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Abstract

In this paper we investigate the size of a bi-dimensional fragmentation pro-
cess. A rectangle of dimensions x and y is considered, it is split into four
sub-rectangles with some probability that depends on x and y, we iterate until
the stop of the process. The total number of the all the obtained rectangles at
the end of the process satisfies some equality in distribution which is resolved ,
using some tools on integral equations, via the contraction method.

Keywords: Fragmentation process, contraction method, Zolotarev metric, Integral
equations.

1 Introduction

Fragmentation process is a process that describes the evolution of an object which
is break over the time according some distribution, it applies in a wide range of
fields such that biology [10], physics [3], computer sciences [5, 9] etc. There are two
major types of fragmentation process, the first is the homogenous fragmentation
where a piece is cut independently on its mass, the second is the inhomogeneous
fragmentation where the fragmentation of the object depends on its mass. Several
authors studied the fragmentation process of an interval x, namely Janson [8] who
gave when the probability of dislocation is p(x) = 1{x≥1} the mean, the variance and
the asymptotic distribution of the total number of the intervals. Afterwards, Aguech
[2] studied the fragmentation of the interval x when the fragmentation probability is
p(x) = 1−e−x, he obtained the behavior of the size of the fragmentation process. A
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generalization of this model in the bi-dimensional case is introduced by Aguech and
Ilji [1], they consider a rectangle of dimensions x and y at the beginning. At time n =
1, with probability p(x, y) = 1{x≥1,y≥1} the rectangle is cut into four sub-rectangles
according to a vector (U1, U2) for the side x and (V1, V2) for the side y in such a way
we obtain four sub-rectangles with dimensions (xU1, yV1), (xU1, yV2), (xU2, yV1)
and (xU2, yV2), if x < 1 or y < 1 the rectangle remains stable for ever. This
procedure is repeated in all the sub-rectangles with new and independent copies of
(U1, U2) and (V1, V2). The process stops almost surely after a finite number of steps,
it leaves a finite number of rectangles denoted by N(x, y). Basing on the bivariate
renewal theory, Aguech and Ilji [1] give the expectation and the variance of N(x, y).
The purpose of this paper is to give the asymptotic distribution of N(x, y) via a
contraction Theorem that underlines such equality in distribution. The contraction
Theorem can also be proved using Integral equations techniques. Integral equations
tools and applications can be found on [4]

2 Description of the model, notations and assumptions

Let U = (U1, U2) and V = (V1, V2) be two independent random vectors such
that U1 + U2 = 1 and V1 + V2 = 1 almost surely. We start with a rectangle
with dimensions x and y larger than one (x ≥ 1 and y ≥ 1). At discrete time
n = 1, we break the rectangle into four rectangles as the following: x (respectively
y) is divided according to U (respectively V) into two intervals of lengths xU1
and xU2 (respectively yV1 and yV2). We obtain four sub-rectangles of dimensions
(xU1, yV1), (xU1, yV2), (xU2, yV1) and (xU2, yV2). We repeat on each rectangle with
dimensions larger than one (each of the dimensions is larger than one) this proce-
dure with independent copies of (U,V). The process stops almost surely leaving a
finite number of rectangles denoted by N(x, y). By definition we have the following
equality in distribution ,

N(x, y) D=


1, if x < 1 or y < 1;

1 +
2∑
i=1

2∑
j=1

Ni,j(xUi, yVj), if not,

where Ni,j(., .), i, j ∈ {1, 2} are independent copies of N(., .).
For all (i, j) ∈ {1, 2}2, let Xi = − ln(Ui), Yj = − ln(Vj), µij the joint distribution
of (Xi, Yj) and we define on [0,+∞[×[0,+∞[ the probability measure ν by

dν(t1, t2) = e−(t1+t2)
2∑
i=1

2∑
j=1

dµij . (1)

Let M be a positif number, for i = 1, 2 let Ai = {ti, |ti| < M} and ACi its com-
plementary set on R+ × R+. The measure ν is said to belong to the class J2 if
its characteristic function Ψ satisfies the following conditions: There exist some
nonnegative numbers α1, α2 and c such that

• |Ψ(t1, t2)| ≤ c
|t1|α1 for all (t1, t2) ∈ AC1 ×A2,

• |Ψ(t1, t2)| ≤ c
|t2|α2 for all (t1, t2) ∈ A1 ×AC2 ,
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• |Ψ(t1, t2)| ≤ c
|t1|α1 |t2|α2 for all (t1, t2) ∈ AC1 ×AC2 .

If furthermore, ν has a finite mean and a definite positive matrix, ν is called to
belong to the set J∗2 .
Let us define the function Φ on R+ × R+ as follows:

Φ(t1, t2) =
2∑
i=1

2∑
j=1

E
(
U t1i V

t2
j

)
,

and let

θ1 = −
2∑
i=1

E
(
Ui ln(Ui)

)
= ∂Φ
∂t1

(t1, t2)|(t1,t2)=(1,1)

and

θ2 = −
2∑
j=1

E
(
Vj ln(Vj)

)
= ∂Φ
∂t2

(t1, t2)|(t1,t2)=(1,1).

Remark: It is not difficult to see that the mean of the measure ν is given by
θ = (θ1, θ2).

Notations:

These notations will be useful in the paper: Let X =
(
X(1), X(2)) be a random

vector with distribution ν (1) that belongs to J∗2 , we denote by

• Σ the covariance matrix of X, |Σ| the determinant of Σ and Σ−1 its inverse
matrix,

• σ2 = (σ2
1, σ

2
2) =

(
Var(X(1)),Var(X(2))

)
, K = θ1√

2π|Σ|(θ′Σ−1θ)

• For k = 1, 2, ak = E
[
(X(k)−θk)3

]
σ4
k

,

• c0 = −1−2(a1θ1+a2θ2)
4θ′Σ−1θ

+ 1
2(θ′Σ−1θ)2

(
a1θ3

1
σ2

1
+ a2θ3

2
σ2

2

)
,

• c1 = θ2a2 − 1 + θ2
2−a1θ1θ2

2−2a2θ3
2

σ2
2θΣ−1θ

+ θ2
2

σ2
2(θ′Σ−1θ)2

(a1θ3
1

σ2
1

+ a2λ3
2

σ2
2

)
,

• c2 = θ2
2
σ2

2

(
− 1 + θ2

2
σ2

2θ′Σ−1θ

)
,

• γ =
b∑
i=1

b′∑
j=1

E
[
U2
i V

2
j

(
ln(Vj)− θ2

θ1
ln(Ui)

)]
,

• ρ =
b∑
i=1

b′∑
j=1

E
[
U2
i V

2
j

(
ln(Vj)− θ2

θ1
ln(Ui)

)2]
,
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• For all (i, j) ∈ {1, 2}2 we denote by

ωij = − ln(Vj) + θ2
θ1

ln(Ui),

L1(Ui, Vj) = K

2θ
3
2
2

[(
1 + c1 − 2c2

θ1
+ 2c2

θ2

)
ωij + c2

θ2
ω2
ij

]
and

L2(Ui, Vj) = c2Kωij

θ
5
2
2

,

• L̃1 =
K

2∑
i=1

Ui ln(Ui)

2θ1
√
θ2

−
2∑
i=1

2∑
j=1

UiVjL1(Ui, Vj), L̃2 =
2∑
i=1

2∑
j=1

UiVjL2(Ui, Vj)

• A1 = E
[
L̃2

1

]
, A2 = E

[
L̃1L̃2

]
and A3 = E

[
L̃2

2

]
,

• ‖x‖ the Euclidean norm of x,

• for a number x such that n < x ≤ n+1 where n ∈ N we denote by dxe = n+1.

Assumptions:

We need these assumptions in the paper

• (A): The random variables U1 and V1 are two absolutely continuous, such that
2∑
i=1

E
[
Ui| ln(Ui)|3 + Vi| ln(Vi)|3

]
<∞.

• (B): The probability measure ν (1) belongs to the set J∗2 ,

3 Contraction Theorem

We prove in this section a contraction Theorem that allows to obtain the size of our
fragmentation process. Let Md be the space of the measures on Rd and let `s be
the metric defined on the sub-spaceMd

s := {µ ∈Md : ‖µ‖s = E(‖µ‖s)
1
s <∞} by

`s(µ, ν) = inf{‖X − Y ‖s∧1
s : `(X) = µ, `(Y ) = ν} for all µ, ν ∈Md

s .

We define the sub-spaces ofMd
s by:

Md
s(0, Id) =



Md
s , if 0 < s ≤ 1;

{µ ∈Md
s : E(µ) = 0}, if 1 < s ≤ 2;

{µ ∈Md
s : E(µ) = 0, Cov(µ) = Id}, if 2 < s ≤ 3.
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3.1 Zolotarev metric: Definition and properties

Definition: For s > 0, the Zolotarev metric ξs, is defined by

ξs(X,Y ) = sup
f∈Fs
{| E(f(X)− F (Y )) |}

where
Fs = {f ∈ Cm(Rd,R) : ‖f (m)(x)− f (m)(y)‖ ≤‖ x− y ‖α}

with m = dse−1 ≥ 0, α = s−m, f (m) the m derivative of f and Cm(Rd,R) denotes
the set of functions m times continuously differentiable.

Properties: Let’s recall some properties of ξs (more details can be found in [6, 7,
11, 12]).

• The convergence according to ξs implies the weak convergence.

• For all c 6= 0, ξs(cX, cY ) =| c |s ξs(X,Y ) (we say that ξs is homogeneous of
order s)

• For X and Y linear combinations of independent random vectors (Xi)1≤i≤p

and (Yj)1≤j≤p ,that is X =
p∑
i=1

ciXi and Y =
p∑
i=1

ciYi we have

ξs(X,Y ) ≤
p∑
i=1
| ci |s ξs(Xi, Yi)

• ξs(X + Z, Y + Z) ≤ ξs(X,Y ) for all Z independent of (X,Y ) and

ξs(AX,AY ) ≤ ||A||sopξs(X,Y ) where ||A||op = sup
||u||=1

||Au||.

• ξs(X,Y ) ≤ Γ(1+α)
Γ(1+s)

(
E(||X||s) + E(||Y ||s)

)
.

• π1+s(||X||, ||Y ||) ≤ Cξs(X,Y ) where C > 0 and π is the Prohorov metric

• If all the mixed moments of X and Y up to order m are zero and the moments
of order s are finite, then we have:

ξs(X,Y ) ≤ Γ(1+α)
Γ(1+s)

[
2mκs(X,Y )+(2κs(X,Y ))α

(
min

(
E(||X||s)

1
s , E(||Y ||s)

1
s
))1−α]

where,

κs(X,Y ) = sup
{
|E(f(X)− f(Y ))| : |f(x)− f(y)| ≤

∣∣∣∣∣∣||x||s−1x− ||y||s−1x
∣∣∣∣∣∣}.
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3.2 Contraction Theorem:

Let τ0 > 0, B+(0, τ0) = {(t1, t2) ∈ R2
+ : ‖(t1, t2)‖ ≤ τ0} andBc

+(0, τ0) = R2
+\B+(0, τ0).

Let (Y (t1, t2))t1,t2≥0 be a d−dimensional process satisfying the recursion

Y (t1, t2) D=
K1∑
i=1

K2∑
j=1

Aij(t1, t2)Yij(Tij(t1, t2)) + b(t1, t2), (t1, t2) ∈ Bc
+(0, τ0), (2)

where

• K1 and K2 are two nonnegative integers,

•
(
Y11(t1, t2)

)
t1,t2≥0

, · · · ,
(
YK1K2(t1, t2)

)
t1,t2≥0

,
(
A11(t1, t2), · · · , AK1K2(t1, t2),

b(t1, t2), T (t1, t2)
)
t1,t2≥0

are independent,

• Aij(t1, t2) is a random d × d matrix for all (i, j) ∈ {1, · · · ,K1} × {1 · · · ,K2}
and T (t1, t2) =

(
T11(t1, t2), · · · , TK1K2(t1, t2)

)
is a vector of random indices

such that Tij(t1, t2) ∈ [0, t1]× [0, t2],

• for (u, v) ∈ [0, t1] × [0, t2] and (i, j) ∈ {1, · · ·K1} × {1, · · ·K2}, Yij(u, v) is an
independent copy of Y (u, v) .

Assume that there exists τ1 ≥ τ0 such that the covariance matrix of Y (t1, t2) denoted
by Cov

(
Y (t1, t2)

)
is a definite positive matrix for all (t1, t2) ∈ Bc

+(0, τ1). Consider
the rescaled process defining by:

X(t1, t2) = C−
1
2 (t1, t2)

(
Y (t1, t2)−M(t1, t2)

)
, (t1, t2) ∈ R2

+, (3)

where C(t1, t2) is a definite symmetric positive matrix andM(t1, t2) ∈ Rd satisfying:

M(t1, t2) = E
[
Y (t1, t2)

]
for 1 < s ≤ 3,

and C(t1, t2) =


Id if (t1, t2) ∈ B+(0, τ1)

Cov
(
Y (t1, t2)

)
if (t1, t2) ∈ Bc

+(0, τ1)
for 2 < s ≤ 3.

Thus

E
(
X(t1, t2)

)
= 0 for 1 < s ≤ 3 and for 2 < s ≤ 3,

Cov
(
X(t1, t2)

)
=


Cov

(
Y (t1, t2)

)
if (t1, t2) ∈ B+(0, τ1)

Id if (t1, t2) ∈ Bc
+(0, τ1).
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Furthermore,
(
X(t1, t2)

)
t1,t2≥0

satisfies the following recursion:

X(t1, t2) D=
K1∑
i=1

K2∑
j=1

Ãij(t1, t2)Xij(Tij(t1, t2)) + b̃(t1, t2) for (t1, t2) ∈ Bc
+(0, τ1) (4)

where Xij(u, v) is an independent copy of X(u, v) for all i = 1, · · · ,K1

and j = 1, · · · ,K2, Ãij(t1, t2) = C−
1
2 (t1, t2)Aij(t1, t2)C

1
2 (Tij(t1, t2))

and b̃(t1, t2) = C−
1
2 (t1, t2)

[
b(t1, t2) −M(t1, t2) +

K1∑
i=1

K2∑
j=1

Aij(t1, t2)Mij(Tij(t1, t2))
]
.

Clearly the two sequences
(
Ã11(t1, t2), ..., ÃK1K2(t1, t2), b̃(t1, t2), T (t1, t2)

)
t1,t2≥0

and
(
X11(t1, t2)

)
t1,t2≥0

, · · · ,
(
XK1K2(t1, t2)

)
t1,t2≥0

are independent.

Proposition 1. Let T the map defined onMd
s(0, Id) by

T : µ 7−→ L
( K1∑
i=1

K2∑
j=1

A∗ijZij + b∗
)

such that (A∗11, · · · , A∗K1K2
, b∗), Z11, · · · , ZK1K2 are i.i.d and L(Zij) = µ for all

(i, j) ∈ {1, · · · ,K1} × {1, · · · ,K2}. If the following assumptions are satisfied

• for 0 < s ≤ 3,
K1∑
i=1

K2∑
j=1

E(‖ A∗ij ‖sop) < 1 (the Lipschitz property),

• E(b∗) = 0 for all 1 < s ≤ 2,

• for 2 < s ≤ 3

E(bb∗Tr) +
K1∑
i=1

K2∑
j=1

E(A∗ijA∗Trij ) = Id, (5)

then T admits a unique fixed point inMd
s(0, Id).

Proof. For all µ ∈Md
s(0, Id), Tµ ∈Md

s(0, Id) for 0 < s ≤ 3 , in addition

ξs(Tµ, Tν) = ξs
( K1∑
i=1

K2∑
j=1

A∗ijZij + b∗,
K1∑
i=1

K2∑
j=1

A∗ijWij + b∗
)

≤
( K1∑
i=1

K2∑
j=1

E(‖ A∗ij ‖sop)
)
ξs(µ, ν).

Then T is a strict contraction in Md
s(0, Id) who is a complete space (by Svante

Janson [8]) so by the fixed point Theorem , T has a unique solution inMd
s(0, Id).

Theorem 1. Let (Y (t1, t2))t1,t2≥0 be an s−integrable (0 < s ≤ 3) process sat-
isfying (2) and (X(t1, t2))t1,t2≥0 its rescaled process defined by (3) and satisfying
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(4). Assume that Ã11(t1, t2), · · · , ÃK1K2(t1, t2), b̃(t1, t2) are s−integrables and that
sup

(u,v)∈[0,t1]×[0,t2]
||X(u, v)||s <∞ for all (t1, t2) ∈ R2

+ and as ‖(t1, t2)‖ goes to infinity

(
Ã11(t1, t2), · · · , Ã11(t1, t2), b̃(t1, t2)

)
`s−→
(
A∗11, · · · , A∗K1K2 , b

∗
)

(6)

K1∑
i=1

K2∑
j=1

E(||A∗ij ||sop) < 1 (7)

E
(
||Ãij(t1, t2)||sop1{Tij(t1,t2)∈B+(0,τ)}

)
−→

‖(t1,t2)‖→+∞
0 for all τ > 0, 1 ≤ i ≤ K1, 1 ≤ j ≤ K2.

(8)
Then (X(t1, t2))(t1,t2) converges in distribution in Md

s(0, Id) to a random variable
X where L(X) is the unique solution of the map

T : µ 7−→ L
( K1∑
i=1

K2∑
j=1

A∗ijZij + b∗
)

(9)

and (A∗11, · · · , A∗K1K2
, b∗), Z11, · · · , ZK1K2 are independent and L(Zij) = µ for all

1 ≤ i ≤ K1 and 1 ≤ j ≤ K2. Furthermore, we have,{
E(X) = 0 for 1 < s ≤ 3
Cov(X) = Id for 2 < s ≤ 3.

Proof. As A∗ij and b̃∗ are s-integrable then ||X||s is finite. Moreover E
(
X(t1, t2)

)
= 0

for 1 < s ≤ 3 then E
(
b̃(t1, t2)

)
= 0 but b̃(t1, t2) `s−→ b∗ thus E(b∗) = 0. In addition,

for 2 < s ≤ 3 and (t1, t2) ∈ Bc
+(0, τ1)

Id = Cov(X(t1, t2)) = E
(
X(t1, t2)X(t1, t2)Tr

)
=

K1∑
i=1

K2∑
j=1

E
[
Ãij(t1, t2)Ãij(t1, t2)Tr1{Tij(t1,t2)∈Bc+(0,τ1)}

]
+ E

[
b̃(t1, t2)b̃(t1, t2)Tr

]
+

K1∑
i=1

K2∑
j=1

E
[
Ãij(t1, t2)Cov

[
Yij(Tij(t1, t2))

]
Ãij(t1, t2)Tr1{Tij(t1,t2)∈B+(0,τ1)}

]
.

Using (6) we obtain: E
[
b̃(t1, t2)b̃(t1, t2)Tr

]
−→

‖(t1,t2)‖→+∞
E(b∗b∗Tr) in fact, by the

Hölder inequality we have:

|E[b̃(t1, t2)b̃(t1, t2)Tr − b∗b∗Tr]| = |E[b̃(t1, t2)(b̃(t1, t2)Tr − b∗Tr) + (b̃(t1, t2)− b∗)b∗Tr]|

≤ E
[∣∣∣(b̃(t1, t2)− b∗)

∣∣∣s] 1
sE
[∣∣∣b∗Tr∣∣∣ s

s−1
] s−1

s

+E
[∣∣∣(b̃(t1, t2)− b∗)Tr

∣∣∣s] 1
sE
[
|b̃(t1, t2)Tr|

s
s−1
] s−1

s
,

therefore
lim

‖(t1,t2)‖→+∞
|E[b̃(t1, t2)b̃(t1, t2)Tr − b∗b∗Tr]| → 0.
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Similarly, we prove that E
(
Ãij(t1, t2)Ãij(t1, t2)Tr

)
−→ E

(
A∗ijA

∗Tr
ij

)
then

Id = E(bb∗Tr) +
K1∑
i=1

K2∑
j=1

E(A∗ijA∗Trij ) for 2 < s ≤ 3,

then by proposition (1), T admits a unique fixed point X. Proving now that
ξs(X(t1, t2), X) −→ 0, for this define the process Q by: for (t1, t2) ∈ Bc

+(0, τ1)

Q(t1, t2) D=
K1∑
i=1

K2∑
j=1

Ãij(t1, t2)
[
Xij(Tij(t1, t2))1{Tij(t1,t2)∈B+(0,τ1)}

+Xij × 1{Tij(t1,t2)∈BC+ (0,τ1)}

]
+ b̃(t1, t2)

where
(
Ã11(t1, t2), · · · , ÃK1K2(t1, t2), b̃(t1, t2), T (t1, t2)

)
t1,t2≥0

, X11, · · · , XK1K2 ,(
X11(t1, t2)

)
t1,t2≥0

, · · · ,
(
XK1K2(t1, t2)

)
t1,t2≥0

are independent, Xij
D= X,

Xij(u, v) D= X(u, v), for (i, j) ∈ {1, · · · ,K1}×{1, · · · ,K2} and for (u, v) ∈ B+(0, τ1).

Clearly, ||Q(t1, t2)||s < ∞ for all 0 < s ≤ 3 and E
[
Q(t1, t2)

]
= 0 for 1 < s ≤ 3.

For 2 < s ≤ 3

Cov
(
Q(t1, t2)

)
=

K1∑
i=1

K2∑
j=1

E
[
Ãij(t1, t2)Cov

[
Xij(Tij(t1, t2))

]
Ãij(t1, t2)Tr1{Tij(t1,t2)∈B+(0,τ1)}

]

+
K1∑
i=1

K2∑
j=1

E
[
Ãij(t1, t2)Cov

[
Xij

]
Ãij(t1, t2)Tr1{Tij(t1,t2)∈Bc+(0,τ1)}

]
+E
[
b̃(t1, t2)b̃(t1, t2)Tr

]
= Cov

(
Xij(t1, t2)

) (
since Cov

(
Xij

)
= Id for 2 < s ≤ 3

)
= Id.

By the triangular inequality we have

ξs(X(t1, t2), X) ≤ ξs(X(t1, t2), Q(t1, t2)) + ξs(Q(t1, t2), X).

Furthermore, for 1 < s ≤ 3, E
[
Q(t1, t2)

]
= E(X) = 0, then

ξs(Q(t1, t2), X) ≤ Γ(1+α)
Γ(1+s)

[
2mκs(Q(t1, t2), X)+(2κs(Q(t1, t2), X)

)α(min
(
||Q(t1, t2)||s, ||X||s

))1−α]
.

As κs and `s are topological equivalent, then to get κs(Q(t1, t2), X) → 0, it is
sufficient to prove that Λs(t1, t2) := `s(Q(t1, t2), X)→ 0. On the other hand

Λs(t1, t2) ≤
K1∑
i=1

K2∑
j=1
||Ãij(t1, t2)−A∗ij ||s||X||s +

K1∑
i=1

K2∑
j=1

∣∣∣∣∣∣1{(t1,t2)∈B(0,τ1)}||Ãij(t1, t2)||op
∣∣∣∣∣∣
s

×
(

sup
(u,v)∈[0,t1]×[0,t2]

||X(u, v)||+ ||X||s
)

+ ||b̃(t1, t2)− b∗||s.
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Thus by (6) and (8), Λs(t1, t2) → 0, it follows that ξs(Q(t1, t2), X) → 0. On the
other hand, there exists some positive real c such that

ξs(X(t1, t2), X) ≤ c
(
||X(t1, t2)||ss+||X||ss

)
≤ c

(
sup

(u,v)∈[0,t1]×[0,t2]
||X(u, v)||ss+||X||ss

)
<∞.

The last inequality means that
(
ξs(X(t1, t2), X)

)
t1,t2

is bounded.
Let a(t1, t2) = ξs(X(t1, t2), Q(t1, t2)) and L = lim sup ξs(X(t1, t2), X) thus for all
ε > 0 there exists τ2 > 0, such that:

∀ (t1, t2) ∈ Bc
+(0, τ2), ξs(X(t1, t2), X) ≤ L+ ε,

we have

a(t1, t2) ≤
K1∑
i=1

K2∑
j=1

E
[
||Ãij(t1, t2)||sopξs

(
Xij(Tij(t1, t2), X

)
1{Tij(t1,t2)∈Bc+(0,τ1)}

]

≤
K1∑
i=1

K2∑
j=1

E
[
||Ãij(t1, t2)||sopξs

(
Xij(Tij(t1, t2), X

)
1{Tij(t1,t2)∈Bc+(0,τ1)∩B+(0,τ2)}

]

+
K1∑
i=1

K2∑
j=1

E
[
||Ãij(t1, t2)||sopξs

(
Xij(Tij(t1, t2), X

)
1{Tij(t1,t2)∈Bc+(0,τ1)∩Bc+(0,τ2)}

]

≤
K1∑
i=1

K2∑
j=1

E[||Ãij(t1, t2)||sop1{Tij(t1,t2)∈Bc+(0,τ1)∩B+(0,τ2)}] sup
Bc+(0,τ1)

ξs(X(u, v), X)

+(L+ ε)
K1∑
i=1

K2∑
j=1

E
[
||Ãij(t1, t2)||sop

]
.

When ||(t1, t2)|| → ∞, we get L ≤ (L + ε)
K1∑
i=1

K2∑
j=1

E
(
||A∗ij ||sop

)
for all ε > 0. In

particular, if we choose ε =
L

(
1−

K1∑
i=1

K2∑
j=1

E
(
||A∗ij ||

s
op

)
2
K1∑
i=1

K2∑
j=1

E
(
||A∗ij ||sop

) , necessarily L = 0.

4 Limit in distribution

Let m(x, y) and σ2(x, y) be respectively the mean and the variance of the total
number N(x, y) of the rectangles. Aguech and Ilji [1] prove that for all positif
number a we have

m(xθ1 , axθ2) = Kaxθ1+θ2
√
θ2 ln x

+ aη(ln a)xθ1+θ2

ln
3
2 x

+ o( x
θ1+θ2

(ln
3
2x)

),

σ2(xθ1 , axθ2) = τ(ln a)a2x2(θ1+θ2)

ln3 x
+ o

(x2(θ1+θ2)

ln3 x

)
,

where η and τ are given for all α ∈ R by:

η(α) = K

2
√
θ2

[
c0 −

c1
θ1

+ c2
θ2

2
+ 2 c2

θ2
1

+ (1− α)
θ2

(1 + c1 − 2c2
θ1

) + c2(1− α)2

θ2
2

]
,
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τ(α) = A1 + 2A2α+A3α
2

1− Φ(2, 2) + 2(A2 + αA3)γ +A3ρ

[1− Φ(2, 2)]2 + A3γ
2

[1− Φ(2, 2)]3 .

Theorem 2. Let N(x, y) be the total number of rectangles obtained at the end of
the fragmentation process such that

A3γ
2 ≤ A1[1− Φ(2, 2)]2. (10)

Then under conditions (A)and (B), the normalized random variable N∗(xθ1 , xθ2) =
N(xθ1 ,xθ2 )−m(xθ1 ,xθ2 )√

σ2(xθ1 ,xθ2 )
converges in distribution when x → ∞ to the only solution of

the equation

N∗
D=

2∑
i=1

2∑
j=1

A∗ijN
∗
i,j +B∗ where

A∗ij = UiVj

√√√√τ(ln(Vj)− θ2
θ1

ln(Ui))
τ(0) and B∗ = −L̃1√

τ(0)
.

Proof. N∗(xθ1 , xθ2) satisfies the following equation in distribution

N∗(xθ1 , xθ2)D=
2∑
i=1

2∑
j=1

Aij(xθ1 , xθ2)N∗(xθ1Ui, x
θ2Vj) +B(xθ1 , xθ2)

where Aij(x, y) =
√
σ2(xUi, yVj)
σ2(x, y) and B(x, y) =

1−m(x, y) +
2∑
i=1

2∑
j=1

m(xUi, yVj)√
σ2(x, y)

.

Using Theorem 2 of [1], we have:

Aij(xθ1 , xθ2) = A∗ij + o(1) and B(xθ1 , xθ2) = B∗ + o(1).

The random vector(
A11(xθ1 , xθ2), A12(xθ1 , xθ2), A21(xθ1 , xθ2), A22(xθ1 , xθ2), B(xθ1 , xθ2)

)
converges in `2 to the random vector

(
A∗11, A

∗
12, A

∗
21, A

∗
22, B

∗
)
. Furthermore,

the assumption (10) ensures that
2∑
i=1

2∑
j=1

E(||A∗ij ||2op) < 1, thus it suffices to apply

Theorem (1) we conclude the requested result.
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