References
(1) N. A. I. Watson, J. A. Black, T. M. Stonelake, P. J. Knowles, J. M.
Beames, An Extended Computational Study of Criegee Intermediate -
Alcohol Reactions, J. Phys. Chem. A. 123 (2019) 218-229.
(2) C. C. Womack, M.-A. Martin-Drumel, G. G. Brown, R. W. Field, M. C.
McCarthy, Observation of the Simplest Criegee Intermediate
CH2OO in the Gas-Phase Ozonolysis of Ethylene. Sci. Adv.
1 (2015) e1400105.
(3) R. Asatryan, J. W. Bozzelli, Formation of a Criegee Intermediate in
the Low-Temperature Oxidation of Dimethyl Sulfoxide. Phys. Chem. Chem.
Phys. 10 (2008) 1769–1780.
(4) Y. Changa, H. Chang, J. J Lina, Kinetics of the simplest Criegee
intermediate reaction with ozone studied by mid-infrared quantum cascade
laser spectrometer, Phys. Chem. Chem. Phys. 20 (2018)
97-102.
(5) R. Criegee, Mechanism of Ozonolysis. Angew. Chem. Int.
Ed. 14 (1975) 745-752.(6) C. A. Taatjes, D. E. Shallcross, C. J.
Percival, Research frontiers in the chemistry of Criegee intermediates
and tropospheric ozonolysis, Phys. Chem. Chem. Phys., 16 (2014) 1704.
(7) D. L. Osborn, C. A. Taatjes, The physical chemistry of Criegee
intermediates in the gas phase, Int. Rev. Phys. Chem. , 34 (2015)
309. (8) P.-L. Luo, C. –A. Chung, Y. –P. Lee, Rate coefficient of the
reaction CH2OO + NO2 probed with a
quantum cascade laser near 11 µm, Phys. Chem. Chem. Phys. 21
(2019) 17578-17583.
(9) M. Svanberg, J. B. C. Pettersson, K. Bolton, J. Phys. Chem. A. 104
(2000) 5787-5798.
(10)(a) M. A. Tolbert, M. A. Science. 272 (1996) 1597. (b) T. Peter,
Annu. ReV. Phys. Chem. 48 (1997) 785. (c) J. Schreiner, C. Voigt, A.
Kohlmann, F. Arnold, K. Mauersberger, N. Larsen, Science. 283 (1999)
968.
(11) L. Vereecken, The Reaction of Criegee Intermediates with Acids and
Enols, Phys. Chem. Chem. Phys. , 19 (2017) 28630.
(12) O. Welz, A. J. Eskola, L. Sheps, B. Rotavera, J. D. Savee, A. M.
Scheer, D. L. Osborn, D. Lowe, A. M. Booth, P. Xiao, M. Anwar, H. Khan,
C. J. Percival, D. E. Shallcross, C. A. Taatjes, Rate Coefficients of C1
and C2 Criegee Intermediate Reactions with Formic and Acetic Acid Near
the Collision Limit: Direct Kinetics Measurements and Atmospheric
Implications; Angew. Chem. Int. Ed., 126 (2014) 4635–4638.
(13) M. Sipilä, T. Jokinen, T. Berndt, S. Richters, R. Makkonen, N. M.
Donahue, R. L. Mauldin, T. Kurtén, P. Paasonen, N. Sarnela, M. Ehn, H.
Junninen, M. P. Rissanen, J. Thornton, F. Stratmann, H. Herrmann, D. R.
Worsnop, M. Kulmala, V. M. Kerminen, T. Petäjä, Reactivity of stabilized
Criegee intermediates (sCIs) from isoprene and monoterpeneozonolysis
toward SO2 and organic acids, Atmos. Chem. Phys. , 14 (2014)
12143–12153.
(14) R. Chhantyal-Pun, M. R. McGillen, J. M. Beames, M. A. H. Khan, C.
J. Percival, D. E. Shallcross, A. J. Orr-Ewing, Temperature Dependence
of the Rates of Reaction of Trifluoroacetic Acid with Criegee
Intermediates. Angew. Chem. Int. Ed. , 56 (2017) 9044–9047.
(15) E. S. Foreman, K. M. Kapnas, C. Murray, Reactions between Criegee
Intermediates and the Inorganic Acids HCl and HNO3 : Kinetics and
Atmospheric Implications, Angew. Chem. Int. Ed., 55 (2016)
10419-10422
(16) L. Vereecken, H. Harder, A. Novelli, The reactions of Criegee
intermediates with alkenes, ozone, and carbonyl oxides. Phys. Chem.
Chem. Phys., 16 (2014) 4039–4049.
(17) L. Vereecken, H. Harder, A. Novelli, The reaction of Criegee
intermediates with NO, RO2, and SO2, and
their fate in the atmosphere, Phys. Chem. Chem. Phys. , 14 (2012)
14682–14695.
(18) M. Wang, L. Yao, J. Zheng, X. Wang, J. Chen, X. Yang, D. R.
Worsnop, N. M. Donahue and L. Wang,Reactions of Atmospheric Particulate
Stabilized Criegee Intermediates Lead to High-Molecular-Weight Aerosol
Components. Environ. Sci. Technol. , 50 (2016) 5702–5710.
(19) L. Yao, Y. Ma, L. Wang, J. Zheng, A. Khalizov, M. Chen, Y. Zhou, L.
Qi, F. Cui, Atmos. Environ. , 94 (2014) 448–457.
(20) D. Johnson, G. Marston, The Gas-Phase Ozonolysis of Unsaturated
Volatile Organic Compounds in the Troposphere. Chem. Soc. Rev. 37 (2008)
699–716.
21. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215.
22. S. Dapprich, I. Komaromi, K. S. Byun, K. Morokuma, M. J. Frisch, J.
Mol. Struct. (Theochem) 461-462 (1999) 1-21. (b) L. W. Chung, W. M. C.
Sameera, R. Ramozzi, A. J. Page, M. Hatanaka, G. P. Petrova, T. V.
Harris, X. Li, Z. Ke, F. Liu, H. Li, L. Ding, K. Morokuma, Chem.
Rev. 115 (2015) 5678-5796.
23. Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V.
Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V.
Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P.
Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D.
Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A.
Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,
G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.
Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro,
M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N.
Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.
P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M.
Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K.
Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc.,
Wallingford CT, 2016.