References
Bechet, Q,, Shilton, A., and Guieysse, B., (2013). Modeling the effect
of light and temperature on algae growth: State of the art and critical
assessment for productivity prediction during outdoor cultivation,Biotechnology Advances 31 , 1648-1663.
Chaiklahan, R., Khonsarn, N., Chirasuwan, N., Ruengjitchatchawalya, M.,
Bunnag, B., Tanticharoen, M. (2007). Response of Spirulina platensis C1
to high temperature and high light intensity. Kasetsart J. - Nat.
Sci. 41 :123–129.
Chance, R.& Roessler, P. (2019). Production of Biocrude in an Advanced
Photobioreactor-Based Biorefinery. DOE Bioenergy Technol. Off.https://www.energy.gov/sites/prod/files/2019/03/f61/Production of
Biocrude in an Advanced Photobioreactor-Based
Biorefinery_EE0007690.pdf.
Colla, L.M., Oliveira Reinehr,C., Reichert, C., Costa, J. (2007).
Production of biomass and nutraceutical compounds by Spirulina platensis
under different temperature and nitrogen regimes. Bioresour.
Technol. 98 :1489–1493.
https://www.sciencedirect.com/science/article/pii/S0960852405004761.
Falkowski, P.G., Raven, J.A. (2007). Aquatic photosynthesis .
Princeton University Press.
Jahnke, J., Mahlmann, D.M., Jacobs, P., Priefer, U. (2011). The
influence of growth conditions on the cell dry weight per unit biovolume
of Klebsormidium flaccidum (Charophyta), a typical ubiquitous soil alga.J. Appl. Phycol. 23 :655–664.
Kirst, H., Formighieri, C., Melis, A. (2014). Maximizing photosynthetic
efficiency and culture productivity in cyanobacteria upon minimizing the
phycobilisome light-harvesting antenna size. Biochim. Biophys.
Acta - Bioenerg. 1837 :1653–1664.
http://www.sciencedirect.com/science/article/pii/S0005272814005362.
Kumar, M., Kulshreshtha, J., Singh, G. (2011). Growth and biopigment
accumulation of cyanobacterium spirulina platensis at different light
intensities and temperature. Brazilian J. Microbiol.42 :1128–1135.
Lea-Smith, D., Bombelli, P., Dennis, J., Scott, S., Smith, A., Howe, C.
(2014). Phycobilisome-Deficient Strains of Synechocystis sp. PCC 6803
Have Reduced Size and Require Carbon-Limiting Conditions to Exhibit
Enhanced Productivity. Plant Physiol. 165 :705–714.
Legere, E. (2017). Algenol Integrated Pilot-Scale Biorefinery. DOE
Final Proj. Rep. https://www.osti.gov/servlets/purl/1360777.
Marsac, D., Houmard, J. (1988). Complementary chromatic adaptation:
Physiological conditions and action spectra. Methods Enzymol.167 :318–328.
Panyakampol, J., Cheevadhanarak, S., Senachak, J., Dulsawat, S.,
Siangdung, W., Tanticharoen, M., Paithoonrangsarid, K. (2016). Different
effects of the combined stress of nitrogen depletion and high
temperature than an individual stress on the synthesis of biochemical
compounds in Arthrospira platensis C1 (PCC 9438). J. Appl.
Phycol. 28 :2177–2186.
https://doi.org/10.1007/s10811-015-0765-4.
Panyakampol, J., Cheevadhanarak, S., Sutheeworapong, S., Chaijaruwanich,
J., Senachak, J., Siangdung, W., Jeamton,W., Tanticharoen, M.,
Paithoonrangsarid, K. (2015). Physiological and transcriptional
responses to high temperature in arthrospira (Spirulina) platensis C1.Plant Cell Physiol. 56 :481–496.
http://dx.doi.org/10.1093/pcp/pcu192.
Sánchez‐Luna, L., Bezerra, R., Matsudo, M., Sato, S., Converti, A., de
Carvalho, J. (2007). Influence of pH, Temperature, and Urea
MolarFlowrate onArthrospira platensisFed-BatchCultivation: A Kinetic and
Thermodynamic Approach. Biotechnol. Bioeng. 96 :702–711.
Torzillo, G., Sacchi, A., Materassi, R. (1991a). Temperature as an
important factor affecting productivity and night biomass loss in
Spirulina platensis grown outdoors in tubular photobioreactors.Bioresour. Technol. 38 :95–100.
Torzillo, G., Sacchi, A., Materassi, R., Richmond, A. (1991b). Effect of
temperature on yield and night biomass loss in Spirulina platensis grown
outdoors in tubular photobioreactors. J. Appl. Phycol.3 :103–109.
Trabelsi, L., Ben Ouada, H., Bacha, H., Ghoul, M. (2009). Combined
effect of temperature and light intensity on growth and extracellular
polymeric substance production by the cyanobacterium Arthrospira
platensis. J. Appl. Phycol. 21 :405–412.
Vonshak, A., Novoplansky, N. (2008). Acclimation to low temperature of
two Arthrospira platensis (cyanobacteria) strains involves
down-regulation of PSII and improved resistance to photoinhibition.J. Phycol. 44 :1071–1079.
Watras, C., Morrison, K., Rubsam, J., Hanson, P., Watras, A., LaLiberte,
G., Milewsk,i P. (2017). A temperature compensation method for
chlorophyll and phycocyanin fluorescence sensors in freshwater.Limnol. Oceanogr. Methods 15 :642–652.
Yoshikawa, N. & Belay, A. (2008). Single-Laboratory Validation of a
Method for the Determination of c-Phycocyanin and Allophycocyanin in
Spirulina (Arthrospira) Supplements and Raw Materials by
Spectrophotometry. J. AOAC Int. 91 :650–655.
Zarrouk, C. (1966). Contribution a L’etude D’une Cianophycee: Influence
de Divers Facteurs Physiques Et Chimiques Sur la Croissance Et la
Photosynthese de Spirulina Maxima (Setch. Et Garndner) Geitler. Faculte
des Sciences, Universite de Paris.
https://books.google.com/books?id=Hq5EcgAACAAJ.