References
Blomberg, S.P., Garland Jr, T., Ives, A.R. (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57 , 717–745.
Cheesman, A.W., Winter, K. (2013) Elevated night‐time temperatures increase growth in seedlings of two tropical pioneer tree species.New Phytologist , 197 , 1185–1192.
Clark, D.A., Piper, S.C., Keeling, C.D., Clark, D.B. (2003) Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proceedings of the National Academy of Sciences , 100 , 5852–5857.
Coley, P.D. (1987) Interspecific variation in plant anti‐herbivore properties: the role of habitat quality and rate of disturbance. New Phytologist106 , 251–263.
Curtis, E.M., Gollan, J., Murray, B.R., Leigh, A. (2016) Native microhabitats better predict tolerance to warming than latitudinal macro‐climatic variables in arid‐zone plants. Journal of Biogeography , 43 , 1156–1165.
Dick, C.W., Lewis, S.L., Maslin, M., Bermingham, E. (2013) Neogene origins and implied warmth tolerance of Amazon tree species.Ecology and Evolution , 3 , 162–169.
Doughty, C.E., Goulden, M.L. (2008) Are tropical forests near a high temperature threshold? Journal of Geophysical Research: Biogeosciences , 113 (G1).
Drake, J.E., Tjoelker, M.G., Vårhammar, A., Medlyn, B.E., Reich, P.B., Leigh, A., Pfautsch, S., Blackman, C.J., López, R., Aspinwall, M.J., Crous, K.Y. (2018) Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance.Global Change Biology , 24 , 2390–2402.
Duarte, H., Tejedo, M., Katzenberger, M., Marangoni, F., Baldo, D., Beltrán, J.F., Martí, D.A., Richter‐Boix, A., Gonzalez‐Voyer, A. (2012) Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities. Global Change Biology , 18 , 412–421.
Egea, G., Padilla-Díaz, C.M., Martinez-Guanter, J., Fernández, J.E., Pérez-Ruiz, M. (2017) Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards. Agricultural Water Management , 187 , 210–221.
Fadrique, B., Báez, S., Duque, Á., Malizia, A., Blundo, C., Carilla, J., Osinaga-Acosta, O., Malizia, L., Silman, M., Farfán-Ríos, W, et al . (2018) Widespread but heterogeneous responses of Andean forests to climate change. Nature , 564 , 207–212.
Fauset, S., Freitas, H.C., Galbraith, D.R., Sullivan, M.J., Aidar, M.P., Joly, C.A., Phillips, O.L., Vieira, S.A., Gloor, M.U. (2018) Differences in leaf thermoregulation and water use strategies between three co‐occurring Atlantic forest tree species. Plant, Cell & Environment , 41 , 1618–1631.
Feeley, K.J., Martinez-Villa, J., Perez, T.M., Silva Duque, A., Triviño Gonzalez, D., Duque, A. (2020a) The thermal tolerances, distributions, and performances of tropical montane tree species. Frontiers in Forest and Global Change , 3 , 25.
Feeley, K.J., Bravo-Avila, C., Fadrique, B., Perez, T.M., Zuleta, D. (2020b) Climate-driven changes in the composition of New World plant communities. Nature Climate Change , 10 , 1062.
Fick, S.E., Hijmans, R.J. (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology , 37 , 4302–4315.
Foyer, C.H., Lelandais, M., Kunert, K.J. (1994) Photooxidative stress in plants. Physiologia Plantarum , 92 , 696–717.
Franken, O., Huizinga, M., Ellers, J., Berg, M.P. (2018) Heated communities: large inter-and intraspecific variation in heat tolerance across trophic levels of a soil arthropod community. Oecologia ,186 , 311–322.
García-Robledo, C., Kuprewicz, E.K., Staines, C.L., Erwin, T.L., Kress, W.J. (2016) Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proceedings of the National Academy of Sciences ,113 , 680–685.
Geange, S.R., Arnold, P.A., Catling, A.A., Coast, O., Cook, A.M., Gowland, K.M., Leigh, A., Notarnicola, R.F., Posch, B.C., Venn, S.E., Zhu, L. (2020) The thermal tolerance of photosynthetic tissues: a global systematic review and agenda for future research. New Phytologist . In press. doi: https://doi.org/10.1111/nph.17052
Gill, S.S., Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry , 48 , 909–930.
Goulden M.L., Miller S.D., da Rocha H.R., Menton M.C., de Freitas H.C., Figueira A.M.E.S., de Sousa C.A.D. (2004) Diel and seasonal patterns of tropical forest CO2 exchange. Ecological Applications 14, 42–54
Jaramillo, C., Ochoa, D., Contreras, L., Pagani, M., Carvajal-Ortiz, H., Pratt, L.M., Krishnan, S., Cardona, A., Romero, M., Quiroz, L., Rodriguez, G. (2010) Effects of rapid global warming at the Paleocene-Eocene boundary on neotropical vegetation. Science ,330 , 957–961.
Jin, J., Wang, Y., Jiang, H., Chen, X. (2018) Evaluation of microclimatic detection by a wireless sensor network in forest ecosystems. Scientific Reports , 8 , 1–9.
Jin, Y., Qian, H. (2019) V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography ,42 , 1353–1359.
Jones, H.G. (2013) Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge University Press.
Kappen, L. (1964) Untersuchungen über den Jahreslauf der Frost-, Hitze-und Austrocknungsresistenz von Sporophyten einheimischer Polypodiaceen (Filicinae). Flora , 155 , 123−166.
Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Tautenhahn, S., Werner, G.D., Aakala, T., Abedi, M. et al . (2020) TRY plant trait database–enhanced coverage and open access.Global Change Biology , 26 , 119–188.
Kitajima, K., Poorter, L. (2010) Tissue‐level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytologist , 186 , 708–721.
Knight, C.A., Ackerly, D.D. (2003) Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: congeneric species from desert and coastal environments. New Phytologist , 160 , 337–347.
Kosugi Y, Takanashi S, Ohkubo S, Matsuo N, Tani M, Mitani T, Tsutsumi D, Nik AR (2008) CO2 exchange of a tropical rainforest at Pasoh in peninsular Malaysia. Agricultural and Forest Meteorology 148, 439–452
Krause, G.H., Cheesman, A.W., Winter, K., Krause, B., Virgo, A. (2013) Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida , cultivated at elevated daytime and nighttime temperatures. Journal of Plant Physiology ,170 , 822–827
Krause, G.H., Winter, K., Krause, B., Jahns, P., García, M., Aranda, J., Virgo, A. (2010) High-temperature tolerance of a tropical tree,Ficus insipida : methodological reassessment and climate change considerations. Functional Plant Biology , 37 , 890–900.
Krause, G.H., Winter, K., Krause, B., Virgo, A. (2016) Protection by light against heat stress in leaves of tropical crassulacean acid metabolism plants containing high acid levels. Functional Plant Biology , 43 , 1061–1069
Ladjal, M., Epron, D., Ducrey, M. (2000) Effects of drought preconditioning on thermotolerance of photosystemII and susceptibility of photosynthesis to heat stress in cedar seedlings. Tree Physiology , 20 , 1235–1241
Lancaster, L.T., Humphreys, A.M. (2020) Global variation in the thermal tolerances of plants. Proceedings of the National Academy of Sciences , 117 , 13580–13587
Leigh, A., Sevanto, S., Close, J.D., Nicotra, A.B. (2017) The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions? Plant, Cell & Environment ,40 , 237–248.
Leon-Garcia, I.V., Lasso, E. (2019) High heat tolerance in plants from the Andean highlands: Implications for paramos in a warmer world. PloS one , 14 , e0224218.
Marias, D.E., Meinzer, F.C., Woodruff, D.R., McCulloh, K.A. (2016) Thermotolerance and heat stress responses of Douglas-fir and ponderosa pine seedling populations from contrasting climates. Tree Physiology , 37 , 301–315
Michaletz, S.T., Weiser, M.D., Zhou, J., Kaspari, M., Helliker, B.R., Enquist, B.J. (2015) Plant thermoregulation: energetics, trait–environment interactions, and carbon economics. Trends in Ecology & Evolution , 30 , 714–724.
Michaletz, S.T., Weiser, M.D., McDowell, N.G., Zhou, J., Kaspari, M., Helliker, B.R., Enquist, B.J. (2016) The energetic and carbon economic origins of leaf thermoregulation. Nature Plants , 2 , 16129.
Nardini, A., Pedà, G., Rocca, N.L. (2012) Trade‐offs between leaf hydraulic capacity and drought vulnerability: morpho‐anatomical bases, carbon costs and ecological consequences. New Phytologist ,196 , 788–798.
Nobel, P.S., Smith, S.D. (1983) High and low temperature tolerances and their relationships to distribution of agaves. Plant, Cell & Environment , 6 , 711–719.
O’Sullivan, O.S., Heskel, M.A., Reich, P.B., Tjoelker, M.G., Weerasinghe, L.K., Penillard, A., Zhu, L., Egerton, J.J., Bloomfield, K.J., Creek, D., Bahar, N.H., Griffin, K.L., Hurry, V., Meir, P., Turnbull, M.H., Atkin, O.K. (2017) Thermal limits of leaf metabolism across biomes. Global Change Biology , 23 , 209–223.
Padfield, D., Matheson, G. (2018) nls.multstart: Robust Non-Linear Regression using AIC Scores. R package version 1.0.0 . https://CRAN.R-project.org/package=nls.multstart
Padfield, D., Lowe, C., Buckling, A., Ffrench‐Constant, R., Student Research Team, Jennings, S., Shelley, F., Ólafsson, J.S., Yvon‐Durocher, G. (2017) Metabolic compensation constrains the temperature dependence of gross primary production. Ecology Letters , 20 , 1250–1260.
Pagel, M. (1999) Inferring the historical patterns of biological evolution. Nature , 401 , 877–884.
Perez, T.M., Feeley, K.J. (2020a) Photosynthetic heat tolerances and extreme leaf temperatures. Functional Ecology , 34 , 2236−2245.
Perez, T.M., Feeley, K.J. (2020b) Weak phylogenetic and climatic signals in plant heat tolerance. Journal of Biogeography. In press. doi: https://doi.org/10.1111/jbi.13984
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Rey-Sánchez, C., Slot, M., Posada, J.M., Kitajima, K. (2016) Spatial and seasonal variation of leaf temperature within the canopy of a tropical forest. Climate Research , 71 , 75-89.
Revell, L.J. (2010) Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution 1, 319−329.
Revell, L.J. (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution ,3 , 217–223.
Rifai, S.W., Li, S., Malhi, Y. (2019) Coupling of El Niño events and long-term warming leads to pervasive climate extremes in the terrestrial tropics. Environmental Research Letters , 14 , p.105002.
Sachs, J. (1864) Über die obere Temperaturgränze der Vegetation.Flora , 47 , 5–12, 24–29, 33–39, 65–75.
Sapper, I. (1935) Versuche zur Hitzeresistenz der Pflanzen.Planta , 518–556.
Sastry, A., Barua, D. (2017) Leaf thermotolerance in tropical trees from a seasonally dry climate varies along the slow-fast resource acquisition spectrum. Scientific Reports , 7 , 11246.
Sastry, A., Guha, A., Barua, D. (2018) Leaf thermotolerance in dry tropical forest tree species: relationships with leaf traits and effects of drought. AoB Plants , 10 , plx070.
Scheffer, M. (2009) Critical transitions in nature and society (Vol. 16). Princeton University Press.
Slot, M., Rey-Sánchez, C., Gerber, S., Lichstein, J.W., Winter, K., Kitajima, K. (2014) Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance. Global Change Biology , 20 , 2915–2926.
Slot M, Garcia MN, Winter K (2016) Temperature response of CO2 exchange in three tropical tree species. Functional Plant Biology 43, 468–478
Slot, M., Winter, K. (2017a) In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regime.New Phytologist , 214 , 1103–1117.
Slot, M., Winter, K. (2017b) Photosynthetic acclimation to warming in tropical forest tree seedlings. Journal of Experimental Botany ,68 , 2275–2284.
Slot, M., Krause, G.H., Krause, B., Hernández, G.G., Winter, K. (2019) Photosynthetic heat tolerance of shade and sun leaves of three tropical tree species. Photosynthesis Research , 141 , 119–130.
Smith, S.A., Brown, J.W. (2018) Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany , 105 , 302–314.
Sullivan, M.J., Lewis, S.L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A.C., Ewango, C.E., Hubau, W., Marimon, B., Monteagudo-Mendoza, A. et al . (2020) Long-term thermal sensitivity of Earth’s tropical forests. Science , 368 , 869–874.
Taylor, T.C., Smith, M.N., Slot, M., Feeley, K.J. (2019) The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species. Plant, Cell & Environment , 42 , 2448–2457.
Tiwari, R., Gloor, E., da Cruz, W.J.A., Schwantes Marimon, B., Marimon‐Junior, B.H., Reis, S.M., de Souza, I.A., Krause, H.G., Slot, M., Winter, K., et al. (2020) Photosynthetic quantum efficiency in south-eastern Amazonian trees may be already affected by climate change. Plant, Cell & Environment . In press. doi: https://doi.org/10.1111/pce.13770.
Vogel, S. (2009) Leaves in the lowest and highest winds: temperature, force and shape. New Phytologist , 183 , 13–26.
Webster, C., Westoby, M., Rutter, N. and Jonas, T. (2018) Three-dimensional thermal characterization of forest canopies using UAV photogrammetry. Remote Sensing of Environment , 209 , 835–847.
Wikström, N., Savolainen, V., Chase, M.W. (2001) Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London. Series B: Biological Sciences , 268 , 2211–2220.
Wing, S.L., Herrera, F., Jaramillo, C.A., Gómez-Navarro, C., Wilf, P. and Labandeira, C.C. (2009) Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest.Proceedings of the National Academy of Sciences , 106 , 18627–18632.
Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A., FitzJohn, R.G., McGlinn, D.J., O’Meara, B.C., Moles, A.T., Reich, P.B., Royer, D.L. (2014) Three keys to the radiation of angiosperms into freezing environments. Nature , 506 , 89–92.
Zhu, L., Bloomfield, K.J., Hocart, C.H., Egerton, J.J., O’Sullivan, O.S., Penillard, A., Weerasinghe, L.K., Atkin, O.K. (2018) Plasticity of photosynthetic heat tolerance in plants adapted to thermally contrasting biomes. Plant, Cell & Environment , 41 , 1251–1262.
Zotz G, Harris G, Königer M,Winter K (1995) High rates of photosynthesis in the tropical pioneer tree, Ficus insipida Willd. Flora 190, 265–272