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Abstract

In this paper we are interested in two-dimensions fragmentation process that
describes the evolution of an object having a rectangular shape. We focus on the
non-homogenous fragmentation process where we break a rectangle according
to a distribution that depends on its dimensions. Via Integral equations tools,
we compute the mean and the variance of the distribution of the total number
of the sub-rectangles obtained at the end of the process.

1 Introduction

Random fragmentation applies in several fields, such as biology [17], physics [3],
computer sciences [7, 18], etc. The fragmentation process has been the interest of
many authors since the works of Brennan [6] and Sibuya [18]. Afterwards, Janson
[20] focused on a non-homogenous fragmentation of an interval of length x, i.e the
fragmentation of the interval depends on x, he studied the case when the fragmen-
tation probability is p(x) = 1{x≥1}, he gave the asymptotic behavior of the total
number of fragments obtained at the end of the process. More recently, Aguech [1]
studied the fragmentation of an interval, he considered the case when the fragmen-
tation probability is given by p(x) = 1 − e−x where x is length of the interval, he
described the asymptotic distribution of the total number of the obtained fragments.

In the literature, it is always common to consider an interval of length x at the
beginning. In this paper we study a fragmentation process in two dimensions. We
start with a rectangle of dimensions x and y. We suppose that with probability
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p(x, y) = 1{x≥1, y≥1} we decide to cut, independently and uniformly, x into b slides
and y into b′ slides where b and b′ are two nonnegative integers, with complementary
probability we decide to let them definitively stable. Let U = (U1, · · · , Ub) and
V = (V1, · · · , V ′b ) be two independent random vectors such that the lengths of
the sub-pieces obtained by cutting x are respectively: U1x, · · · , Ubx and the lengths
of the sub-pieces obtained by cutting y are respectively: V1x, · · · , Vb′x. We repeat
recursively and independently this procedure on all the sub-rectangles with new and
independent copies of U and V. The figure below illustrates an example of frag-
mentation of a rectangle when b = 3 and b′ = 2.

yV2

yV1

xU1 xU2 xU3

Figure 1: A cut rectangle at step 1 when b = 3, b′ = 2.

Note that the process stops almost surely after a finite number of steps and it leaves
a finite number of rectangles all stable, we note them by N(x, y). A fundamental
method to study the behavior of N(x, y) is the multivariate renewal theory. Such
a model has been studied by numerous authors, namely Mode, Hunter [10, 11],
Mallora, Omey and Santos [12] and Omey [16]. Smith [19] developed the renewal
theory, in particular the renewal density, for one dimension. Afterwards, these re-
sults have been extended by Mode [13] who studied the case of a bi-dimensional
renewal process. Unfortunately, the previous results are not sufficient to compute
the second moment of a non-homogenous fragmentation process. In this note, we
prove a renewal theorem which is efficient for computing the variance.
The paper is organized as follows: In Section (2), we give the notations and the as-
sumptions that we need in all the paper, we prove that the mean of N(x, y) satisfies
a bi-renewal equation for all integers b, b′ ≥ 2. In Section (3), we prove Theorem
(1) which gives under some assumptions the asymptotic of the bi-renewal density
function. In Section (4), we take b = b′ = 2 and we show that the variance of N(x, y)
satisfies a bi-renewal equation, via Theorem (1) we determine the approximations
of the mean and the variance of N(x, y).

2 Preliminaries

In this section, we describe the model of the fragmentation in the general case i.e.
b and b′ are two arbitrary nonnegative integers. We define the notations and we
prove that the mean of the total number of the rectangles obtained at the end of
the process is solution of a bi-renewal equation.
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2.1 Description of the model:

We consider a rectangle of sides of lengths x and y. We fix b and b′ two integers and
let U = (U1 · · · , Ub) and V = (V1 · · · , Vb′) be two independent random vectors such

that
b∑
i=1

Ui = 1 and
b′∑
j=1

Vj = 1. The fragmentation process is described as follows:

• If x ≥ 1 and y ≥ 1, we cut the rectangle according to the random vectors
U = (U1, · · · , Ub) for the dimension x and V = (V1, · · · , Vb′) for the dimension
y.

• If x < 1 or y < 1, we decide to leave the rectangle definitively stable.

• Recursively, we repeat independently at each step this procedure on all sub-
rectangles with independent copies of U and V.

Obviously, our fragmentation process can be considered as a random tree where the
root is the first rectangle, the internal nodes are the unstable rectangles and the
leaves are the stable rectangles. Let N(x, y) be the total number of pieces in the
fragmentation tree. Note that if x < 1 or y < 1, N(x, y) = 1 . We assume that
we start with a rectangle with dimensions greater than 1, then N(x, y) satisfies the
following equation:

N(x, y) D= 1 +
b∑
i=1

b′∑
j=1

Ni, j(xUi, yVj),

where for 1 ≤ i ≤ b and 1 ≤ j ≤ b′, Ni, j(., .) are independent copies of N(., .).
Let us define

m(x, y) = E[N(x, y)], m∗(x, y) = m(ex, ey), Xi = − ln(Ui), Yj = − ln(Vj),

µi, j is the joint distribution of the random vector (Xi, Yj) and µ =
b∑
i=1

b′∑
j=1

µi, j .

The bivariate function m∗(t1, t2) satisfies the following equation:

m∗(t1, t2) = 1 + (m∗ ∗ µ)(t1, t2).

Note that µ is not a probability measure, we define so the probability measure ν by

dν(t1, t2) = e−(t1+t2)dµ(t1, t2). (1)

The function M∗(t1, t2) = e−(t1+t2)m∗(t1, t2) satisfies immediately the bivariate re-
newal equation:

M∗(t1, t2) = f(t1, t2) + (M∗ ∗ ν)(t1, t2) where f(t1, t2) = e−(t1+t2). (2)
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2.2 The class of distributions J2

Let M > 0 and k ∈ {1, 2} we define

Ak = {tk : |tk| < M} and ACk its complementary set.

Let X be a random vector following some distribution ω and let Ψ be its associated
characteristic function i.e

Ψ(t1, t2) =
∫ +∞

−∞

∫ +∞

−∞
eit1s1+it2s2dω(s1, s2),

we shall called that ω belongs to the class J2 if Ψ satisfies: for some nonnegative
reals α1, α2 and c, the following conditions

• |Ψ(t1, t2)| ≤ c
|t1|α1 for all (t1, t2) ∈ AC1 ×A2,

• |Ψ(t1, t2)| ≤ c
|t2|α2 for all (t1, t2) ∈ A1 ×AC2 ,

• |Ψ(t1, t2)| ≤ c
|t1|α1 |t2|α2 for all (t1, t2) ∈ AC1 ×AC2 .

The sub-class J∗2 of J2 consists on all the distributions that belong to J2 and having
finite mean vectors and definite-positive correlation matrices.

2.3 Notations:

For the rest the we will need the following notations

• ||.|| is an arbitrary norm on R2
+,

• for all t1, t2 ∈ R+, Φ(t1, t2) =
b∑
i=1

b′∑
j=1

E(U t1i V
t2
j ),

• θ1 = −
b∑
i=1

E
[
Ui ln(Ui)

]
, θ2 = −

b′∑
j=1

E
[
Vj ln(Vj)

]

• γ =
b∑
i=1

b′∑
j=1

E
[
U2
i V

2
j

(
ln(Vj)− θ2

θ1
ln(Ui)

)]
,

• ρ =
b∑
i=1

b′∑
j=1

E
[
U2
i V

2
j

(
ln(Vj)− θ2

θ1
ln(Ui)

)2]
.

For a random vector X =
(
X(1), X(2)) with mean λ =

(
λ1, λ2

)
and with definite

positive covariance matrix Σ and with finite moment of order 3, we denote by:

• |Σ| the determinant of Σ and Σ−1 its inverse matrix,

• σ2
k = V ar(X(k)), k = 1, 2, K = λ1√

2π|Σ|(λ′Σ−1λ)
,
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• for k = 1, 2, ak = E
[
(X(k)−λk)3

]
σ4
k

,

• c0 = −1−2(a1λ1+a2λ2)
4λ′Σ−1λ

+ 1
2(λ′Σ−1λ)2

(
a1λ3

1
σ2

1
+ a2λ3

2
σ2

2

)
,

• c1 = λ2a2 − 1 + λ2
2−a1λ1λ2

2−2a2λ3
2

σ2
2λΣ−1λ

+ λ2
2

σ2
2(λ′Σ−1λ)2

(a1λ3
1

σ2
1

+ a2λ3
2

σ2
2

)
,

• c2 = λ2
2
σ2

2

(
− 1 + λ2

2
σ2

2λ′Σ−1λ

)
.

In particular, if the distribution of X is given by ν (1), then λ1 = θ1 and λ2 = θ2.

• For all i, j ∈ {1, 2}, υij = − ln(Vj) + θ2
θ1

ln(Ui),

L1(Ui, Vj) = K

2θ
3
2
2

[(
1 + c1 − 2c2

θ1
+ 2c2

θ2

)
υij + c2

θ2
υ2
ij

]
and L2(Ui, Vj) = c2Kυij

θ
5
2
2

,

• L̃1 =
K

2∑
i=1

Ui ln(Ui)

2θ1
√
θ2

−
2∑
i=1

2∑
j=1

UiVjL1(Ui, Vj), L̃2 =
2∑
i=1

2∑
j=1

UiVjL2(Ui, Vj),

• A1 = E
[
L̃2

1

]
, A2 = E

[
L̃1L̃2

]
and A3 = E

[
L̃2

2

]
.

2.4 Remarks

• if min(t1, t2) > 1 we have Φ(t1, t2) < 1,

• the characteristic function Ψ of a random vector with distribution ν (1) can
be written in terms of Φ as follows: Ψ(t1, t2) = Φ(1− it1, 1− it2),

• the random variables Ui and Vj belong to the interval [0, 1] for all i ∈ {1, · · · , b}, j ∈
{1, · · · , b′}, in other words ν (1) is defined on [0,∞[×[0,∞[.

2.5 Assumptions

We will need these assumptions later:

• (A): Each Ui and Vj is an absolutely continuous random variable such that
b∑
i=1

E
[
Ui| ln(Ui)|3

]
<∞ and

b′∑
i=1

E
[
Vj | ln(Vj)|3

]
<∞,

• (B): the probability measure ν given by (1) belongs to the set J∗2 .
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3 Bi-renewal Theory

The one dimension renewal theory is well studied by Feller [9], Blackwell [4, 5] and
Asmussen [2]. The next Lemma (1) gives an extension of the renewal Theorem
(Theorem 2.4 of [2]) for two dimensions. For a measure ω we denote by ω∗n the
n-fold convolution of ω with itself. A very useful tool to study renewal theory can
be found on [8].

Lemma 1. Let ω be a finite measure and g be a bounded function on the compacts
of R+ × R+. Consider the bi-dimensional renewal equation

F (t1, t2) = g(t1, t2) + (F ∗ ω)(t1, t2). (3)

Then the function h(t1, t2) :=
∞∑
n=0

ω∗n(t1, t2) is well defined, furthermore Equation

(3) admits a unique solution, bounded on the compacts of R2
+ given by (h ∗ g).

Proof. Let ω̂ be the Laplace transform of ω i.e

ω̂(t1, t2) =
∫ +∞

0

∫ +∞

0
e−(t1s1+t2s2)dω(s1, s2).

As lim
||(t1,t2)||→∞

ω̂(t1, t2) = 0, there exist α ∈]0, 1[ and a, b ∈ R+ such that ω̂(a, b) < α.

Then for all t1 > 0 and t2 > 0 we have

ω∗n(t1, t2) =
∫ t1

0

∫ t2

0
dω∗n(s1, s2) ≤

∫ t1

0

∫ t2

0
ea(t1−s1)+b(t2−s2)dω∗n(s1, s2)

= eat1+bt2ω̂∗n(a, b) = eat1+bt2ω̂n(a, b) ≤ eat1+bt2αn,

therefore h(t1, t2) ≤ eat1+bt2
1−α <∞. Since the function g is bounded by some positive

constant M we conclude

|(g ∗ h)(t1, t2)| ≤ M
∞∑
n=0

∫ t1

0

∫ t2

0
dω∗n(s1, s2)

≤ M
eat1+bt2

1− α .

This means that g ∗ h is well defined and bounded on all the compacts of R2
+. On

the other hand, g ∗ h satisfies Equation (3), therefore to prove that is the unique
solution of Equation (3) we assume that there exist such two solutions F1 and F2
bounded on the compacts of R2

+. In other words, we suppose that

F1(t1, t2) = g(t1, t2) + (F1 ∗ ω)(t1, t2) (4)
and

F2(t1, t2) = g(t1, t2) + (F2 ∗ ω)(t1, t2). (5)

The difference function G = F1 − F2 satisfies

G = (G ∗ ω).
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Then for all n ≥ 1, we have G = (G ∗ ω∗n). This implies that, for all n ≥ 1,

|G(t1, t2)| =
∣∣∣ ∫ t1

0

∫ t2

0
G(t1 − s1, t2 − s2)dω∗n(s1, s2)

∣∣∣
≤ (| supG|[0,t1]×[0,t2])ω∗n(t1, t2) (G is bounded on [0, t1]× [0, t2])

≤
(
| supG|[0,t1]×[0,t2]

)
eat1+bt2αn, α ∈]0, 1[.

As a consequence, we have G(t1, t2) = lim
n→∞

(G ∗ ω∗n)(t1, t2) = 0.

Remarks:

1. If ω is a probability measure, Equation (3) is called proper bi-renewal equation.

2. By Lemma (1), the solution of the proper renewal Equation (2) is given by

M∗(t1, t2) =
∞∑
n=0

(f ∗ ν∗n)(t1, t2) =
∞∑
n=0

∫ ∞
0

∫ ∞
0

e−(t1−s1+t2−s2)dν∗n(s1, s2),

where ν is the probability measure given by Equation (1).

Under different assumptions, Hunter [11], Mode [13], Mallor, Omey and Santos [16]
described the asymptotic behavior of H :=

∞∑
n=0

ν∗n. Namely, there principal results
are:

• lim
t→+∞

H(tx, tx)
t = min( xθ1 ,

y
θ2

) for all x, y ∈ R (Theorem (4.1) of [16]).

• If we consider a vector X following the bivariate exponential distribution, in
other words the probability density function of X is given by

u(t1, t2) = 1
θ1θ2(1− %) exp

(
− θ−1

1 t1 + θ−1
2 t2

1− %
)
I0
(2(%θ−1

1 θ−1
2 t1t2)1/2

1− %
)

where % ∈ [0, 1[ and I0 is the modified Bessel function of the first kind of order
zero, then as t goes to infinity [11]

H(θ1t, θ2t) = t−

√
t(1− %)

π
+ o(
√
t).

• Hunter [11] proved that in the case of the bivariate exponential distribution
we have as t1 and t2 tend to +∞ with t2

t1
tends to some constant K:

H(t1, t2)√
t1t2

−→ min
(√K
θ1

,
1

θ2
√
K

)
.

Unfortunately, all the previous results are insufficient to give the behavior of N(x, y)
for our model. In fact, they give the approximation of H along the line {(tx, ty), t ∈
R} where x and y are two constants, but they don’t give any information about the
asymptotic behavior of the renewal density. For this reason, we give in the next
Lemma a refined version of Mode’s Theorem [13].
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Lemma 2. Let (Xn)n∈N =
(
X

(1)
n , X

(2)
n

)
n∈N

be a sequence of independent and iden-
tically distributed (i.i.d) centered random vectors whose distribution function belongs
to J∗2 such that Cov(X) = Id, E[||X1||3] < +∞. Let hn be the probability density
function of the random vector Zn = 1√

n

n∑
i=1

Xi, then we have for all (x1, x2) ∈ R2
+,

as n goes to infinity

√
n
[
hn(x1, x2)− e−

1
2 (x2

1+x2
2)

2π
]

=e−
1
2 (x2

1+x2
2)

12π
[
x1(x2

1 − 3)E(X(1)3) + x2(x2
2 − 3)

× E(X(2)3)
]

+ o( 1√
n

).

Proof. The techniques used to prove this lemma are similar used in the case of one
dimension, for the convenience of the reader we refer to Theorem 1 of [19] and
Lemma 2.1 of [13].

Theorem 1. Let (Xn)n∈N =
(
X

(1)
n , X

(2)
n

)
n∈N

be a sequence of i.i.d and abso-
lutely continuous random vectors in R+

2 with mean λ = (λ1, λ2), covariance matrix

Σ =
(
σ2

1 0
0 σ2

2

)
and with common distribution ω. Let hn be the probability den-

sity function of the random vector Tn =
n∑
i=1

Xi and let h(x1, x2) =
∞∑
n=1

hn(x1, x2).

Assume that ω ∈ J∗2 and that

lim
xk→+∞

x
3
2
k hn(x1, x2) = 0 for all n ≥ 1 and k = 1, 2. (6)

Then for an arbitrary nonnegative constant B we have as x1, x2 → ∞ such that
| x1
λ1
− x2

λ2
|≤ B:

√
x2h(x1, x2) = K + C(x1, x2)

x1
+ o( 1

x1
)

where
C(x1, x2) = Kλ1

2
[
c0 + c1(x1

λ1
− x2
λ2

) + c2(x1
λ1
− x2
λ2

)2
]

(7)

and K and ci, i = 0, 1, 2 are given in paragraph (2.3).

Proof. We denote by x = (x1, x2) and by

z(x) = x1
λ1
− x2
λ2
. (8)

Let Y = (Y (1), Y (2)) where Y (k) = X(k)−λk
σk

for k = 1, 2 and let Y1, · · · ,Yn be a
sequence of i.i.d random vectors following the same distribution as Y. The random
vector Y is centered and its covariance matrix Cov(Y) = Id, then by Lemma (2)
the probability density function fn of the random vector

1√
n

n∑
k=1

Yk =
( n∑
k=1

X
(1)
k − nλ1
√
nσ1

,

n∑
k=1

X
(2)
k − nλ2
√
nσ2

)
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satisfies:

lim
n→∞

√
n
[
fn(x)−e

− 1
2 (x2

1+x2
2)

2π
]

= e−
1
2 (x2

1+x2
2)

12π
[
x1(x2

1−3)E(Y (1)3)+x2(x2
2−3)E(Y (2)3)

]
.

Moreover, we have:

nσ1σ2hn(x) = fn
(x1 − nλ1√

nσ1
,
x2 − nλ2√

nσ2

)
. (9)

LetKn(x) = nhn(x)− e−
1

2n (x−nλ)′Σ−1(x−nλ)

2π|Σ|
1
2

−
e−

1
2n (x−nλ)′Σ−1(x−nλ)

2∑
k=1

ak(xk−nλk)
[
(xk−nλk√

nσk
)2−3

]
12πn|Σ|

1
2

,

we conclude then that

lim
n→+∞

Kn(x) = 0.

For k = 1, 2 and r ∈ [0, 2], define the functions

Vn(x) = n
(xk − nλk√

nσk

)r
hn(x), (10)

Wn(x) =
(xk − nλk√

nσk

)r 1
2π
√
|Σ|

exp
[
− 1

2n(x− nλ)′Σ−1(x− nλ)
]
. (11)

By Theorem 2.1 of Mode [13], we have for all r ∈ [0, 2] and k = 1, 2

lim
n→+∞

[
Vn(x)−Wn(x)

]
= 0.

We conclude that for r = 2, k = 1 there exist a positive constant D and a nonneg-
ative integer n0 ≥ 1 such that for all n ≥ n0

hn(x) ≤ D

(x1 − nλ1)2 . (12)

Under assumption (6), for all ε = ε(n) > 0 there exists a constant A > 0 such that
for all |x1| ≥ A, we have: x

3
2
1 hn(x) ≤ ε. Furthemore, as |z(x)| ≤ B (where z(x) is

given by (8)),
√

x2
x1

is increased by some constant M , accordingly

√
x2

n0−1∑
n=1

hn(x) ≤ 1
x1

√
x2
x1

n0−1∑
n=1

ε ≤ M

x1

n0−1∑
n=1

ε := ε′(n0)
x1

.

Hence, when ||x|| tends to infinity with the condition |z(x)| ≤ B, we have

√
x2

n0−1∑
n=1

hn(x) = o( 1
x1

). (13)

For x1 positif and x2 positif, we define two real numbers z1 and z2 by:

zk =
√
λk
xk

(
nλk − xk

)
, k = 1, 2. (14)
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Equation (14) implies that

z2 = (λ2
λ1

)
3
2

√
x1
x2
z1 + λ2

3
2

√
x2

z(x),

n = x1
λ1

+ z1

√
x1

λ
3
2
1

= x2
λ2

+ z2

√
x2

λ
3
2
2

= x2
λ2

+
√
x1

λ
3
2
1

z1 + z(x). (15)

Take r = 0 in (10) and (11) and denote, respectively by V (z1,x) and W (z1,x) the
functions obtained by replacing n by (15) in (10)and (11), we obtain

V (z1,x) =
√
x1λ

−1
1 + z1

√
x1λ

− 3
2

1

√
x2λ

−1
2 +

√
x1λ

− 3
2

1 z1 + z(x)hn(x)

×1{n= x1
λ1

+z1
√
x1

λ1
3
2
},

W (z1,x) = 1
2π
√
|Σ|

exp
[
− 1

2
(
x1λ

−1
1 + z1

√
x1λ

− 3
2

1
){z2

1x1λ′Σ−1λ

λ3
1

+ λ2
2z(x)

×(
2√x1z1

λ
3
2
1

+ z(x)
}]
.

We define the following functions

V ∗(z1,x) =
[
V (z1,x)−W (z1,x)

] 2∏
k=1

√√√√ xkλ
−1
k

xkλ
−1
k + zk

√
xkλ

− 3
2

k

,

W ∗(z1,x) = W (z1,x)
2∏

k=1

√√√√ xkλ
−1
k

xkλ
−1
k + zk

√
xkλ

− 3
2

k

,

Using Equations (14), V ∗ and W ∗ can be expressed as:

V ∗(z1,x) =
[
V (z1,x)−W (z1,x)

]√√√√ x1λ
−1
1

x1λ
−1
1 + z1

√
x1λ

− 3
2

1

×

√√√√ x2λ
−1
2

x2λ
−1
2 + z1

√
x1λ

− 3
2

1 + z(x)
, (16)

W ∗(z1,x) = W (z1,x)

√√√√ x1λ
−1
1

x1λ
−1
1 + z1

√
x1λ

− 3
2

1

×

√√√√ x2λ
−1
2

x2λ
−1
2 + z1

√
x1λ

− 3
2

1 + z(x)
. (17)

Let a be a nonnegative number such that N := 2a
√

λ1λ2
x1

+ 1 ∈ N, define the regular
subdivision of the interval [−a, a) by

[−a, a) =
N−1⋃
j=1

[wj , wj+1) such that ∀ 1 ≤ j ≤ N − 1, wj+1 − wj =
√
λ1λ2
x1

.

10



Let f and g be two functions defined on [−a, a)× R2
+ by:

f(y,x) =
N−1∑
j=1

V ∗(y,x)1[wj ,wj+1](y), (18)

g(y,x) =
N−1∑
j=1

W ∗(y,x)1[wj ,wj+1](y). (19)

where V ∗ and W ∗ are respectively given by (16) and (17). Recall that for all
j ∈ {1, · · · , N − 1},

y ∈ [wj , wj+1) implies that n = x1
λ1

+ y

√
x1

λ
3
2
1

∈
[
αj(x1), βj(x1)

)
∩ N∗,

where αj(x1) = x1
λ1

+ wj

√
x1

λ
3
2
1

and βj(x1) = x1
λ1

+ wj+1

√
x1

λ
3
2
1

.

Let nj1(x1) and nj2(x1) be respectively the smallest and the largest nonnegative in-
teger in the interval

[
αj(x1), βj(x1)

)
, then we conclude that for j = 1, · · · , N − 1,

y ∈ [wj , wj+1) if and only if n = x1
λ1

+ y

√
x1

λ
3
2
1

∈ {nj1(x1), · · · , nj2(x1))}. (20)

Summing (18) and (19) we obtain

f(y,x) + g(y,x) =
√
x1x2
λ1λ2

N−1∑
j=1

hn(x)1
{n=x1λ

−1
1 +y√x1λ

− 3
2

1 }
1[wj ,wj+1[(y)

=
√
x1x2
λ1λ2

N−1∑
j=1

nj2(x1)∑
n=nj1(x1)

hn(x)1[wj ,wj+1[(y),

with the convention that the empty sum is equal to zero. By integrating we get

∫ a

−a
f(y,x)dy +

∫ a

−a
g(y,x)dy =

√
x1x2
λ1λ2

N−1∑
j=1

nj2(x1)∑
n=nj1(x1)

hn(x)
∫ wj+1

wj

dy

=
√
x1x2
λ1λ2

N−1∑
j=1

nj2(x1)∑
n=nj1(x1)

hn(x)
(
wj+1 − wj)

=
√
x2

nN−1
2 (x1)∑
n=n1

1(x1)
hn(x).

In the rest of the proof we denote by n1(x1, a) = n1
1(x1) and by n2(x1, a) = nN−1

2 (x1)
and we conclude that

√
x2

n2(x1,a)∑
n=n1(x1,a)

hn(x) =
∫ a

−a
f(y,x)dy +

∫ a

−a
g(y,x)dy. (21)

11



Moreover, as ||x|| tends to infinity, such that |z(x)| < B where z is given by (8),
we have :

λ2
x2

= λ1
x1

+ o(x−
3
2

1 ).

Let R(y,x) = exp
[
− 1

2
(
x1λ
−1
1 +y√x1λ

− 3
2

1

){y2x1λ′Σ−1λ
λ3

1
+ λ2

2z(x)(2√x1y

λ
3
2
1

+ z(x))
}]
,

R(y,x) = e
−y2 λ′Σ−1λ

2λ2
1

[
1− y
√
x1

(λ2
2z(x)
σ2

2
√
λ1
− y2λ′Σ−1λ

2λ
5
2
1

)
+ 1
x1

{
− λ1λ

2
2z2(x)
2σ2

2
+

λ2
2y

2z(x)
σ2

2λ1

(
1 + λ2

2z(x)
2σ2

2

)
− y4λ′Σ−1λ

2λ3
1

(
1 + λ2

2z(x)
σ2

2

)
+ y6(λ′Σ−1λ)2

8λ5
1

}]

+o( 1
x1

), (22)

√√√√ x1λ
−1
1

x1λ
−1
1 + y

√
x1λ

− 3
2

1

√√√√ x2λ
−1
2

x2λ
−1
2 + y

√
x1λ

− 3
2

1 + z(x)
=1− y√

x1λ1
+ 1
x1

[y2

λ1
− λ1

2 z(x)
]

+ o( 1
x1

).

(23)

Multiplying Equation (22) by Equation (23), we get

f(y,x) = e
−y2 λ′Σ−1λ

2λ2
1

2π
√
|Σ|

[
1 + P1(y,x)

√
x1

+ P2(y,x)
x1

]
+o( 1

x1
),

where

P1(y,x) = y√
λ1

(y2λ′Σ−1λ

2λ2
1

− λ2
2z(x)
σ2

2
− 1

)
,

P2(y,x) = −λ1z(x)
2 − λ1λ

2
2z2(x)
2σ2

2
+ y2

λ1

(
1 + λ2

2z(x)
σ2

2
(2 + λ2

2z(x)
2σ2

2
)
)

−y
4(λ′Σ−1λ)

2λ3
1

(2 + λ2
2z(x)
σ2

2
) + y6(λ′Σ−1λ)2

8λ5
1

.

This means that when ||x|| tends to infinity, we have

{
x1e

y2 λ′Σ−1λ

2λ2
1 f(y,x)− 1

2π
√
|Σ|

[
x1 +P1(y,x)

√
x1 +P2(y,x)

]}
1{|z(x)|≤B} → 0. (24)

Thus, for all ε > 0, there exists a constant A > 0 such that for ||x|| ≥ A we have

∣∣∣x1e
y2 λ′Σ−1λ

2λ2
1 f(y,x)− 1

2π
√
|Σ|

[
x1 + P1(y,x)

√
x1 + P2(y,x)

]∣∣∣1{|z(x)|≤B} ≤ ε. (25)

12



Let F (y,x) =
{
x1f(y,x)− e

−y2 λ′Σ−1λ
2λ2

1

2π
√
|Σ|

[
x1 +P1(y,x)√x1 +P2(y,x)

]}
1{|z(x)|≤B}, by

(25) we deduce that for ||x|| ≥ A,

|F (y,x)| ≤ εe
−y2 λ′Σ−1λ

2λ2
1 .

Denote that if ||x|| ≤ A, the function F (y,x) is bounded. Then F is dominated by
an integrable function on [−a, a) independent of x. Furthermore by (24) we have as
||x|| → +∞,

F (y,x)→ 0.
We conclude by the dominated convergence Theorem if ||x|| → +∞ we have,∫ a
−a F (y,x)dz1 = o(1), which means that when x1 and x2 tends to infinity with
|z(x)| ≤ B we have∫ a

−a
f(y,x)dy = 1

2π
√
|Σ|

∫ a

−a
e
−y2 λ′Σ−1λ

2λ2
1
[
1 + P1(y,x)

√
x1

+ P2(y,x)
x1

]
dy + o( 1

x1
).

By choosing a large enough, we obtain:∫ a

−a
f(y,x)dy =K

[
1 + λ1

2x1

{
−z(x)(1 + λ2

2z(x)
σ2

2
) + 1

λ′Σ−1λ

[
− 1

4 + λ2
2
σ2

2
z(x)

× (1 + λ2
2
σ2

2
z(x))

]}]
+o( 1

x1
).

(26)

By similar steps and using (9) , we get∫ a

−a
g(y,x)dy =λ1K

2x1

{
λ2a2z(x)− λ1

λ′Σ−1λ

[
a1
(1
2 + λ2

2z(x)
σ2

2

)
+ a2

λ2
λ1

(1
2+

2λ
2
2z(x)
σ2

2

)]
+ λ3

1
(λ′Σ−1λ)2

(1
2 + λ2

2z(x)
σ2

2

)(a1
σ2

1
+ λ3

2a2
λ3

1σ
2
2

)}
+ o( 1

x1
),

(27)

where a1 and a2 are given in paragraph (2.3). Summing up (26) and (27), we obtain:
√
x2

∑
n≥n0

n1(x1,a)≤n≤n2(x1,a)

hn(x) = K + C(x1, x2)
x1

+ o( 1
x1

), (28)

where K is given in paragraph (2.3) and C(x1, x2) is given by (7).
It remains now to approximate the sum √x2

∑
n≥n0

n>n2(x1,a) or
n<n1(x1,a)

hn(x), for this purpose let

α = x1
λ1

+ a
√
x1

λ
3
2
1

, using (12) we get:

√
x2

∑
n≥n0

n>n2(x1,a) or
n<n1(x1,a)

hn(x) ≤ 2D
√
x2

∑
n≥n0

n>n2(x1,a)

1
(nλ1 − x1)2

≤ 2D
√
x2

∫ ∞
α−1

dv

(nλ1 − x1)2 =
2D√x2

a
√
x1λ

−1/2
1 − λ1

,

13



as a is arbitrarily chosen we can assume that a > x1. Consequently,

√
x2

∑
n≥n0

n>n2(x1,a) or
n<n1(x1,a)

hn(x) = o( 1
x1

). (29)

Furthermore, we have

∞∑
n=1

hn(x) =
n0−1∑
n=1

hn(x) +
∑
n≥n0

n>n2(x1,a) or
n<n1(x1,a)

hn(x) +
∑
n≥n0

n1(x1,a)≤n≤n2(x1,a)

hn(x),

thus by Equations (13), (28) and (29), we obtain the requested result.

4 Mean and Variance of the total number of pieces

Theorem 2. Let a be a positive number, under assumptions (A) and (B), the mean
and the variance of N(xθ1 , axθ2) are given as x→ +∞ by:

m(xθ1 , axθ2) = Kaxθ1+θ2
√
θ2 ln x

+ aη(ln a)xθ1+θ2

ln
3
2 x

+ o( x
θ1+θ2

(ln
3
2x)

) (30)

and
σ2(xθ1 , axθ2) = τ(ln a)a2x2(θ1+θ2)

ln3 x
+ o

(x2(θ1+θ2)

ln3 x

)
(31)

where for all α ∈ R,

η(α) = K

2
√
θ2

[
c0 −

c1
θ1

+ c2
θ2

2
+ 2 c2

θ2
1

+ (1− α)
θ2

(1 + c1 − 2c2
θ1

) + c2(1− α)2

θ2
2

]
, (32)

τ(α) = A1 + 2A2α+A3α
2

1− Φ(2, 2) + 2(A2 + αA3)γ +A3ρ

[1− Φ(2, 2)]2 + A3γ
2

[1− Φ(2, 2)]3 (33)

and the constants ci, i = 0, 1, 2 and Aj , j = 1, 2, 3 are all given in paragraph (2.3).

To prove this Theorem we need the following Lemma:

Lemma 3. Let ξ be an integrable function on R+
2 and G be an uniformly bounded

function such that G(t1, t2) −→ g as t1, t2 go to infinity with |t1 − t2| ≤ B where B
is an arbitrary positive constant. For all t ∈ R+ and α ∈ R, we denote by

L(t) =
∫ t

0

∫ t+α

0
ξ(s1, s2)G(t− s1, t+ α− s2)ds1ds2.

We have
lim

t→+∞
L(t) = g

∫ ∞
0

∫ ∞
0

ξ(s1, s2)ds1ds2.

This Lemma is an immediate consequence of Lemma (3.1) in [13].
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Proof. of Theorem (2): The functionM∗(t1, t2) := e−(t1+t2)m∗(t1, t2) satisfies Equa-
tion (2), its solution is given by

M∗(t1, t2) = (f ∗ h)(t1, t2), where h(t1, t2) =
∞∑
n=0

dν∗n(t1, t2).

Let h̃(t1, t2) = h(θ1t1, θ2t2) and C̃(t1, t2) = C(θ1t1, θ2t2), we have for all α ∈ R

M∗(θ1t, θ2t+ α) =
∫ θ1t

0

∫ θ2t+α

0
e−(s1+s2)h(θ1t− s1, θ2t+ α− s2)ds1ds2

= θ1θ2

∫ t

0

∫ t+ α
θ2

0
e−(θ1u+θ2v)h̃(t− u, t+ α

θ2
− v)dudv.

Then we conclude that the expression of

M̂(t) := t

√
(t+ α

θ2
)M∗(θ1t, θ2t+ α) (34)

can be written as the following

M(t) = I1(t) + I2(t) + θ1Kt
√
θ2t+ α

∫ t

0

∫ t+ α
θ2

0

e−(θ1u+θ2v)√
t+ α

θ2
− v

dudv

+
√
θ2t+ α

∫ t

0

∫ t+ α
θ2

0

e−(θ1u+θ2v)C̃(t− u, t+ α
θ2
− v)√

t+ α
θ2
− v

dudv,

where

I1(t) = θ1θ2

√
t+ α

θ2

∫ t

0

∫ t+α
θ 2

0

[
(t− u)h̃(t− u, t+ α

θ2
− v)− K(t− u)√

θ2(t+ α
θ2
− v)

−
C̃(t− u, t+ α

θ2
− v)

θ1
√
θ2(t+ α

θ2
− v)

]
e−(θ1u+θ2v)dudv

and

I2(t) = θ1θ2

√
t+ α

θ2

∫ t

0

∫ t+α
θ 2

0
ue−(θ1u+θ2v)

[
h̃(t−u, t+ α

θ2
−v)− K√

θ2(t+ α
θ2
− v)

]
dudv.

As t goes to infinity we have I1(t) = o(1), in fact let

G1(t1, t2) =
√
t2t1h̃(t1, t2)− Kt1√

θ2
− C̃(t1, t2)

θ1
√
θ2

, ξ1(t1, t2) = e−(θ1t1+θ2t2)

and

G2(t1, t2) = t1h̃(t1, t2)− Kt1√
θ2t2

− C̃(t1, t2)
θ1
√
θ2t2

, ξ2(t1, t2) =
√
t2e
−(θ1t1+θ2t2).

Using the fact that for all v ∈ [0, t+ α
θ2

],
√
t+ α

θ2
≤
√
t+ α

θ2
− v +

√
v we obtain,

|I1(t)| ≤ θ1θ2

∫ t

0

∫ t+ α
θ2

0
|G1(t− u, t+ α

θ2
− v)|ξ1(u, v)dudv

+θ1θ2

∫ t

0

∫ t+ α
θ2

0
|G2(t− u, t+ α

θ2
− v)|ξ2(u, v)dudv.
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In view of Theorem (1), as t1 and t2 tend to infinity such that |t1 − t2| ≤ B we
have G1(t1, t2) → 0 and G2(t1, t2) → 0. Furthermore, ξ1 and ξ2 are integrable on
R+ × R+, we conclude by Lemma (3) that as as t goes to infinity, I1(t) → 0. By
similar argument, we prove that as t→ +∞, I2(t) = o(1). Thus

M̂(t) =
√
θ2t+ αe−(θ1+θ2)t−α

∫ t

0

∫ t+ α
θ2

0

eθ1s1+θ2s2C̃(s1, s2)
√
s2

ds1ds2

+2tK
√
t+ α

θ2
(1− e−θ1t)Daw(

√
θ2t+ α) + o(1),

where Daw is the Dawson’s integral given by

Daw(t) = e−t
2
∫ t

0
eu

2
du.

As t→ +∞, we have

Daw(
√
θ2t+ α) = 1

2
√
θ2t+ α

+ 1
4(θ2t+ α)

3
2

+ 3
8(θ2t+ α)

5
2

+ o( 1
t

5
2

)

= 1
2
√
θ2t

+ 1− α
4(θ2t)

3
2

+ 3(α2 − 2α+ 2)
16(θ2t)

5
2

+ o( 1
t

5
2

),

thus 2t
√
t+ α

θ2
(1− e−θ1t)Daw(

√
θ2t+ α) = t√

θ2
+ 1

2θ
3
2
2

+ o(1) which leads to:

M̂(t) =
√
θ2t+ αe−(θ1+θ2)t−α

∫ t

0

∫ t+ α
θ2

0

eθ1s1+θ2s2C̃(s1, s2)
√
s2

ds1ds2

+ tK√
θ2

+ K

2θ
3
2
2

+ o(1),

we get, by writing explicitly C̃ and integrating,

M̂(t) = K

2
√
θ2t

√
t+ α

θ2

{
c0 −

c1
θ1

+ (1− α)
θ2

(c1 − 2c2
θ1

) + 2c2
θ2

1
+ c2
θ2

2
(35)

+c2(α− 1)2

θ2
2

}
+ tK√

θ2
+ K

2θ
3
2
2

+ o(1).

We conclude by (34) and (35) that as t goes to infinity

M∗(θ1t, θ2t+ α) = K√
θ2t

+ η(α)
t

3
2

+ o( 1
t

3
2

),

where η is given by (32).
To compute the variance, let F = σ(U1, U2, V1, V2)

E
[
(N(x, y)−m(x, y))2 | F

]
= E

[(
1 +

2∑
i=1

2∑
j=1

N(xUi, yVj)−m(x, y)
)2
|F
]

=
2∑
i=1

2∑
j=1

V ar(N(xUi, yVj)) +

(
1−m(x, y) +

2∑
i=1

2∑
j=1

m(xUi, yVj)
)2
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By integrating we show that σ2
∗(t1, t2) := σ2(et1 , et2) satisfies the renewal equation

given by
σ2
∗(t1, t2) = (σ2

∗ ∗ µ)(t1, t2) + k(t1, t2) (36)

where k(t1, t2) = E
[(

1 −
2∑
i=1

2∑
j=1

m(t1 − Xi, t2 − Yj) + m∗(t1, t2)
)2]

. The function

V (t1, t2) := e−(t1+t2)σ2
∗(t1, t2) satisfies the bivariate renewal equation

V (t1, t2) = (V ∗ ν)(t1, t2) + k1(t1, t2)

where k1(t1, t2) = e−(t1+t2)k(t1, t2). It follows that,

V (θ1t, θ2 + α) = (h ∗ k1)(θ1t, θ2t+ α)

=
∞∑
n=0

E
[
k1
(
θ1t− S(1)

n , θ2t+ α− S(2)
n

)
1{S(1)

n ≤θ1t,S
(2)
n ≤θ2t+α}

]

where
(
S

(1)
n , S

(2)
n

)
is the sum of n-iid random vectors with common distribution ν.

For i and j ∈ {1, 2}, let T = t − Xi
θ1

and S = θ2
θ1
Xi − Yj + α, using the refined

expression (30) of m∗ we get:

m∗(θ1T, θ2T + S) = m∗(θ1t−Xi, θ2t+ α− Yj)

= K
e(θ1+θ2)T+S
√
S2T

+ η(S)e(θ1+θ2)T+S

T
3
2

+ o
(e(θ1+θ2)T+S

T
3
2

)

= K
e(θ1+θ2)t+αUiVj√

θ2t
[1− ln(Ui)

2θ1t
+ o(1

t
)] + [η(α) + L1(Ui, Vj)

−αL2(Ui, Vj)]
UiVje

(θ1+θ2)t+α

t
3
2

+ o
(e(θ1+θ2)t+α

t
3
2

)
.

Thus,

m∗(θ1t, θ2t+ α)−
2∑
i=1

2∑
j=1

m∗(θ1t−Xi, θ2t+ α− Yj) =
(
L̃1 + αL̃2

)e(θ1+θ2)t+α

t
3
2

+o
(e(θ1+θ2)t+α

t
3
2

)
.

Consequently,

k1(θ1t, θ2t+ α) = e(θ1+θ2)t+α

t3

(
A1 + 2A2α+A3α

2)+ o
(e(θ1+θ2)t+α

t3

)
.

We obtain, by a similar computation

k1(θ1t− S(1)
n , θ2t+ α− S(2)

n ) = e(θ1+θ2)t+α−(S(1)
n +S(2)

n )

t3

[
(A1 + 2A2α+A3α

2)

+2(A2 + αA3)
(θ2
θ1
S(1)
n − S(2)

n

)
+A3 ×

(θ2
θ1
S(1)
n − S(2)

n

)2]+ o
(e(θ1+θ2)t+α

t3

)
.
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Finally, we get

V (θ1t, θ2t+ α) = e(θ1+θ2)t+α

t3
τ(α) + o

(e(θ1+θ2)t+α

t3

)
where τ is given by (33).
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