 (NEB cat no. R0661S). For each library, we used 100 ng of genomic DNA 139 

as input. Digests were prepared with 0.4 units of endonuclease and the recommended amounts 140 

of enzyme activator solution and Cutsmart buffer (final volume = 15.0 µl) and incubated at 37°C 141 

for four hours. We then heated the digests to deactivate the enzymes for 20 minutes (at 80°C 142 

for FspE1 and 65°C for MspJ1). All ligations were prepared with 0.2 µM mdRAD 5ILL adapter, 0.2 143 

µM of the mdRAD 3ILLBC1 adapter, 800 units of T4 ligase, 1mM ATP (included in ligase buffer), 144 

and 10 µl of digested DNA (final volume = 20 µl). Ligations were incubated at 4°C overnight 145 

(approximately 12 hours). Ligase was then heat-inactivated by incubation at 65°C for 30 146 

minutes. Sequencing adapters and multiplex barcodes were then appended by PCR. Each PCR 147 

was prepared with 0.3 mM each dNTP, 0.15 µM of the appropriate ILL_Un primer, 0.15 µM of 148 

the appropriate ILL_BC primer, 0.2 µM of the p5 primer, 0.2 µM of the p7 primer, 1x Titantium 149 

taq buffer, 1x Titantium taq polymerase, and 7 µl of ligation (final volume = 20 µl)(Table S1). At 150 

this point in the protocol, all samples were distinguishable by the dual barcoding scheme. The 151 

concentration of each PCR product was quantified using PicoGreen™ dsDNA Assay Kit (cat no. 152 

P7589). Based on these concentrations, 200 ng of each product was combined into a final pool 153 

with approximate concentration of 32 ng/µl. A portion of this pool was then size selected for 154 

170 – 700 bp fragments using 2% agarose gel and purified using a QIAquick gel Extraction kit 155 

(cat no. 28704). After gel purification, the pool was sequenced with a single run on a NextSeq 156 
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500 for paired-end 75 bp reads at the University of Texas Genome Sequencing and Analysis 157 

Facility. The final number of libraries included in the pool was 24 (2 genotypes, 2 tissues, 2 158 

different restriction endonucleases, 3 replicates per combination; Table 1). As this methylation 159 

assay depends on fold coverage to infer methylation levels, single-end reads are a more cost-160 

effective approach. We opted for paired-end reads in this case only to ensure proper product 161 

structure for benchmarking purposes. 162 

 163 

MBD-seq library preparation 164 

MBD-seq libraries were prepared using a Diagenode MethylCap kit (cat no. C02020010) as 165 

described previously (Dixon et al. 2016; Dixon et al. 2018). Briefly, genomic DNA was sheared to 166 

a target size of 300 – 500 bp. Concentrations based on PicoGreen™ dsDNA assay on genomic 167 

DNA were assumed not to have changed during shearing. Because limited genomic DNA 168 

remained, we prepared these libraries from pools of genomic DNA for each genotype-tissue 169 

pair. Also due to limited genomic DNA, the two libraries for N12 tips were prepared using only 170 

0.565 μg as input. For the remaining libraries, half were prepared with 1 μg of input and the 171 

other half from 1.5 μg. During capture of methylated DNA, we retained the flow-through for 172 

sequencing, which we refer to at the unbound fraction. Captured methylated fragments were 173 

eluted from capture beads in one single total elution using High Elution Buffer. The final sample 174 

size was 8 (2 genotypes, 2 tissues, 2 replicates per; Table 1). After capture, fragment size was 175 

assessed using 1.5% agarose gels. The captured and unbound fractions both ranged between 176 

200 and 1000 bp. These fragments were submitted to the University of Texas Genome 177 
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Sequencing and Analysis Facility. Here the fragments were further sheared to a target size of 178 

400 bp. This additional shearing was done to ensure appropriate library sizes of 300 – 500 bp for 179 

sequencing. Libraries were prepared with a NEBNext Ultra II DNA Library Preparation Kit (cat no. 180 

E7645). Libraries were sequenced with a single run on a NextSeq 500 for single-end 75 bp reads. 181 

 182 

Whole genome bisulfite sequencing data processing 183 

Raw reads were trimmed and quality filtered using cutadapt, simultaneously trimming low-184 

quality bases from the 3’ end (-q 20) and removing reads below 30 bp in length (-m 30)(Martin 185 

2011). Trimmed reads were mapped to the A. millepora reference genome (Fuller et al. 2019) 186 

using Bismark v0.17.0 (Krueger and Andrews 2011) with adjusted mapping parameters (--187 

score_min L,0,-0.6) in --non_directional mode as indicated in the Pico Methyl-Seq Library Prep 188 

Kit manual. Methylation levels were extracted from the alignments using 189 

bismark_methylation_extractor with the --merge_non_CpG, --comprehensive, and --190 

cytosine_report arguments. At this point, CpG sites within the lambda DNA chromosome and 191 

the mitochondrial chromosome were set aside to assess conversion efficiency. Conversion 192 

efficiencies were estimated as the ratio of ‘unmethylated’ fold coverage (converted by bisulfite 193 

treatment) to all fold coverage summed across CpG sites in the lambda DNA and the host 194 

mitochondrial reference sequences. Detailed steps used to process the WGBS reads are 195 

available on the git repository (Dixon 2020). 196 

 197 

 198 
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MBD-seq data processing 199 

Raw reads were trimmed and quality filtered using cutadapt simultaneously trimming low-200 

quality bases from the 3’ end (-q 20) and removing reads below 30 bp in length (-m 30)(Martin 201 

2011). Trimmed reads were mapped to the A. millepora reference genome (Fuller et al. 2019) 202 

with bowtie2 using the --local argument (Langmead and Salzberg 2012). Alignments were sorted 203 

and indexed using samtools (Li et al. 2009), and PCR duplicates were removed using 204 

MarkDuplicates from Picard Toolkit (Broad Institute 2019). Fold coverage for different regions 205 

(eg. gene boundaries, exon boundaries, 1 Kb windows, etc.) was counted using multicov from 206 

BEDTools (Quinlan and Hall 2010). Detailed steps used to process the MBD-seq reads are 207 

available on the git repository (Dixon 2020). 208 

 209 

mdRAD data processing 210 

All mdRAD reads were expected to contain NNRWCC as the first six bases of the forward read, 211 

and ACAC as the first four bases of the reverse read (Table S1; Supplementary Methods 212 

Section). The degenerate NNRW sequence in the forward read allows for discrimination of PCR 213 

duplicates, as uniquely ligated digestion products are unlikely (1/64) to bear identical sequences 214 

for these four bases. With this in mind, we used a custom python script to filter out any reads 215 

for which the first 20 bp was duplicated in a previous read (ie a likely PCR duplicate). At the 216 

same time, all paired end reads were filtered to retain only those with the expected NNRWCC 217 

beginning to the forward read and ACAC in the reverse read. These non-template bases were 218 

trimmed, along with adapters and low-quality bases using cutadapt (Martin 2011). Trimmed 219 
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reads were mapped to the A. millepora reference genome (Fuller et al. 2019) with bowtie2 220 

using the --local argument (Langmead and Salzberg 2012). Alignments were sorted and indexed 221 

using samtools (Li et al. 2009). Fold coverage for different was counted using multicov from 222 

BEDTools (Quinlan and Hall 2010). Detailed steps used to process the mdRAD reads are available 223 

on the git repository (Dixon 2020). 224 

Designating of regions of interest 225 

Statistical analyses for all three assays were based on windows recorded in .bed files. These 226 

included genes, exons, upstream sequences, and tiled windows of varying sizes. Gene, exon, 227 

and upstream sequence boundaries were identified from the reference GFF file (Fuller et al. 228 

2019). Upstream sequences included 1 Kb upstream of each gene. These were intended to 229 

approximate promoter regions. Tiled windows were generated using makewindows from the 230 

BEDTools suite (Quinlan and Hall 2010). General statistics for these regions such as length, 231 

nucleotide content, and the number of CpGs, were extracted from the reference genome with a 232 

custom python script using SeqIO from Biopython (Cock et al. 2009). All downstream analyses of 233 

methylation level and differences between groups were based on these regions. 234 

 235 

Whole genome bisulfite statistical analysis 236 

Statistical analyses of WGBS data were conducted on the .cov files output from Bismark. 237 

Analysis was conducted only on CpG sites. Methylation level was calculated in several ways. The 238 

simplest metric was the overall fractional methylation, calculated as the number of methylated 239 

counts divided by all counts summed across CpGs within the region. 240 
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We report this as the % methylation on the log2 scale throughout the manuscript (eg Figure 1A). 241 

We calculated a similar metric using generalized logistic regression. Here the estimate of a 242 

region’s methylation level was the sum of the intercept and the region’s coefficient for a model 243 

of the probability of methylation given all methylated and unmethylated counts within the 244 

region. We also report the frequency of methylated CpGs, calculated as the number of 245 

methylated CpG sites divided by the total number of CpG sites within a region. We classified a 246 

CpG as methylated when the number of methylated counts was significantly greater than the 247 

null expectation with 0.01 error rate (binomial test; p-value < 0.05). We also calculated the ratio 248 

of methylated CpGs to the total length (bp). 249 

 Statistical analysis of differences in methylation between treatment groups (tissue type 250 

or colony) was done with the MethylKit package (Akalin et al. 2012). Filtering parameters 251 

supplied to the filterByCoverage() function were lo.count=5, and hi.perc=99.9. The function 252 

methylKit::unite() was run using min.per.group = 4, so that only sites with data from all samples 253 

in each treatment group passed. Methylation counts for particular regions were isolated using 254 

the appropriate .bed file, the Granges() function from the GenomicRanges package (Lawrence et 255 

al. 2013), and the regionCounts() function from MethylKit. 256 

 257 

MBD-seq statistical analysis 258 

Statistical analyses of MBD-seq data were conducted on the fold coverages output from 259 

BEDTools multicov. Methylation level was calculated based on the difference in fold coverage 260 

between the captured and unbound fractions taken during library preparation. We quantified 261 
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this using DESeq2 as the log2 fold change between the two fractions from a model including 262 

colony and polyp type as covariates (Love et al. 2014). Following previous studies (Dixon et al. 263 

2016; Dixon et al. 2018), we refer to this value as the MBD-score. We also calculated 264 

methylation level based on the fragments per kilobase per million reads (FPKM) from the 265 

captured fraction averaged across all samples. Differential methylation was also assessed using 266 

DESeq2. This was done in two ways, one using both the captured and unbound fractions, the 267 

other using only the captured fraction. Using both the captured and unbound fractions, the 268 

effect of treatment group was assessed as the interaction between treatment group and 269 

fraction. In other words, we assessed the effect of treatment group on the difference between 270 

the captured and unbound fractions. To assess methylation differences without using the 271 

unbound fraction, we simply compared fold coverages from the captured fraction between 272 

treatment groups with a model including the alternative grouping as a covariate. DESeq tests 273 

were run using fitType = ‘local’ and significance was assessed using Wald tests. 274 

 275 

mdRAD statistical analysis 276 

Statistical analyses of mdRAD data were conducted on the fold coverages output from BEDTools 277 

multicov. Methylation level was calculated as FPKM averaged across all samples, and as the 278 

fragments per recognition site per million reads. Methylation differences were calculated using 279 

DESeq2 comparing fold coverage between treatment groups while controlling for the restriction 280 

enzyme used and the other treatment group. DESeq tests were run using fitType = ‘local’ and 281 

significance was assessed using Wald tests. 282 
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Simulating reduced fold coverage 283 

To assess the importance of fold coverage for methylation statistics, we simulated reduced fold 284 

coverages for each of the three assays. For MBD-seq and mdRAD, this was done by sampling 285 

iteratively lower total counts with replacement weighted by the gene’s proportion of total read 286 

counts in the original dataset. To clarify, to simulate read reductions for 28188 genes for each 287 

sample, a vector of weights was generated by dividing each gene’s fold coverage by the total for 288 

the sample. A vector ranging from 1 to 28188 was then randomly sampled with replacement, 289 

with probabilities set by the weight vector. The number of times each value was sampled was 290 

then totaled to give each genes’ count in the simulated fold reduction. For WGBS, the trimmed 291 

fastq files were randomly sampled without replacement and all processing steps were repeated 292 

as indicated above. 293 

 294 

Statistical reporting 295 

Unless otherwise noted, we report significant results as those with false discovery corrected p-296 

values less than 0.1 (FDR < 0.1)(Benjamini and Hochberg 1995). Correlations are reported as 297 

Pearson correlations. All scripts for data processing and analysis in this study are available on 298 

GitHub: (Dixon 2020). 299 

 300 

  301 
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Results 302 

WGBS sequencing results 303 

Sequencing the WGBS libraries produced 954 million single-end reads across 8 samples (2 from 304 

each colony-tissue type pair; median = 120 million per sample). Trimming and quality filtering 305 

reduced the median to 119 million per sample. Mapping efficiency was 40% on average, with a 306 

median of 47 million mapped reads per sample. Conversion efficiency averaged 98.5 ± se 0.05% 307 

based on spiked in lambda DNA and 98.0 ± se 0.10% based on mitochondrial DNA. The overall 308 

percentage of mapped reads was 39% of raw reads. 309 

 310 

MBD-seq sequencing results 311 

Sequencing the MBD-seq libraries produced a total of 488 million single-end reads. These were 312 

divided across 8 samples each with two libraries (one captured and one unbound). Median read 313 

count for the captured and unbound libraries was 27.4 and 33.1 million respectively. Trimming 314 

and quality filtering removed 0.1% of reads. Mapping efficiency was 92% on average, with 315 

medians of 24.9 and 30.8 million reads for captured and unbound libraries respectively. PCR 316 

duplication rate was 12% on average, for final medians of 21.8 and 27.2 million mapped reads 317 

per sample for the captured and unbound fractions respectively. The final percentage of 318 

countable reads (passing all filters and properly mapped) was 78% of raw reads for captured 319 

libraries and 82% for unbound libraries. 320 

 321 

 322 
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mdRAD sequencing results 323 

Sequencing the mdRAD libraries produced a total of 284 million paired-end reads across 24 324 

libraries (3 replicates for each of the 4 colony-polyp type combinations each prepared with 2 325 

different restriction enzymes). These were filtered to include only reads with the appropriate 326 

adapter sequences found in both the forward and reverse directions (~71% of reads) and to 327 

remove PCR duplicates based on degenerate sequences incorporated into the forward read 328 

(average 13.5% duplication rate). On average 60% of raw reads passed both these filters (172 329 

million total passing reads). Trimming and quality filtering further reduced this by 0.2%, for 74 330 

million reads for Fspe1 libraries (median = 5.9 million per sample) and 98.5 million for the Mspj1 331 

libraries (median = 7.3 million per sample). Properly paired mapping efficiency averaged 77% 332 

and 66% for Fspe1 and Mspj1 libraries respectively, giving final median read counts of 4.6 and 333 

4.9 million reads per library. The final percentage of raw reads that passed all filters and 334 

properly mapped was thus 44% for Fspe1 and 42% for MspJ1. 335 

 336 

Estimating methylation level 337 

Measurements of absolute levels of gbM were consistent across assays. Each assay identified a 338 

bimodal distribution of gbM (Figure 1 A-C). Pearson correlations between assays were all 339 

greater than 0.8 (Figure 1 D-F). All three assays correlated negatively with the CpGo/e, with the 340 

strongest correlation for WGBS (Figure S1). Correlations similar to those for gbM were found for 341 

exons (Figure S2), 1 Kb windows (Figure S3), and upstream regions of coding sequences (1 Kb 342 

upstream from the gene boundary) (Figure S4). 343 
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The measures of gbM level shown in Figure 1 A-C were selected based on their simplicity 344 

and correlation between assays. Additional metrics of gbM level for WGBS, MBD-seq, and 345 

mdRAD are shown in figures (Figure S5; Figure S6; Figure S7). For WGBS, these included 346 

estimates based on logistic regression, the ratio of methylated CpGs to all CpGs, and ratio of 347 

methylated CpGs to gene length. Of these, all except ratio of methylated CpGs to gene length 348 

correlated roughly equivalently with the other two assays (Figure S5). For MBD-seq, metrics that 349 

did not include the unbound fraction (FPKM and a similar metric based on the number of CpGs) 350 

correlated poorly with other assays (Figure S6). Hence sequencing the unbound fraction is 351 

important for measuring absolute methylation level with MBD-seq. For mdRAD, the two 352 

restriction enzymes produced nearly equivalent results. mdRAD FPKM was more consistent with 353 

other assays than a similar metric based on the number of recognition sites (Figure S7). 354 

 355 

Methylation differences between groups 356 

Estimates of differential methylation between coral colonies were concordant between assays, 357 

but less so than methylation level. Each assay identified extensive differential methylation 358 

between the two colonies (Figure 2A-C). The number of significant differentially methylated 359 

genes (DMGs) detected with each assay reflected the sample sizes used, rather than overall 360 

sequencing effort (Table 1). mdRAD, with 24 libraries, identified the most, with 12,464 DMGs. 361 

MBD-seq, with 8 pairs of captured and flow-through libraries, identified the second most (6,347 362 

DMGs). WGBS, with 8 libraries, detected 4,395 DMGs. The overlap between these sets of DMGs 363 

is shown in Figure 3. Although it only used roughly 1/10th of the sequencing effort, a reduced 364 
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mdRAD dataset using only 8 libraries generated with FspE1 still identified 7407 DMGs (Figure 365 

S8). 366 

Despite variations between assays and statistical methods, estimates of methylation 367 

differences were positively correlated (Figure 2 D-F). MBD-seq correlated with the other two 368 

assays similarly (Pearson correlation = 0.39 and 0.41). mdRAD and WGBS were less correlated 369 

(Pearson correlation = 0.26). Correlations were stronger (0.31 – 0.55) when only methylated 370 

genes (> 3.1% methylation based on WGBS; Figure 1A) were considered. Similar results were 371 

found for differences between exons (Figure S9), 1 Kb windows (Figure S10), and upstream 372 

regions of coding sequences (Figure S11). Hence, estimates of methylation differences between 373 

colonies (genotypes) were noisy, but reproducible across assays. 374 

In contrast to differential methylation between colonies, differences between polyp 375 

types were weak, and not reproducible across assays. The number of significant differences was 376 

reversed compared to the colony comparison, with the most (169 DMGs) detected by WGBS, 377 

the second (12 DMGs) by MBD-seq, and the least (1 DMG) by mdRAD (Figure S12). There was no 378 

overlap in significant calls between assays. Difference estimates based on WGBS showed no 379 

correlation with the other two assays (Pearson correlation between 0.01 and 0.02). MBD-seq 380 

and mdRAD correlated weakly 0.2 (Figure S12). 381 

 382 

Spatial precision 383 

Correlations between assays were generally robust across window sizes. For each assay, we 384 

calculated methylation level, as well as methylation differences between the two colonies for 385 
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tiled windows of varying sizes: (100bp, 500bp, 1Kb, 5Kb, and 10Kb). Correlations between 386 

assays were generally consistent across window sizes, both for methylation level and 387 

methylation differences (Figure 4). As with gbM, correlations for methylation level were 388 

stronger (2-4 fold) than those for methylation differences. Hence, for the coral genome, MBD-389 

seq and mdRAD reproducibly agree with the single-nucleotide measures from WGBS even 390 

across small regions. 391 

 392 

Effect of fold coverage on detecting methylation differences 393 

Given the importance of reducing sequencing costs for ecological epigenetics, we sought to 394 

evaluate the importance of sequencing effort for each assay in estimating methylation statistics. 395 

To do this, we simulated reduced sequencing effort by random resampling of fold coverage 396 

from the datasets. We then re-calculated estimates of methylation level and methylation 397 

differences from the reduced sets. As we detected no reproducible differences between polyp 398 

types (Figure S12), we focused on differences between colonies (genotype). 399 

For estimates of absolute levels of gbM, fold coverage appeared to matter very little. We 400 

found that correlation between assays plateaued between 0.75 and 0.80 with roughly 20% of 401 

the original sequencing effort (Figure S13). Although lower, correlation of gbM differences also 402 

plateaued with relatively little sequencing effort (Figure 4A-C). Hence correlation between 403 

assays was sensitive only to severe reductions in fold coverage. Moreover, increasing fold 404 

coverage appeared unlikely to improve correlations between assays. 405 
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Detecting significant DMGs in contrast, was more dependent on fold coverage. For the 406 

sake of comparability, here we reduced the mdRAD dataset to just eight libraries prepared with 407 

the FspE1 enzyme. To illustrate the importance of fold coverage for statistical significance, we 408 

plotted the proportion of DMGs detected by at least two of the assays (all overlapping regions 409 

in figure 3) that were also detected with each read reduction (‘any 2’ trace in Figure 4 D-F). 410 

Given its similarity to the sensitivity metric used to evaluate classification models, we refer to 411 

this statistic as comparative sensitivity. For a more stringent test of sensitivity, we also 412 

computed this value based on DMGs detected in each of the alternative assays (‘alt. 2’ in Figure 413 

4 D-F). Based on this analysis, it appeared that increasing sequencing effort would have 414 

returned many more DMGs for WGBS, somewhat more for MBD-seq and relatively few more for 415 

mdRAD. We also assessed how often DMG calls by each assay were corroborated by the other 416 

assays. Here we computed comparative precision as the proportion of DMGs from a given 417 

reduction that were also significant for at least two of the assays’ full datasets (‘any 2’ in Figure 418 

4G-I). For greater stringency, this was also computed based on significance in the two 419 

alternative assays. Corroboration rates were slightly higher for WGBS DMGs, but generally 420 

similar for all three assays. When we repeated the analysis using the full mdRAD dataset (which 421 

still used less overall sequencing; Table1), mdRAD detected many more corroborated 422 

differences, with only slightly lower comparative precision (Figure S14). In summary, mdRAD 423 

can identify reproducible differences in methylation with sensitivity and precision comparable 424 

to MBD-seq and WGBS with relatively little fold coverage. 425 

 426 
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 Discussion: 427 

Here we present a benchmarking study of methods for assaying DNA methylation for ecological 428 

epigenetics in a marine invertebrate. We found that all three assays measure methylation level 429 

consistently, with a minimum correlation of 0.8 for gbM (Figure 1). Analysis of differential 430 

methylation was less consistent, but still indicated reproducible differences between coral 431 

colonies (Figure 2). Surprisingly, we found no such reproducible differences between polyp 432 

types (branch tips compared to branch sides; Figure S12). It is interesting to note that in this 433 

case WGBS identified 169 DMGs, none of which were detected by the other assays. This may 434 

reflect greater sensitivity of WGBS, however, since the other assays identified more of the 435 

reproducible differences between genotypes (Figure 2; Figure S13D-F), greater sensitivity seems 436 

unlikely. Given the extensive transcriptional differences between axial and radial polyps 437 

(Hemond et al. 2014), the absence of reproducible methylation differences between them 438 

suggests that variation in gbM is not involved for tissue-specific gene regulation in corals. This 439 

result adds to growing evidence that gbM does not directly regulate gene expression in 440 

invertebrates (Zilberman 2017; Bewick et al. 2018; Harris et al. 2019). 441 

 Simulating reduced sequencing effort for each assay showed that fold coverage is most 442 

important in the context of statistical significance. While the number of corroborated DMGs 443 

dropped steeply with fold coverage (Figure 4 D-F), correlations between assays were relatively 444 

stable (Figure 4 A-C; Figure S8). This suggests that adding a second assay to a methylomic 445 

experiment can provide valuable corroboration even with relatively little sequencing effort. This 446 

approach could also potentially prevent spurious conclusions. For instance, here we detected no 447 
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reproducible differences in gbM between polyp types, a conclusion distinct from the one we 448 

would have drawn from WGBS alone (over 150 DMGs). Based on these results, we suggest an 449 

experimental strategy that uses high fold coverage for one assay to obtain statistical significance 450 

and low coverage from one or more other assays for corroboration. For instance, mdRAD could 451 

be used to sequence a large number of individuals to identify significant differences, with 452 

WGBS, MBD-seq, or both applied with relatively lower coverage for confirmation. 453 

To conclude, MBD-seq and mdRAD are cost effective alternatives to WGBS, providing 454 

consistent estimates of methylation level and similar or greater sensitivity to methylation 455 

differences at lower library preparation and sequencing costs. The considerably lower 456 

sequencing effort required for mdRAD makes it particularly promising for the large sample sizes 457 

needed for ecological epigenetics. 458 
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Tables and Figures: 633 
 634 
Table 1: Sample and library information 635 

Assay 
Treatment 

groups 
Replicates samples 

Library 
types 

Total 
Libraries 

Raw 
reads 

Final aligned 
reads 

WGBS1 4 2 8 1 8 9.54E+08 3.73E+08 

MBD-seq2 4 2 8  2* 16 4.88E+08 3.94E+08 

mdRAD 4 3 12   2** 24 2.85E+08 1.23E+08 
 636 
1Zymo Picomethyl Kit 637 
2Diagenode Methylcap Kit 638 
3Both captured and unbound fractions were sequenced 639 
4Separate libraries prepared with Fspe1 and Mspj1 640 
  641 
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642 
Figure 1: Correlation of gbM level estimates from each assay. (A-C) Histograms of gbM level. (A) 643 
WGBS. Axis is on the log scale. (B) MBD-seq. MBD-score refers to the log2 fold difference 644 
between the captured (methylated) and unbound (unmethylated) fractions from the library 645 
preparation. (C) mdRAD. Plot shows log2 FPKM from combined reads from both enzymes. (D-E) 646 
Scatterplots of methylation level estimates from each assay. Pearson correlations are indicated 647 
in the top left. 648 
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650 
Figure 2: Correlation of gbM difference estimates between two coral colonies (genotypes). (A-C) 651 
Volcano plots illustrating differential gbM for the indicated assay. Red points indicate significant 652 
genes (FDR < 0.1). The number of biological samples, libraries, total number of filtered and 653 
aligned reads, and the number of significant and nonsignificant genes is given in the subtitle for 654 
each panel. (D-F) Scatterplots of gbM difference estimates for the indicated assays. Pearson 655 
correlations are indicated in the top left. 656 
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 658 

Figure 3: Venn diagram showing overlap of differentially methylated genes detected with each 659 
assay. 660 
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664 
Figure 4: Effect of window size on correlations between assays. Each panel indicates 665 
comparisons for one of the assays. Colors indicate the comparison assay. Solid lines indicate 666 
correlation of estimates of methylation level for the windows. Dotted lines indicate correlation 667 
for estimates of differential methylation between coral colonies. 668 
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 670 

Figure 5: Effect of simulated read reductions on estimates of methylation differences between coral colonies. 671 
Columns are assigned to the three assays. Rows are assigned to statistics measuring agreement between assays. 672 
Each data point represents a simulated reduction in fold coverage. (A-C) Pearson correlation between assays as fold 673 
coverage is reduced. (D-F) Sensitivity of each assay in detecting significant differences (FDR < 0.1) detected by other 674 
assays. For each reduction in fold coverage, comparative sensitivity is computed as the number of significant genes 675 
shared with the comparison divided the total significant genes for the comparison. Comparisons include any 2: 676 
genes that were significant in any 2 assays; alt. 2: genes that were significant for both the alternative assays (G-I) 677 
Precision of each assay in detecting only significant differences (FDR < 0.1) also detected by other assays. For each 678 
reduction in fold coverage, comparative precision is computed as the number of significant genes shared with the 679 
comparison divided the total significant genes for the fold reduction. Read counts on the X axis refer to the total 680 
number of reads included in the final filtered alignment file, hence mapping efficiencies and PCR duplication rates 681 
should be accounted for when deciding on total sequencing effort. 682 


