REFERENCES
Ahmed, T., Noman, M.,
Gardea-Torresdey, J. L., White, J. C., & Li, B. (2023). Dynamic
interplay between nano-enabled agrochemicals and the plant-associated
microbiome. Trends in Plant Science, 28 (11), 1310-1325.
Ainsworth, E. A., & Long, S. P. (2021). 30 years of free‐air carbon
dioxide enrichment (FACE): What have we learned about future crop
productivity and its potential for adaptation? Global Change
Biology, 27 (1), 27-49.
Allsup, C. M., George, I., & Lankau, R. A. (2023). Shifting microbial
communities can enhance tree tolerance to changing climates.Science, 380 , 835-840.
Andrić, S., Meyer, T., Rigolet, A., Prigent-Combaret, C., Höfte, M.,
Balleux, G., . . . McCann, A. (2021). Lipopeptide interplay mediates
molecular interactions between soil Bacilli and Pseudomonads.Microbiology Spectrum, 9 , e02038-02021.
Arnault, G., Mony, C., & Vandenkoornhuyse, P. (2023). Plant microbiota
dysbiosis and the Anna Karenina Principle. Trends Plant Science,
28 , 18-30.
Awasthi, A. Field-specific microbial consortia are feasible: A response
to Kaminsky et al. (2019). Trends in Biotechnology, 37 , 569-572.
Bai, B., Liu, W., Qiu, X., Zhang, J., Zhang, J., & Bai, Y. (2022). The
root microbiome: Community assembly and its contributions to plant
fitness. Journal of Integrative Plant Biology, 64 , 230-243.
Baldrian, P., López-Mondéjar, R., & Kohout, P. (2023). Forest
microbiome and global change. Nature Reviews Microbiology ,21 , 487–501.
Banerjee, S., & van der Heijden, M. G. (2023). Soil microbiomes and one
health. Nature Reviews Microbiology, 21 , 6-20.
Bazany, K. E., Wang, J. T., Delgado-Baquerizo, M., Singh, B. K., &
Trivedi, P. (2022). Water deficit affects inter-kingdom microbial
connections in plant rhizosphere. Environmental Microbiology
24 (8), 3722-3734.
Bradáčová, K., Florea, A. S., Bar-Tal, A., Minz, D., Yermiyahu, U.,
Shawahna, R., . . . Dietel, K. (2019). Microbial consortia versus
single-strain inoculants: an advantage in PGPM-assisted tomato
production? Agronomy, 9 (2), 105.
Bravo, A., Brands, M., Wewer, V., Dormann, P., & Harrison, M. J.
(2017). Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune
lipid biosynthesis to promote development of arbuscular mycorrhiza.New Phytologist, 214 (4), 1631-1645. doi:10.1111/nph.14533
Cawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., & Ongena,
M. (2015). Lipopeptides as main ingredients for inhibition of fungal
phytopathogens by Bacillus subtilis /amyloliquefaciens .Microbial Biotechnology, 8 (2), 281-295.
Chakraborty, S., Driscoll, H. E., Abrahante, J. E., Zhang, F., Fisher,
R. F., & Harris, J. M. (2021). Salt stress enhances early symbiotic
gene expression in Medicago truncatula and induces a
stress-specific set of Rhizobium -responsive genes.Molecular Plant Microbe Interactions, 34 (8), 904-921.
Chan, C. (2022). Establishing AM symbiosis: Letting friends stay only
when you need their gifts. In: Oxford University Press.
Chen, Q. L., Hu, H. W., He, Z. Y., Cui, L., Zhu, Y. G., & He, J. Z.
(2021). Potential of indigenous crop microbiomes for sustainable
agriculture. Nature Food, 2 (4), 233-240.
Choi, J., Lee, T., Cho, J., Servante, E. K., Pucker, B., Summers, W., .
. . Paszkowski, U. (2020). The negative regulator SMAX1 controls
mycorrhizal symbiosis and strigolactone biosynthesis in rice.Nature Communications, 11 (1), 2114.
Das, D., Paries, M., Hobecker, K., Gigl, M., Dawid, C., Lam, H.-M., . .
. Gutjahr, C. (2022). PHOSPHATE STARVATION RESPONSE transcription
factors enable arbuscular mycorrhiza symbiosis. Nature
Communications, 13 (1), 1-12.
de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O., &
Williams, A. (2020). Harnessing rhizosphere microbiomes for
drought-resilient crop production. Science, 368 (6488), 270-274.
Del Cerro, P., Cook, N. M., Huisman, R., Dangeville, P., Grubb, L. E.,
Marchal, C., . . . Charpentier, M. (2022). Engineered CaM2 modulates
nuclear calcium oscillation and enhances legume root nodule symbiosis.Proceedings of the National Academy of Sciences USA, 119 (13),
e2200099119.
Deng, S., Caddell, D. F., Xu, G., Dahlen, L., Washington, L., Yang, J.,
& Coleman-Derr, D. (2021). Genome wide association study reveals plant
loci controlling heritability of the rhizosphere microbiome. The
ISME Journal, 15 (11), 3181-3194.
Dey, M., & Ghosh, S. (2022). Arbuscular mycorrhizae in plant immunity
and crop pathogen control. Rhizosphere , 100524.
Dong, J., Gruda, N., Lam, S. K., Li, X., & Duan, Z. (2018). Effects of
elevated CO2 on nutritional quality of vegetables: a review.Frontiers in Plant Science, 9 , 924.
El Ghachtouli, N., Martin-Tanguy, J., Paynot, M., & Gianinazzi, S.
(1996). First report of the inhibition of arbuscular mycorrhizal
infection of Pisum sativum by specific and irreversible
inhibition of polyamine biosynthesis or by gibberellic acid treatment.FEBS Letters, 385 (3), 189-192.
Escudero-Martinez, C., & Bulgarelli, D. (2023). Engineering the crop
microbiota through host genetics. Annual Review of Phytopathology,
61 , 257-277.
Escudero-Martinez, C., Coulter, M., Alegria Terrazas, R., Foito, A.,
Kapadia, R., Pietrangelo, L., . . . Morris, J. (2022). Identifying plant
genes shaping microbiota composition in the barley rhizosphere.Nature Communications, 13 (1), 3443.
Farvardin, A., González-Hernández, A., Llorens, E., García-Agustín, P.,
Scalschi, L., & Vicedo, B. (2020). The apoplast: a key player in plant
survival. Antioxidants (Basel) 9 (7): 604. In.
Fichman, Y., Rowland, L., Oliver, M. J., & Mittler, R. (2023). ROS are
evolutionary conserved cell-to-cell stress signals. Proceedings of
the National Academy of Sciences USA 120 (31), e2305496120.
Fichman, Y., Zandalinas, S. I., Peck, S., Luan, S., & Mittler, R.
(2022). HPCA1 is required for systemic reactive oxygen species and
calcium cell-to-cell signaling and plant acclimation to stress.The Plant Cell, 34 (11), 4453-4471.
Fitzpatrick, C. R., Copeland, J., Wang, P. W., Guttman, D. S., Kotanen,
P. M., & Johnson, M. T. (2018). Assembly and ecological function of the
root microbiome across angiosperm plant species. Proceedings of
the National Academy of Sciences, 115 (6), E1157-E1165.
Floss, D. S., Levesque-Tremblay, V., Park, H. J., & Harrison, M. J.
(2016). DELLA proteins regulate expression of a subset of AM
symbiosis-induced genes in Medicago truncatula . Plant
Signaling Behaviour, 11 (4), e1162369.
Gao, C., Montoya, L., Xu, L., Madera, M., Hollingsworth, J., Purdom, E.,
. . . Dahlberg, J. A. (2020). Fungal community assembly in
drought-stressed sorghum shows stochasticity, selection, and universal
ecological dynamics. Nature Communications, 11 (1), 34.
Gao, Y., & Cabrera Serrenho, A. (2023). Greenhouse gas emissions from
nitrogen fertilizers could be reduced by up to one-fifth of current
levels by 2050 with combined interventions. Nature Food, 4 (2),
170-178.
Ghatak, A., Chaturvedi, P., Waldherr, S., Subbarao, G. V., & Weckwerth,
W. (2023). PANOMICS at the interface of root-soil microbiome and BNI.Trends in Plant Science, 28 (1), 106-122.
Godara, H., & Ramakrishna, W. (2023). Endophytes as nature’s gift to
plants to combat abiotic stresses. Letters in Applied
Microbiology, 76 (2), ovac067.
Gutjahr, C., Gobbato, E., Choi, J., Riemann, M., Johnston, M. G.,
Summers, W., . . . Paszkowski, U. (2015). Rice perception of symbiotic
arbuscular mycorrhizal fungi requires the karrikin receptor complex.Science, 350 (6267), 1521-1524.
Gysel, K., Laursen, M., Thygesen, M. B., Lironi, D., Bozsoki, Z.,
Hjuler, C. T., . . . Andersen, K. R. (2021). Kinetic proofreading of
lipochitooligosaccharides determines signal activation of symbiotic
plant receptors. Proceedings of the National Academy of Sciences
USA, 118 (44).
He, C., Gao, H., Wang, H., Guo, Y., He, M., Peng, Y., & Wang, X.
(2021). GSK3-mediated stress signaling inhibits legume-rhizobium
symbiosis by phosphorylating GmNSP1 in soybean. Molecuar Plant,
14 (3), 488-502.
He, D., Singh, S. K., Peng, L., Kaushal, R., Vilchez, J. I., Shao, C., .
. . Zhang, H. (2022). Flavonoid-attracted Aeromonas sp. from the
Arabidopsis root microbiome enhances plant dehydration resistance.The ISME Journal, 16 (11), 2622-2632.
He, J., Zhang, C., Dai, H., Liu, H., Zhang, X., Yang, J., . . . Wang, E.
(2019). A LysM Receptor Heteromer Mediates Perception of Arbuscular
Mycorrhizal Symbiotic Signal in Rice. Molecular Plant, 12 (12),
1561-1576.
He, X., Zhang, Q., Li, B., Jin, Y., Jiang, L., & Wu, R. (2021). Network
mapping of root–microbe interactions in Arabidopsis thaliana. npj
Biofilms and Microbiomes, 7 (1), 72.
Heck, C., Kuhn, H., Heidt, S., Walter, S., Rieger, N., & Requena, N.
(2016). Symbiotic fungi control plant root cortex development through
the novel GRAS transcription factor MIG1. Current Biology,
26 (20), 2770-2778.
Hestrin, R., Kan, M., Lafler, M., Wollard, J., Kimbrel, J. A., Ray, P.,
. . . Pett-Ridge, J. (2022). Plant-associated fungi support bacterial
resilience following water limitation. The ISME Journal, 16 (12),
2752-2762.
Hoff, G., Arguelles Arias, A., Boubsi, F., Pršić, J., Meyer, T.,
Ibrahim, H. M., . . . Franzil, L. (2021). Surfactin stimulated by pectin
molecular patterns and root exudates acts as a key driver of the
Bacillus-plant mutualistic interaction. MBio, 12 (6),
e01774-01721.
Hone, H., Mann, R., Yang, G., Kaur, J., Tannenbaum, I., Li, T., . . .
Sawbridge, T. (2021). Profiling, isolation and characterisation of
beneficial microbes from the seed microbiomes of drought tolerant wheat.Scientific Reports, 11 (1), 11916.
Huisman, R., & Geurts, R. (2020). A roadmap toward engineered
nitrogen-fixing nodule symbiosis. Plant Communications, 1 (1).
Hussain, M., Zahra, N., Lang, T., Zain, M., Raza, M., Shakoor, N., . . .
Zhou, H. (2023). Integrating nanotechnology with plant microbiome for
next-generation crop health. Plant Physiology and Biochemistry,
196 , 703-711.
Irving, T. B., Chakraborty, S., Ivanov, S., Schultze, M., Mysore, K. S.,
Harrison, M. J., & Ane, J. M. (2022). KIN3 impacts arbuscular
mycorrhizal symbiosis and promotes fungal colonisation in Medicago
truncatula . The Plant Journal, 110 (2), 513-528.
Jiang, F., Zhang, L., Zhou, J., George, T. S., & Feng, G. (2021).
Arbuscular mycorrhizal fungi enhance mineralisation of organic
phosphorus by carrying bacteria along their extraradical hyphae.New Phytologist, 230 (1), 304-315.
Jiang, M., Delgado-Baquerizo, M., Yuan, M. M., Ding, J., Yergeau, E.,
Zhou, J., . . . Liang, Y. (2023). Home-based microbial solution to boost
crop growth in low-fertility soil. New Phytologist, 239, 752-765.
Jiang, Y., Xie, Q., Wang, W., Yang, J., Zhang, X., Yu, N., . . . Wang,
E. (2018). Medicago AP2-Domain Transcription Factor WRI5a Is a Master
Regulator of Lipid Biosynthesis and Transfer during Mycorrhizal
Symbiosis. Molecular Plant, 11 , 1344-1359.
Jin, Y., Liu, H., Luo, D., Yu, N., Dong, W., Wang, C., . . . Wang, E.
(2016). DELLA proteins are common components of symbiotic rhizobial and
mycorrhizal signalling pathways. Nature Communications, 7 , 12433.
Kameoka, H., & Gutjahr, C. (2022). Functions of lipids in development
and reproduction of arbuscular mycorrhizal fungi. Plant Cell
Physiology, 63 , 1356-1365.
Kaminsky, L.M., Trexler, R., Malik, R.J., Hockett, K.L., Bell, T.H.
(2019) The inherent conflicts in developing soil microbial inoculantsTrends in Biotechnology, 37 , 140-151.
Ke, J., Wang, B., Yoshikuni, Y., (2021) Microbiome engineering:
Synthetic biology of plant-associated microbiomes in sustainable
agriculture. Trends in Biotechnology, 39 , 244-261.
Kelly, S., Radutoiu, S., & Stougaard, J. (2017). Legume LysM receptors
mediate symbiotic and pathogenic signalling. Current Opinion in
Plant Biology, 39 , 152-158.
Khan, A., Wadood, S. F., Chen, M., Wang, Y., Xie, Z. P., & Staehelin,
C. (2022). Effector-triggered inhibition of nodulation: A rhizobial
effector protease targets soybean kinase GmPBS1-1. Plant
Physiology 189 , 2382-2395.
Kim, B., Westerhuis, J. A., Smilde, A. K., Flokova, K., Suleiman, A. K.
A., Kuramae, E. E., . . . Zancarini, A. (2022). Effect of strigolactones
on recruitment of the rice root-associated microbiome. FEMS
Microbiological Ecology, 98 .
Lei, Z., Ding, Y., Xu, W., & Zhang, Y. (2023). Microbial Community
Structure in rice rhizosheaths under drought stress. Journal of
Plant Ecology, 16 (5), rtad012.
Li, H., La, S., Zhang, X., Gao, L., & Tian, Y. (2021). Salt-induced
recruitment of specific root-associated bacterial consortium capable of
enhancing plant adaptability to salt stress. The ISME Journal,
15 , 2865-2882.
Li, J., Yuan, D., Wang, P., Wang, Q., Sun, M., Liu, Z., . . . Zhang, B.
(2021). Cotton pan-genome retrieves the lost sequences and genes during
domestication and selection. Genome Biology, 22 , 1-26.
Liao, D., Sun, C., Liang, H., Wang, Y., Bian, X., Dong, C., . . . Chen,
A. (2022). SlSPX1-SlPHR complexes mediate the suppression of arbuscular
mycorrhizal symbiosis by phosphate repletion in tomato. The Plant
Cell, 34 , 4045-4065.
Liu, H. B., Li, X., Cai, J., Jiang, L. L., Zhang, X., Wu, D., . . . Yu,
F. (2023). A screening of inhibitors targeting the receptor kinase
FERONIA reveals small molecules that enhance plant root immunity.Plant Biotechnology Journal 21 , 63-77.
Liu, J., Wang, T., Qin, Q., Yu, X., Yang, S., Dinkins, R. D., . . . Zhu,
H. (2022). Paired Medicago receptors mediate broad-spectrum resistance
to nodulation by Sinorhizobium meliloti carrying a species-specific
gene. Proceedings of the National Academy of Sciences of the USA,
119 , e2214703119.
Liu, Y., Shu, X., Chen, L., Zhang, H., Feng, H., Sun, X., . . . Xu, Z.
(2023). Plant commensal type VII secretion system causes iron leakage
from roots to promote colonization. Nature Microbiology , 1-16.
Loladze, I. (2014). Hidden shift of the ionome of plants exposed to
elevated CO2 depletes minerals at the base of human nutrition.elife, 3 , e02245.
Lu, H., Wang, F., Wang, Y., Lin, R., Wang, Z., & Mao, C. (2022).
Molecular mechanisms and genetic improvement of low-phosphorus tolerance
in rice. Plant Cell & Environment, 46, 1104-1119.
Lu, P., Liu, Y., Yu, X., Shi, C. L., & Liu, X. (2022). The right
microbe-associated molecular patterns for effective recognition by
plants. Frontiers in Microbiology, 13 , 1019069.
McGrath, J. M., & Lobell, D. B. (2013). Reduction of transpiration and
altered nutrient allocation contribute to nutrient decline of crops
grown in elevated CO(2) concentrations. Plant Cell & Environment,
36 (3), 697-705.
Meng, Y., Varshney, K., Incze, N., Badics, E., Kamran, M., Davies, S.
F., . . . Waters, M. T. (2022). KARRIKIN INSENSITIVE2 regulates leaf
development, root system architecture and arbuscular-mycorrhizal
symbiosis in Brachypodium distachyon . The Plant Journal,
109 (6), 1559-1574.
Mitter, E. K., Tosi, M., Obregón, D., Dunfield, K. E., & Germida, J. J.
(2021). Rethinking crop nutrition in times of modern microbiology:
innovative biofertilizer technologies. Frontiers in Sustainable
Food Systems, 5 , 606815.
Morella, N. M., Weng, F. C., Joubert, P. M., Metcalf, C. J. E., Lindow,
S., & Koskella, B. (2020). Successive passaging of a plant-associated
microbiome reveals robust habitat and host genotype-dependent selection.Proceedings of the National Academy of Sciences USA, 117 (2),
1148-1159.
Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D.,
Bloom, A. J., . . . Usui, Y. (2014). Increasing CO2 threatens human
nutrition. Nature, 510 (7503), 139-142.
Nelson, E. B. (2018). The seed microbiome: origins, interactions, and
impacts. Plant and Soil, 422 , 7-34.
Nelson, E. B., Simoneau, P., Barret, M., Mitter, B., & Compant, S.
(2018). Editorial special issue: the soil, the seed, the microbes and
the plant. In (Vol. 422, pp. 1-5): Springer.
Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., . .
. Thonart, P. (2007). Surfactin and fengycin lipopeptides of Bacillus
subtilis as elicitors of induced systemic resistance in plants.Environmental Microbiology, 9 (4), 1084-1090.
Oyserman, B. O., Flores, S. S., Griffioen, T., Pan, X., van der Wijk,
E., Pronk, L., . . . Movassagh, M. (2022). Disentangling the genetic
basis of rhizosphere microbiome assembly in tomato. Nature
Communications, 13 (1), 3228.
Poppeliers, S. W., Sanchez-Gil, J. J., & de Jonge, R. (2023). Microbes
to support plant health: understanding bioinoculant success in complex
conditions. Current Opinion in Microbiology, 73 , 102286.
Pršić, J., Gilliard, G., Ibrahim, H., Argüelles-Arias, A., Rondelli, V.,
Crowet, J.-M., . . . Nasir, M. N. (2023). Mechanosensing and
Sphingolipid-Docking Mediate Lipopeptide-Induced Immunity in
Arabidopsis. bioRxiv , 2023.2007. 2004.547613.
Pršić, J., & Ongena, M. (2020). Elicitors of plant immunity triggered
by beneficial bacteria. Frontiers in Plant Science, 11 , 594530.
Qi, M., Berry, J. C., Veley, K. M., O’Connor, L., Finkel, O. M.,
Salas-González, I., . . . Glavina del Rio, T. (2022). Identification of
beneficial and detrimental bacteria impacting sorghum responses to
drought using multi-scale and multi-system microbiome comparisons.The ISME journal, 16 (8), 1957-1969.
Quiza, L., Tremblay, J., Pagé, A. P., Greer, C. W., Pozniak, C. J., Li,
R., . . . Yergeau, E. (2023). The effect of wheat genotype on the
microbiome is more evident in roots and varies through time. ISME
Communications, 3 , 32.
Saad, M.M., Eida, A.A., Hirt, H. (2020) Tailoring plant-associated
microbial inoculants in agriculture: a roadmap for successful
application, Journal of Experimental Botany , 71 ,
3878–3901,
Sahu, P. K., Jayalakshmi, K., Tilgam, J., Gupta, A., Nagaraju, Y.,
Kumar, A., . . . Rajput, V. D. (2022). ROS generated from biotic stress:
Effects on plants and alleviation by endophytic microbes.Frontiers in Plant Science, 13 , 1042936.
Salmeron-Santiago, I. A., Martinez-Trujillo, M., Valdez-Alarcon, J. J.,
Pedraza-Santos, M. E., Santoyo, G., Pozo, M. J., & Chavez-Barcenas, A.
T. (2021). An Updated Review on the Modulation of Carbon Partitioning
and Allocation in Arbuscular Mycorrhizal Plants. Microorganisms,
10 (1).
Salomon, M., Demarmels, R., Watts-Williams, S., McLaughlin, M., Kafle,
A., Ketelsen, C., . . . van der Heijden, M. G. (2022). Global evaluation
of commercial arbuscular mycorrhizal inoculants under greenhouse and
field conditions. Applied Soil Ecology, 169 , 104225.
Santos-Medellin, C., Liechty, Z., Edwards, J., Nguyen, B., Huang, B.,
Weimer, B. C., & Sundaresan, V. (2021). Prolonged drought imparts
lasting compositional changes to the rice root microbiome. Nature
Plants, 7 (8), 1065-1077.
Sawers, R. J., Svane, S. F., Quan, C., Gronlund, M., Wozniak, B.,
Gebreselassie, M. N., . . . Paszkowski, U. (2017). Phosphorus
acquisition efficiency in arbuscular mycorrhizal maize is correlated
with the abundance of root-external hyphae and the accumulation of
transcripts encoding PHT1 phosphate transporters. New Phytologist,
214 (2), 632-643.
Seemann, C., Heck, C., Voß, S., Schmoll, J., Enderle, E., Schwarz, D.,
& Requena, N. (2022). Root cortex development is fine‐tuned by the
interplay of MIGs, SCL3 and DELLAs during arbuscular mycorrhizal
symbiosis. New Phytologist, 233 (2), 948-965.
Sendek, A., Karakoç, C., Wagg, C., Domínguez-Begines, J., do Couto, G.
M., van der Heijden, M. G., . . . Klotz, S. (2019). Drought modulates
interactions between arbuscular mycorrhizal fungal diversity and barley
genotype diversity. Scientific reports, 9 (1), 9650.
Shi, J., Zhao, B., Jin, R., Hou, L., Zhang, X., Dai, H., . . . Wang, E.
(2022). A phosphate starvation response-regulated receptor-like kinase,
OsADK1, is required for mycorrhizal symbiosis and phosphate starvation
responses. New Phytologist, 236 (6), 2282-2293.
Shi, J., Zhao, B., Zheng, S., Zhang, X., Wang, X., Dong, W., . . . Wang,
E. (2021). A phosphate starvation response-centered network regulates
mycorrhizal symbiosis. Cell, 184 (22), 5527-5540 e5518.
Singh, J., & Valdes-Lopez, O. (2023). Discovering the genetic modules
controlling root nodule symbiosis under abiotic stresses: salinity as a
case study. New Phytologist, 237 (4), 1082-1085.
Sohrabi, R., Paasch, B. C., Liber, J. A., & He, S. Y. (2023).
Phyllosphere Microbiome. Annual Review of Plant Biology 74 ,
539-568.
Song, Y., & Haney, C. H. (2021). Drought dampens microbiome
development. Nature Plants, 7 (8), 994-995.
Song, Y., Wilson, A. J., Zhang, X.-C., Thoms, D., Sohrabi, R., Song, S.,
. . . He, S. Y. (2021). FERONIA restricts Pseudomonas in the rhizosphere
microbiome via regulation of reactive oxygen species. Nature
plants, 7 (5), 644-654.
Soudzilovskaia, N. A., van Bodegom, P. M., Terrer, C., Zelfde, M. v. t.,
McCallum, I., Luke McCormack, M., . . . Tedersoo, L. (2019). Global
mycorrhizal plant distribution linked to terrestrial carbon stocks.Nature Communications, 10 (1), 5077.
Szechyńska-Hebda, M., Lewandowska, M., Witoń, D., Fichman, Y., Mittler,
R., & Karpiński, S. M. (2022). Aboveground plant-to-plant electrical
signaling mediates network acquired acclimation. The Plant Cell,
34 (8), 3047-3065.
Tang, J., Wu, D., Li, X., Wang, L., Xu, L., Zhang, Y., . . . Dai, S.
(2022). Plant immunity suppression via PHR1‐RALF‐FERONIA shapes the root
microbiome to alleviate phosphate starvation. The EMBO Journal,
41 (6), e109102.
Trivedi, P., Batista, B. D., Bazany, K. E., & Singh, B. K. (2022).
Plant–microbiome interactions under a changing world: Responses,
consequences and perspectives. New Phytologist, 234 (6),
1951-1959.
Turner, T. R., James, E. K., & Poole, P. S. (2013). The plant
microbiome. Genome Biology, 14 (6), 209.
Volpe, V., Giovannetti, M., Sun, X. G., Fiorilli, V., & Bonfante, P.
(2016). The phosphate transporters LjPT4 and MtPT4 mediate early root
responses to phosphate status in non mycorrhizal roots. Plant Cell
& Environment, 39 (3), 660-671.
Wang, Q., Smith, S. M., & Huang, J. (2022). Origins of strigolactone
and karrikin signaling in plants. Trends in Plant Science, 27 (5),
450-459.
Wang, S., Chen, A., Xie, K., Yang, X., Luo, Z., Chen, J., . . . Xu, G.
(2020). Functional analysis of the OsNPF4.5 nitrate transporter reveals
a conserved mycorrhizal pathway of nitrogen acquisition in plants.Proceedings of the National Academy of Sciences USA, 117 (28),
16649-16659.
Wang, T., Guo, J., Peng, Y., Lyu, X., Liu, B., Sun, S., & Wang, X.
(2021). Light-induced mobile factors from shoots regulate
rhizobium-triggered soybean root nodulation. Science, 374 (6563),
65-71.
Wang, X., Chen, K., Zhou, M., Gao, Y., Huang, H., Liu, C., . . . Li, X.
(2022). GmNAC181 promotes symbiotic nodulation and salt tolerance of
nodulation by directly regulating GmNINa expression in soybean.New Phytologist, 236 (2), 656-670.
Wen, A., Havens, K. L., Bloch, S. E., Shah, N., Higgins, D. A.,
Davis-Richardson, A. G., . . . Temme, K. (2021). Enabling Biological
Nitrogen Fixation for Cereal Crops in Fertilized Fields. ACS
Synthtic Biology, 10 (12), 3264-3277.
Williams, A., & de Vries, F. T. (2020). Plant root exudation under
drought: implications for ecosystem functioning. New Phytologist,
225 (5), 1899-1905.
Wipf, D., Krajinski, F., van Tuinen, D., Recorbet, G., & Courty, P. E.
(2019). Trading on the arbuscular mycorrhiza market: from arbuscules to
common mycorrhizal networks. New Phytologist, 223 (3), 1127-1142.
Wolinska, K. W., Vannier, N., Thiergart, T., Pickel, B., Gremmen, S.,
Piasecka, A., . . . Hacquard, S. (2021). Tryptophan metabolism and
bacterial commensals prevent fungal dysbiosis in Arabidopsis roots.Proceedings of the National Academy of Sciences USA, 118 (49).
Xie, X., Lai, W., Che, X., Wang, S., Ren, Y., Hu, W., . . . Tang, M.
(2022). A SPX domain-containing phosphate transporter from Rhizophagus
irregularis handles phosphate homeostasis at symbiotic interface of
arbuscular mycorrhizas. New Phytologist, 234 (2), 650-671.
Xie, X., Lin, H., Peng, X., Xu, C., Sun, Z., Jiang, K., . . . Zhao, B.
(2016). Arbuscular Mycorrhizal Symbiosis Requires a Phosphate
Transceptor in the Gigaspora margarita Fungal Symbiont. Molecular
Plant, 9 (12), 1583-1608.
Xu, L., Naylor, D., Dong, Z., Simmons, T., Pierroz, G., Hixson, K. K., .
. . Coleman-Derr, D. (2018). Drought delays development of the sorghum
root microbiome and enriches for monoderm bacteria. Proceedings of
the National Academy of Sciences USA, 115 (18), E4284-E4293.
Xue, L., Klinnawee, L., Zhou, Y., Saridis, G., Vijayakumar, V., Brands,
M., . . . Bucher, M. (2018). AP2 transcription factor CBX1 with a
specific function in symbiotic exchange of nutrients in mycorrhizal
Lotus japonicus. Proceedings of the National Academy of Sciences
USA, 115 (39), E9239-E9246.
You, Y., Kerner, P., Shanmugam, S., & Khodakovskaya, M. V. (2023).
Emerging investigator series: differential effects of carbon nanotubes
and graphene on the tomato rhizosphere microbiome. Environmental
Science: Nano, 10, 1570-1584.
Yu, N., Luo, D., Zhang, X., Liu, J., Wang, W., Jin, Y., . . . Wang, E.
(2014). A DELLA protein complex controls the arbuscular mycorrhizal
symbiosis in plants. Cell Research, 24 (1), 130-133.
Zboralski, A., Saadia, H., Novinscak, A., & Filion, M. (2022).
Interplay between Arabidopsis thaliana genotype, plant growth and
rhizosphere colonization by phytobeneficial phenazine-producing
Pseudomonas chlororaphis. Microorganisms, 10 (3), 660.
Zeng, T., Rodriguez-Moreno, L., Mansurkhodzaev, A., Wang, P., van den
Berg, W., Gasciolli, V., . . . Limpens, E. (2020). A lysin motif
effector subverts chitin-triggered immunity to facilitate arbuscular
mycorrhizal symbiosis. New Phytologist, 225 (1), 448-460.
Zhang, B., Wang, M., Sun, Y., Zhao, P., Liu, C., Qing, K., . . . Wang,
X. (2021). Glycine max NNL1 restricts symbiotic compatibility with
widely distributed bradyrhizobia via root hair infection. Nature
Plants, 7 (1), 73-86.
Zhang, W., & Mason, G. A. (2022). Modulating the rhizosphere microbiome
by altering the cocktail of root secretions. In: Oxford University
Press.
Zhao, X., Yuan, X., Xing, Y., Dao, J., Zhao, D., Li, Y., . . . Wang, Z.
(2023). A meta‐analysis on morphological, physiological and biochemical
responses of plants with PGPR inoculation under drought stress.Plant, Cell & Environment, 46 (1), 199-214.
Zhou, J.-Y., Yuan, J., Li, X., Ning, Y.-F., & Dai, C.-C. (2016).
Endophytic bacterium-triggered reactive oxygen species directly increase
oxygenous sesquiterpenoid content and diversity in Atractylodes lancea.Applied and Environmental Microbiology, 82 (5), 1577-1585.
Zhou, X., Wang, J., Liu, F., Liang, J., Zhao, P., Tsui, C. K., & Cai,
L. (2022). Cross-kingdom synthetic microbiota supports tomato
suppression of Fusarium wilt disease. Nature Communications,
13 (1), 7890.
Zhou, Y., Ge, S., Jin, L., Yao, K., Wang, Y., Wu, X., . . . Foyer, C. H.
(2019). A novel CO 2‐responsive systemic signaling pathway controlling
plant mycorrhizal symbiosis. New Phytologist, 224 (1), 106-116.
Zihalirwa Kulimushi, P., Argüelles Arias, A., Franzil, L., Steels, S.,
& Ongena, M. (2017). Stimulation of fengycin-type antifungal
lipopeptides in Bacillus amyloliquefaciens in the presence of the maize
fungal pathogen Rhizomucor variabilis. Frontiers in Microbiology,
8 , 850.