References
Blomberg, S.P., Garland Jr, T., Ives, A.R. (2003) Testing for
phylogenetic signal in comparative data: behavioral traits are more
labile. Evolution 57 , 717–745.
Cheesman, A.W., Winter, K. (2013) Elevated night‐time temperatures
increase growth in seedlings of two tropical pioneer tree species.New Phytologist , 197 , 1185–1192.
Clark, D.A., Piper, S.C., Keeling, C.D., Clark, D.B. (2003) Tropical
rain forest tree growth and atmospheric carbon dynamics linked to
interannual temperature variation during 1984–2000. Proceedings
of the National Academy of Sciences , 100 , 5852–5857.
Coley, P.D. (1987) Interspecific variation in plant anti‐herbivore
properties: the role of habitat quality and rate of
disturbance. New Phytologist , 106 , 251–263.
Curtis, E.M., Gollan, J., Murray, B.R., Leigh, A. (2016) Native
microhabitats better predict tolerance to warming than latitudinal
macro‐climatic variables in arid‐zone plants. Journal of
Biogeography , 43 , 1156–1165.
Dick, C.W., Lewis, S.L., Maslin, M., Bermingham, E. (2013) Neogene
origins and implied warmth tolerance of Amazon tree species.Ecology and Evolution , 3 , 162–169.
Doughty, C.E., Goulden, M.L. (2008) Are tropical forests near a high
temperature threshold? Journal of Geophysical Research:
Biogeosciences , 113 (G1).
Drake, J.E., Tjoelker, M.G., Vårhammar, A., Medlyn, B.E., Reich, P.B.,
Leigh, A., Pfautsch, S., Blackman, C.J., López, R., Aspinwall, M.J.,
Crous, K.Y. (2018) Trees tolerate an extreme heatwave via sustained
transpirational cooling and increased leaf thermal tolerance.Global Change Biology , 24 , 2390–2402.
Duarte, H., Tejedo, M., Katzenberger, M., Marangoni, F., Baldo, D.,
Beltrán, J.F., Martí, D.A., Richter‐Boix, A., Gonzalez‐Voyer, A. (2012)
Can amphibians take the heat? Vulnerability to climate warming in
subtropical and temperate larval amphibian communities. Global
Change Biology , 18 , 412–421.
Egea, G., Padilla-Díaz, C.M., Martinez-Guanter, J., Fernández, J.E.,
Pérez-Ruiz, M. (2017) Assessing a crop water stress index derived from
aerial thermal imaging and infrared thermometry in super-high density
olive orchards. Agricultural Water Management , 187 ,
210–221.
Fadrique, B., Báez, S., Duque, Á., Malizia, A., Blundo, C., Carilla, J.,
Osinaga-Acosta, O., Malizia, L., Silman, M., Farfán-Ríos, W, et
al . (2018) Widespread but heterogeneous responses of Andean forests to
climate change. Nature , 564 , 207–212.
Fauset, S., Freitas, H.C., Galbraith, D.R., Sullivan, M.J., Aidar, M.P.,
Joly, C.A., Phillips, O.L., Vieira, S.A., Gloor, M.U. (2018) Differences
in leaf thermoregulation and water use strategies between three
co‐occurring Atlantic forest tree species. Plant, Cell &
Environment , 41 , 1618–1631.
Feeley, K.J., Martinez-Villa, J., Perez, T.M., Silva Duque, A., Triviño
Gonzalez, D., Duque, A. (2020a) The thermal tolerances, distributions,
and performances of tropical montane tree species. Frontiers in
Forest and Global Change , 3 , 25.
Feeley, K.J., Bravo-Avila, C., Fadrique, B., Perez, T.M., Zuleta, D.
(2020b) Climate-driven changes in the composition of New World plant
communities. Nature Climate Change , 10 , 1062.
Fick, S.E., Hijmans, R.J. (2017) WorldClim 2: new 1km spatial resolution
climate surfaces for global land areas. International Journal of
Climatology , 37 , 4302–4315.
Foyer, C.H., Lelandais, M., Kunert, K.J. (1994) Photooxidative stress in
plants. Physiologia Plantarum , 92 , 696–717.
Franken, O., Huizinga, M., Ellers, J., Berg, M.P. (2018) Heated
communities: large inter-and intraspecific variation in heat tolerance
across trophic levels of a soil arthropod community. Oecologia ,186 , 311–322.
García-Robledo, C., Kuprewicz, E.K., Staines, C.L., Erwin, T.L., Kress,
W.J. (2016) Limited tolerance by insects to high temperatures across
tropical elevational gradients and the implications of global warming
for extinction. Proceedings of the National Academy of Sciences ,113 , 680–685.
Geange, S.R., Arnold, P.A., Catling, A.A., Coast, O., Cook, A.M.,
Gowland, K.M., Leigh, A., Notarnicola, R.F., Posch, B.C., Venn, S.E.,
Zhu, L. (2020) The thermal tolerance of photosynthetic tissues: a global
systematic review and agenda for future research. New
Phytologist . In press. doi: https://doi.org/10.1111/nph.17052
Gill, S.S., Tuteja, N. (2010) Reactive oxygen species and antioxidant
machinery in abiotic stress tolerance in crop plants. Plant
Physiology and Biochemistry , 48 , 909–930.
Goulden M.L., Miller S.D., da Rocha H.R., Menton M.C., de Freitas H.C.,
Figueira A.M.E.S., de Sousa C.A.D. (2004) Diel and seasonal patterns of
tropical forest CO2 exchange. Ecological Applications
14, 42–54
Jaramillo, C., Ochoa, D., Contreras, L., Pagani, M., Carvajal-Ortiz, H.,
Pratt, L.M., Krishnan, S., Cardona, A., Romero, M., Quiroz, L.,
Rodriguez, G. (2010) Effects of rapid global warming at the
Paleocene-Eocene boundary on neotropical vegetation. Science ,330 , 957–961.
Jin, J., Wang, Y., Jiang, H., Chen, X. (2018) Evaluation of
microclimatic detection by a wireless sensor network in forest
ecosystems. Scientific Reports , 8 , 1–9.
Jin, Y., Qian, H. (2019) V. PhyloMaker: an R package that can generate
very large phylogenies for vascular plants. Ecography ,42 , 1353–1359.
Jones, H.G. (2013) Plants and microclimate: a quantitative approach to
environmental plant physiology. Cambridge University Press.
Kappen, L. (1964) Untersuchungen über den Jahreslauf der Frost-,
Hitze-und Austrocknungsresistenz von Sporophyten einheimischer
Polypodiaceen (Filicinae). Flora , 155 , 123−166.
Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley,
P., Tautenhahn, S., Werner, G.D., Aakala, T., Abedi, M. et al .
(2020) TRY plant trait database–enhanced coverage and open access.Global Change Biology , 26 , 119–188.
Kitajima, K., Poorter, L. (2010) Tissue‐level leaf toughness, but not
lamina thickness, predicts sapling leaf lifespan and shade tolerance of
tropical tree species. New Phytologist , 186 , 708–721.
Knight, C.A., Ackerly, D.D. (2003) Evolution and plasticity of
photosynthetic thermal tolerance, specific leaf area and leaf size:
congeneric species from desert and coastal environments. New
Phytologist , 160 , 337–347.
Kosugi Y, Takanashi S, Ohkubo S, Matsuo N, Tani M, Mitani T, Tsutsumi D,
Nik AR (2008) CO2 exchange of a tropical rainforest at
Pasoh in peninsular Malaysia. Agricultural and Forest Meteorology 148,
439–452
Krause, G.H., Cheesman, A.W., Winter, K., Krause, B., Virgo, A. (2013)
Thermal tolerance, net CO2 exchange and growth of a
tropical tree species, Ficus insipida , cultivated at elevated
daytime and nighttime temperatures. Journal of Plant Physiology ,170 , 822–827
Krause, G.H., Winter, K., Krause, B., Jahns, P., García, M., Aranda, J.,
Virgo, A. (2010) High-temperature tolerance of a tropical tree,Ficus insipida : methodological reassessment and climate change
considerations. Functional Plant Biology , 37 , 890–900.
Krause, G.H., Winter, K., Krause, B., Virgo, A. (2016) Protection by
light against heat stress in leaves of tropical crassulacean acid
metabolism plants containing high acid levels. Functional Plant
Biology , 43 , 1061–1069
Ladjal, M., Epron, D., Ducrey, M. (2000) Effects of drought
preconditioning on thermotolerance of photosystemII and susceptibility
of photosynthesis to heat stress in cedar seedlings. Tree
Physiology , 20 , 1235–1241
Lancaster, L.T., Humphreys, A.M. (2020) Global variation in the thermal
tolerances of plants. Proceedings of the National Academy of
Sciences , 117 , 13580–13587
Leigh, A., Sevanto, S., Close, J.D., Nicotra, A.B. (2017) The influence
of leaf size and shape on leaf thermal dynamics: does theory hold up
under natural conditions? Plant, Cell & Environment ,40 , 237–248.
Leon-Garcia, I.V., Lasso, E. (2019) High heat tolerance in plants from
the Andean highlands: Implications for paramos in a warmer world.
PloS one , 14 , e0224218.
Marias, D.E., Meinzer, F.C., Woodruff, D.R., McCulloh, K.A. (2016)
Thermotolerance and heat stress responses of Douglas-fir and ponderosa
pine seedling populations from contrasting climates. Tree
Physiology , 37 , 301–315
Michaletz, S.T., Weiser, M.D., Zhou, J., Kaspari, M., Helliker, B.R.,
Enquist, B.J. (2015) Plant thermoregulation: energetics,
trait–environment interactions, and carbon economics. Trends in
Ecology & Evolution , 30 , 714–724.
Michaletz, S.T., Weiser, M.D., McDowell, N.G., Zhou, J., Kaspari, M.,
Helliker, B.R., Enquist, B.J. (2016) The energetic and carbon economic
origins of leaf thermoregulation. Nature Plants , 2 ,
16129.
Nardini, A., Pedà, G., Rocca, N.L. (2012) Trade‐offs between leaf
hydraulic capacity and drought vulnerability: morpho‐anatomical bases,
carbon costs and ecological consequences. New Phytologist ,196 , 788–798.
Nobel, P.S., Smith, S.D. (1983) High and low temperature tolerances and
their relationships to distribution of agaves. Plant, Cell &
Environment , 6 , 711–719.
O’Sullivan, O.S., Heskel, M.A., Reich, P.B., Tjoelker, M.G.,
Weerasinghe, L.K., Penillard, A., Zhu, L., Egerton, J.J., Bloomfield,
K.J., Creek, D., Bahar, N.H., Griffin, K.L., Hurry, V., Meir, P.,
Turnbull, M.H., Atkin, O.K. (2017) Thermal limits of leaf metabolism
across biomes. Global Change Biology , 23 , 209–223.
Padfield, D., Matheson, G. (2018) nls.multstart: Robust Non-Linear
Regression using AIC Scores. R package version 1.0.0 .
https://CRAN.R-project.org/package=nls.multstart
Padfield, D., Lowe, C., Buckling, A., Ffrench‐Constant, R., Student
Research Team, Jennings, S., Shelley, F., Ólafsson, J.S., Yvon‐Durocher,
G. (2017) Metabolic compensation constrains the temperature dependence
of gross primary production. Ecology Letters , 20 ,
1250–1260.
Pagel, M. (1999) Inferring the historical patterns of biological
evolution. Nature , 401 , 877–884.
Perez, T.M., Feeley, K.J. (2020a) Photosynthetic heat tolerances and
extreme leaf temperatures. Functional Ecology , 34 ,
2236−2245.
Perez, T.M., Feeley, K.J. (2020b) Weak phylogenetic and climatic signals
in plant heat tolerance. Journal of Biogeography. In press. doi:
https://doi.org/10.1111/jbi.13984
R Core Team (2019). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.
Rey-Sánchez, C., Slot, M., Posada, J.M., Kitajima, K. (2016) Spatial and
seasonal variation of leaf temperature within the canopy of a tropical
forest. Climate Research , 71 , 75-89.
Revell, L.J. (2010) Phylogenetic signal and linear regression on species
data. Methods in Ecology and Evolution 1, 319−329.
Revell, L.J. (2012) Phytools: an R package for phylogenetic comparative
biology (and other things). Methods in Ecology and Evolution ,3 , 217–223.
Rifai, S.W., Li, S., Malhi, Y. (2019) Coupling of El Niño events and
long-term warming leads to pervasive climate extremes in the terrestrial
tropics. Environmental Research Letters , 14 , p.105002.
Sachs, J. (1864) Über die obere Temperaturgränze der Vegetation.Flora , 47 , 5–12, 24–29, 33–39, 65–75.
Sapper, I. (1935) Versuche zur Hitzeresistenz der Pflanzen.Planta , 518–556.
Sastry, A., Barua, D. (2017) Leaf thermotolerance in tropical trees from
a seasonally dry climate varies along the slow-fast resource acquisition
spectrum. Scientific Reports , 7 , 11246.
Sastry, A., Guha, A., Barua, D. (2018) Leaf thermotolerance in dry
tropical forest tree species: relationships with leaf traits and effects
of drought. AoB Plants , 10 , plx070.
Scheffer, M. (2009) Critical transitions in nature and society (Vol.
16). Princeton University Press.
Slot, M., Rey-Sánchez, C., Gerber, S., Lichstein, J.W., Winter, K.,
Kitajima, K. (2014) Thermal acclimation of leaf respiration of tropical
trees and lianas: response to experimental canopy warming, and
consequences for tropical forest carbon balance. Global Change
Biology , 20 , 2915–2926.
Slot M, Garcia MN, Winter K (2016) Temperature response of
CO2 exchange in three tropical tree species. Functional
Plant Biology 43, 468–478
Slot, M., Winter, K. (2017a) In situ temperature response of
photosynthesis of 42 tree and liana species in the canopy of two
Panamanian lowland tropical forests with contrasting rainfall regime.New Phytologist , 214 , 1103–1117.
Slot, M., Winter, K. (2017b) Photosynthetic acclimation to warming in
tropical forest tree seedlings. Journal of Experimental Botany ,68 , 2275–2284.
Slot, M., Krause, G.H., Krause, B., Hernández, G.G., Winter, K. (2019)
Photosynthetic heat tolerance of shade and sun leaves of three tropical
tree species. Photosynthesis Research , 141 , 119–130.
Smith, S.A., Brown, J.W. (2018) Constructing a broadly inclusive seed
plant phylogeny. American Journal of Botany , 105 ,
302–314.
Sullivan, M.J., Lewis, S.L., Affum-Baffoe, K., Castilho, C., Costa, F.,
Sanchez, A.C., Ewango, C.E., Hubau, W., Marimon, B., Monteagudo-Mendoza,
A. et al . (2020) Long-term thermal sensitivity of Earth’s
tropical forests. Science , 368 , 869–874.
Taylor, T.C., Smith, M.N., Slot, M., Feeley, K.J. (2019) The capacity to
emit isoprene differentiates the photosynthetic temperature responses of
tropical plant species. Plant, Cell & Environment , 42 ,
2448–2457.
Tiwari, R., Gloor, E., da Cruz, W.J.A., Schwantes Marimon, B.,
Marimon‐Junior, B.H., Reis, S.M., de Souza, I.A., Krause, H.G., Slot,
M., Winter, K., et al. (2020) Photosynthetic quantum efficiency
in south-eastern Amazonian trees may be already affected by climate
change. Plant, Cell & Environment . In press. doi:
https://doi.org/10.1111/pce.13770.
Vogel, S. (2009) Leaves in the lowest and highest winds: temperature,
force and shape. New Phytologist , 183 , 13–26.
Webster, C., Westoby, M., Rutter, N. and Jonas, T. (2018)
Three-dimensional thermal characterization of forest canopies using UAV
photogrammetry. Remote Sensing of Environment , 209 ,
835–847.
Wikström, N., Savolainen, V., Chase, M.W. (2001) Evolution of the
angiosperms: calibrating the family tree. Proceedings of the Royal
Society of London. Series B: Biological Sciences , 268 ,
2211–2220.
Wing, S.L., Herrera, F., Jaramillo, C.A., Gómez-Navarro, C., Wilf, P.
and Labandeira, C.C. (2009) Late Paleocene fossils from the Cerrejón
Formation, Colombia, are the earliest record of Neotropical rainforest.Proceedings of the National Academy of Sciences , 106 ,
18627–18632.
Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A.,
FitzJohn, R.G., McGlinn, D.J., O’Meara, B.C., Moles, A.T., Reich, P.B.,
Royer, D.L. (2014) Three keys to the radiation of angiosperms into
freezing environments. Nature , 506 , 89–92.
Zhu, L., Bloomfield, K.J., Hocart, C.H., Egerton, J.J., O’Sullivan,
O.S., Penillard, A., Weerasinghe, L.K., Atkin, O.K. (2018) Plasticity of
photosynthetic heat tolerance in plants adapted to thermally contrasting
biomes. Plant, Cell & Environment , 41 , 1251–1262.
Zotz G, Harris G, Königer M,Winter K (1995) High rates of photosynthesis
in the tropical pioneer tree, Ficus insipida Willd. Flora 190,
265–272