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Abstract

In this work, we first propose the concept of stepanov-like almost automorphic functions on time scales, and

present some properties, including the translation invariance and completeness. Moreover, we also prove the

connection between stepanov-like almost automorphic functions on time scales and on R. Then we establish

some existence and uniqueness result of almost automorphic solutions for some linear dynamic equation on time

scales. As an application of the above results, we study the existence and global exponential stability of almost

automorphic solutions for a class of cellular neural networks with time-varying delays on time scales.
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1 Introduction

The theory of time scales was developed by S. Hilger in his PhD thesis in 1988 (see [1]). This theory

unifies continuous and discrete problems and provides a powerful tool for applications to economics,

populations models, quantum physics among others, and hence has been attracting the attention of many

mathematicians (see [2–5] and the references therein). As applications, the field of dynamic equations

and cellular neural networks on time scales extended the classical differential equations and difference

equations. In recent years, the qualitative properties of the solutions of dynamic equations and cellular

neural networks on time scales have been extensively investigated.

In 2001, Li and Wang [6] firstly introduced the definition of almost periodic functions on time scales,

and gave some results about almost periodic solutions for high-order Hopfield neural networks on time

scales. The theory of almost periodic functions on time scales is an interesting topic. Lizama, Mesquita,
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and Ponce [7] proved the connection between almost periodic functions defined on time scales and on

R. Furthermore, some generalized forms of almost periodicity have been introduced on time scales,

such as pseudo almost periodicity [8], almost automorphy [9], weighted pseudo almost periodicity [10],

stepanov-like almost periodicity [11] and stepanov-like pseudo almost periodicity [12].

Motivated by the above, in this paper, we first introduce the concept of stepanov-like almost auto-

morphic functions on time scales, which is the generalization of stepanov-like almost automorphy on R.

To show the connection between stepanov-like almost automorphic functions on time scales and R, we

apply the translation invariant of time scales to prove it, which extend the result in [7]. Then, we study

the existence and uniqueness of almost automorphic solutions about some linear dynamic equation on

time scales:

x∆(t) = A(t)x(t) + f(t), t ∈ T, (1.1)

where T is invariant under translations, and A(t) is almost automorphic, f(t) is stepanov-like almost

automorphic on T. The almost automorphy [9], pseudo almost periodicity [12] of the equation (1.1) has

been studied. Our results will extend the obtained results. As an application, we study the existence and

global exponential stability of the almost automorphic solution for the following cellular neural networks

with time-varying delays:

x∆
i (t) = −ci(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t)) +

n∑
j=1

bij(t)fj(xj(t− γij(t))) + Ii(t),

with the initial condition

xi(s) = ϕi(s), s ∈ [−γ, 0]T,

for t ∈ T, i = 1, 2, · · · , n, where xi(t) correspond to the activations of the ith neurons at the time t, ci(t)

are positive functions, they denote the rate with which the cell i reset their potential to the resting state

when isolated from the other cells and inputs at time t, aij(t) and bij(t) are the connection weights at

time t, γij(t) ≥ 0 correspond to the transmission delays, Ii(t) denote the external inputs at time t, fi are

the activation functions of signal transmission.

This paper is organized as follows. The second section is devoted to present the preliminary results

concerning the definition and properties of stepanov-like almost automorphic functions on time scales. In

the third section, we give the existence and uniqueness of almost automorphic solutions for some linear

dynamic equation on time scales. Finally, the last section is devoted to show the existence and global

exponential stability of the cellular neural networks with time-varying delays, and present some example.

2 Stepanov-like almost automorphic functions on time scales

Throughout this paper, we denote by Z,R,C and R+ the sets of integers, real numbers, complex numbers

and nonnegative real numbers, respectively. En denotes the Euclidian space Rn or Cn with Euclidian

norm | · |.

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump operators

σ, ρ : T→ T and the graininess µ : T→ R+ are defined, respectively, by

σ(t) = inf{s ∈ T, s > t}, ρ(t) = sup{s ∈ T, s < t}, and µ(t) = σ(t)− t.
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A point t ∈ T is called left-dense if t > inf T and ρ(t) = t, left-scattered if ρ(t) < t, right-dense if t < supT
and σ(t) = t, and right-scattered if σ(t) > t. If T has a left-scattered maximum m, then Tk = T \ {m};
otherwise Tk = T. If T has a right-scattered minimum m, then Tk = T \ {m}; otherwise Tk = T.

A function f : T → En is right-dense continuous (rd-continuous) provided it is continuous at right-

dense point in T and its left-side limits exist at left-dense points in T. If f is continuous at each right-dense

point and each left-dense point, then f is said to be continuous function on T. We denote

Crd(T,En) = {f : T→ En : f is right-dense continuous },

Lploc(T,E
n) = {f : T→ En : f is locally Lp ∆-integrable}.

Given a pair of numbers a, b ∈ T and a ≤ b, the symbol [a, b]T will be used to denote a closed interval

in T, that is, [a, b]T = {t ∈ T; a ≤ t ≤ b}. On the other hand, [a, b] is the usual closed interval on the real

line.

Definition 2.1 ( [2]) For f : T→ En and t ∈ Tk, f∆(t) ∈ En is called the delta derivative of f(t) if for

a given ε > 0, there exists a neighborhood U of t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| < |σ(t)− s|

for all s ∈ U .

The theorems of the general Lebesgue integration theory also hold for the ∆-integrals
∫

[a,b]T
f(t)∆t

on T. For more details, we refer the readers to [3].

Definition 2.2 ( [9]) A time scale is called invariant under translations if

Π =: {τ ∈ R : t± τ ∈ T, ∀t ∈ T} 6= {0}.

In the following, we always assume that the time scale T is invariant under translation.

Definition 2.3 ( [9]) A function f ∈ Crd(T,En) is called almost automorphic on T if for every sequence

{α′n} ⊂ Π, there exists a subsequence {αn} ⊂ {α′n} and a function f̄ such that

lim
n→∞

f(t+ αn) = f̄(t), and lim
n→∞

f̄(t− αn) = f(t)

for every t ∈ T. We denote the space of all these functions by AA(T,En).

Now we are in the position to introduce the stepanov-like almost automorphic functions on T. We

always assume that p ≥ 1 afterwards. Let

K :=

{
inf{|τ | : τ ∈ Π, τ 6= 0}, if T 6= R,
1, if T = R.

Define the norm ‖ · ‖Sp as

‖f‖Sp := sup
t∈T

(
1

K

∫
[t,t+K]T

|f(s)|p∆s

) 1
p

, for f ∈ Lp
loc

(T,En).

If ‖f‖Sp <∞, we call f is Sp-bounded, and denote by BSp(T,En) the space of all these functions.
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Definition 2.4 A function f ∈ BSp(T,En) is called stepanov-like almost automorphic on T, if for every

sequence {t′n} ⊂ Π, there exist a subsequence {tn} ⊂ {t′n}, and a function f̄ , such that(
1

K

∫
[t,t+K]T

|f(s+ αn)− f̄(s)|p∆s

) 1
p

→ 0, and

(
1

K

∫
[t,t+K]T

|f̄(s− αn)− f(s)|p∆s

) 1
p

→ 0

as n→∞ pointwise on T. Denote the set of all these functions by SpAA(T,En).

It is clear that AA(T,En) ⊂ SpAA(T,En).

Now we prove some propositions of stepanov-like almost automorphic functions on T. Since T is

invariant under translations, we can easily get the following proposition.

Proposition 2.1 If f, g ∈ SpAA(T,En), l ∈ Π, then

(i) f + g ∈ SpAA(T,En).

(ii) fg ∈ SpAA(T,En).

(iii) f(·+ l) ∈ SpAA(T,En).

Proposition 2.2 Let {fn : T → En} be a sequence of stepanov-like almost automorphic functions on T
such that

lim
n→∞

(
1

K

∫
[t,t+K]T

|fn(s)− f(s)|p∆s

) 1
p

= 0 (2.1)

convergence uniformly on T. Then f is stepanov-like almost automorphic on T.

Proof. Let sequence {t′k} ⊂ Π. Since f1 ∈ SpAA(T,En), there exist a subsequence {t1k} ⊂ {t′k} and a

function f̄1 such that

lim
k→∞

(
1

K

∫
[t,t+K]T

|f1(s+ t1k)− f̄1(s)|p∆s

) 1
p

= 0, lim
k→∞

(
1

K

∫
[t,t+K]T

|f̄1(s− t1k)− f1(s)|p∆s

) 1
p

= 0

for each t ∈ T. Since f2 ∈ SpAA(T,En), there exist {t2k} ⊂ {t1k} and a function f̄2 such that

lim
k→∞

(
1

K

∫
[t,t+K]T

|f2(s+ t2k)− f̄2(s)|p∆s

) 1
p

= 0, lim
k→∞

(
1

K

∫
[t,t+K]T

|f̄2(s− t2k)− f2(s)|p∆s

) 1
p

= 0

for each t ∈ T. Thus by the diagonal procedure, we can construct a subsequence {tk} ⊂ {t′k} and a

sequence of functions {f̄i} such that

lim
k→∞

(
1

K

∫
[t,t+K]T

|fi(s+ tk)− f̄i(s)|p∆s

) 1
p

= 0, lim
k→∞

(
1

K

∫
[t,t+K]T

|f̄i(s− tk)− fi(s)|p∆s

) 1
p

= 0 (2.2)

for each t ∈ T and i = 1, 2, · · · . Notice that∫
[t,t+K]T

|f̄i(s)− f̄j(s)|p∆s ≤
∫

[t,t+K]T

|f̄i(s)− fi(s+ tk)|p∆s

+

∫
[t,t+K]T

|fi(s+ tk)− fj(s+ tk)|p∆s+

∫
[t,t+K]T

|fj(s+ tk)− f̄j(s)|p∆s.
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Let ε > 0. By the uniform convergence of {fn}, there exists positive integer N , such that when i, j > N ,

we have ∫
[t,t+K]T

|fi(s+ tk)− fj(s+ tk)|p∆s < ε

for all t ∈ T, and k = 1, 2, · · · . Using (2.2) and the completeness of En, we can get the pointwise

convergence of the sequence {f̄n(t)}, say to f̄(t), that is

lim
n→∞

(
1

K

∫
[t,t+K]T

|f̄n(s)− f̄(s)|p∆s

) 1
p

= 0 (2.3)

for each t ∈ T. By (2.1) and (2.3), for any ε > 0, there exists a positive integer M , such that(
1

K

∫
[t,t+K]T

|f(s+ tk)− fM (s+ tk)|p∆s

) 1
p

< ε, (2.4)

(
1

K

∫
[t,t+K]T

|f̄M (s)− f̄(s)|p∆s

) 1
p

< ε (2.5)

for each t ∈ T, and k = 1, 2, · · · . By (2.2), there exists some positive integer K = K(t,M), such that

when k > K, we have (
1

K

∫
[t,t+K]T

|fM (s+ tk)− f̄M (s)|p∆s

) 1
p

< ε (2.6)

for each t ∈ T. By (2.4)–(2.6), we get(
1

K

∫
[t,t+K]T

|f(s+ tk)− f̄(s)|p∆s

) 1
p

≤

(
1

K

∫
[t,t+K]T

|f(s+ tk)− fM (s+ tk)|p∆s

) 1
p

+

(
1

K

∫
[t,t+K]T

|fM (s+ tk)− f̄M (s)|p∆s

) 1
p

+

(
1

K

∫
[t,t+K]T

|f̄M (s)− f̄(s)|p∆s

) 1
p

<3ε

for k > K, and t ∈ T. Similarly, we can easily get

lim
k→∞

(
1

K

∫
[t,t+K]T

|f̄(s− tk)− f(s)|p∆s

) 1
p

= 0 for each t ∈ T.

Thus f ∈ SpAA(T,En), and the proof is complete.

By the above argument, it is to see that the space SpAA(T,En) is an Banach space under the norm

‖ · ‖Sp .

2.1 Composition theorem of stepanov-like almost automorphic functions on

T

Theorem 2.1 Assume f : R→ R sastifies that there exists a constant L > 0 such that

|f(x)− f(y)| ≤ L|x− y|. (2.7)
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If ϕ ∈ SpAA(T,R), γ ∈ AA(T,R), and t− γ(t) ∈ T, then f(ϕ(t− γ(t))) is stepanov-like almost automor-

phic.

Proof. Since ϕ ∈ SpAA(T,R) and γ ∈ AA(T,R), for every sequence {t′n} ⊂ Π, there exist a subsequence

{tn} ⊂ {t′n} and functions ϕ̄, γ̄, such that

lim
n→∞

(
1

K

∫
[t,t+K]T

|ϕ(s+ tn)− ϕ̄(s)|p∆s

) 1
p

= 0, lim
n→∞

(
1

K

∫
[t,t+K]T

|ϕ̄(s− tn)− ϕ(s)|p∆s

) 1
p

= 0 (2.8)

and

lim
n→∞

|γ(s+ tn)− γ̄(s)| = 0, lim
n→∞

|γ̄(s− tn)− γ(s)| = 0 (2.9)

for t ∈ T. By (2.7)–(2.9), we have

lim
n→∞

(
1

K

∫
[t,t+K]T

|f(ϕ(s+ tn − γ(s+ tn)))− f(ϕ̄(s− γ̄(s)))|p∆s

) 1
p

≤ lim
n→∞

L

(
1

K

∫
[t,t+K]T

|ϕ(s+ tn − γ(s+ tn))− ϕ̄(s− γ̄(s))|p∆s

) 1
p

≤K1 +K2,

where

K1 := lim
n→∞

L

(
1

K

∫
[t,t+K]T

|ϕ(s+ tn − γ(s+ tn))− ϕ(s+ tn − γ̄(s))|p∆s

) 1
p

,

K2 := lim
n→∞

L

(
1

K

∫
[t,t+K]T

|ϕ(s+ tn − γ̄(s))− ϕ̄(s− γ̄(s))|p∆s

) 1
p

,

for t ∈ T. By (2.8) and (2.9), we can get K1 = 0,K2 = 0. By the similar argument, we have

lim
n→∞

(
1

K

∫
[t,t+K]T

|f(φ̄(s− tn − γ(s− tn)))− f(φ(s− γ(s)))|p∆s

) 1
p

= 0

for t ∈ T. Thus f(ϕ(t− γ(t))) is stepanov-like almost automorphic, and the proof is complete.

2.2 The connection between stepanov-like almost automorphic functions on

T and R

In order to present the relationship of stepanov-like almost automorphic functions on T and on R, we

need to introduce the following notation. Similarly, as in [13], for a given t ∈ T we define t∗ by

t∗ = sup{s ∈ T; s ≤ t}.

Lemma 2.1 ∆t = ∆t∗ for t ∈ R.

Proof. Since T is invariant under translations, Π 6= {0}. Let τ ∈ Π and τ > 0. By the definition of t∗,

we have t∗ ≤ t ≤ t∗+ τ . By differentiation on the two sides, we get ∆t = ∆t∗, and the proof is complete.
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Theorem 2.2 A continuous function g : T → En to be stepanov-like almost automorphic on T if and

only if there is a stepanov-like almost automorphic function f : R → En such that f(t) = g(t) for every

t ∈ T.

Proof. It is clear to see that the condition is sufficient. On the other hand, suppose that a continuous

function g : T → En is stepanov-like almost automorpic on T. Then, define a function f : R → En as

follows:

f(t) =


(

1− t−t∗
µ(t∗)

)
g(t∗) + t−t∗

µ(t∗)g(σ(t∗)), t ∈ R \ T,

g(t), t ∈ T.

It is easy to see that the function f is well defined, and f ∈ BSp(R,En).

Now we prove f is stepanov-like almost automorphic on R. Since g is stepanov-like almost auto-

morphic, for every sequence {τ ′n} ⊂ Π, there exist a subsequence {τn} ⊂ {τ ′n} and a function ḡ, such

that

lim
n→∞

(
1

K

∫
[t,t+K]T

|g(s+ τn)− ḡ(s)|p∆s

) 1
p

= 0, lim
n→∞

(
1

K

∫
[t,t+K]T

|ḡ(s− τn)− g(s)|p∆s

) 1
p

= 0

for each t ∈ T. Define the function f̄ : R→ En by

f̄(t) =


(

1− t−t∗
µ(t∗)

)
ḡ(t∗) + t−t∗

µ(t∗) ḡ(σ(t∗)), t ∈ R \ T,

ḡ(t), t ∈ T.

We have (∫ t+1

t

|f(u+ τn)− f̄(u)|pdu
) 1

p

=

(∫
[t,t+1]T

|f(u+ τn)− f̄(u)|p∆u+

∫
[t,t+1]\T

|f(u+ τn)− f̄(u)|p∆u

) 1
p

≤

(∫
[t,t+1]T

|f(u+ τn)− f̄(u)|p∆u

) 1
p

+

(∫
[t,t+1]\T

|f(u+ τn)− f̄(u)|p∆u

) 1
p

:=I1 + I2.

Since g is stepanov-like almost automorphic on T, we have

I1 =

(∫
[t,t+1]T

|g(u+ τn)− ḡ(u)|p∆u

) 1
p

→ 0
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as n → ∞ for each t ∈ R. Since (u + τn)∗ = u∗ + τn, σ(u∗ + τn) = σ(u∗) + τn, µ(u∗ + τn) = µ(u∗) for

u ∈ R, τn ∈ Π ( [7], Lemma 3.1, Lemma2.7),

I2 =

(∫
[t,t+1]\T

∣∣∣∣(1− u+ τn − (u+ τn)∗
µ((u+ τn)∗)

)
g((u+ τn)∗) +

u+ τn − (u+ τn)∗
µ((u+ τn)∗)

g(σ((u+ τn)∗))

−
(

1− u− u∗
µ(u∗)

)
ḡ(u∗)−

u− u∗
µ(u∗)

ḡ(σ(u∗))

∣∣∣∣p ∆u

) 1
p

=

(∫
[t,t+1]\T

∣∣∣∣(1− u− u∗
µ(u∗)

)
g(u∗ + τn) +

u− u∗
µ(u∗)

g(σ(u∗) + τn)

−
(

1− u− u∗
µ(u∗)

)
ḡ(u∗)−

u− u∗
µ(u∗)

ḡ(σ(u∗))

∣∣∣∣p ∆u

) 1
p

=

(∫
[t,t+1]\T

∣∣∣∣g(u∗ + τn)− ḡ(u∗)−
u− u∗
µ(u∗)

(g(u∗ + τn)− ḡ(u∗)) +
u− u∗
µ(u∗)

(g(σ(u∗) + τn)− ḡ(σ(u∗)))

∣∣∣∣p ∆u

) 1
p

≤J1 + J2 + J3,

where

J1 :=

(∫
[t,t+1]\T

|g(u∗ + τn)− ḡ(u∗)|p∆u

) 1
p

,

J2 :=

(∫
[t,t+1]\T

∣∣∣∣u− u∗µ(u∗)
(g(u∗ + τn)− ḡ(u∗))

∣∣∣∣p ∆u

) 1
p

,

J3 :=

(∫
[t,t+1]\T

∣∣∣∣u− u∗µ(u∗)
(g(σ(u∗) + τn)− ḡ(σ(u∗)))

∣∣∣∣p ∆u

) 1
p

.

By Lemma 2.1, we have

J1 =

(∫
[t,t+1]T

|g(u∗ + τn)− ḡ(u∗)|p∆u∗

) 1
p

→ 0, as n→∞ for each t ∈ R.

Since u ∈ R \ T, we have u∗ < u < σ(u∗), and then 0 < u− u∗ < σ(u∗)− u∗ = µ(u∗), thus

0 <
u− u∗
µ(u∗)

< 1. (2.1)

By Lemma 2.1 and (2.1), we have

J2 <

(∫
[t,t+1]\T

|g(u∗ + τn)− ḡ(u∗)|p∆u

) 1
p

=

(∫
[t,t+1]T

|g(u∗ + τn)− ḡ(u∗)|p∆u∗

) 1
p

→ 0

as n→∞ for each t ∈ R. Similarly, we can prove that J3 → 0 as n→∞ for each t ∈ R. Therefore,

lim
n→∞

(∫ t+1

t

|f(u+ τn)− f̄(u)|pdu
) 1

p

= 0

for each t ∈ R. By the similar argument, we can get

lim
n→∞

(∫ t+1

t

|f̄(u− τn)− f(u)|pdu
) 1

p

= 0 for each t ∈ R.

Thus f is stepanov-like almost automorphic on R, and the proof is complete.
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Remark 2.1 The construction of the function f in Theorem 2.2 is not unique. For example,

f(t) =


(

1− t∗−t
t∗−ρ(t∗)

)
g(t∗) + t∗−t

t∗−ρ(t∗)g(ρ(t∗)), t ∈ R \ T,

g(t), t ∈ T,

is stepanov-like almost automorphic function on T, and it is g(t) restricted on R, where t∗ = inf{s ∈
T, s ≥ t}.

3 Almost automorphic solutions of linear dynamic equations on

time scales

We say that a function p : T → R is regressive provided 1 + µ(t)p(t) 6= 0 for t ∈ Tk. The set of all

regressive and rd-continuous functions will be denoted by R = R(T) = R(T,R), and R+ = R(T,R) =

{p ∈ R, 1 + µ(t)p(t) > 0, t ∈ T}. Suppose that p, q ∈ R, then we define p⊕ q and 	p as follows:

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t), (	p)(t) :=
−p(t)

1 + µ(t)p(t)
,

for all t ∈ Tk. It is clear that (R,⊕) is an Abelian group. In the sequel, we define the generalized

exponential function ep(t, s).

Definition 3.1 ( [2]) If p ∈ R, then we define the generalized exponential function by

ep(t, s) = exp

(∫
[s,t]T

ξµ(τ)p(τ)∆τ

)
, s, t ∈ T.

where the cylinder transformation ξh : Ch → Zh is given by

ξh(z) =

{
1
h log(1 + zh), h 6= 0,

z, h = 0.

where log is the principal logarithm function.

Proposition 3.1 ( [2]) Let t, s ∈ T.

(i) ep(t, t) = 1, eA(t, t) = I.

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s).

(iii) ep(t, s)ep(s, r) = ep(t, r), eA(t, s)eA(s, r) = eA(t, r).

Proposition 3.2 ( [12]) Let a > 0 be a constant and t, s ∈ T.

(i) e	a(t, s) ≤ 1 if t ≥ s.
(ii) e	a(t+ τ, s+ τ) = e	a(t, s) for τ ∈ Π.

(iii)There exists N > 0 such that (t− s)e	a(t, s) ≤ N for t ≥ s.
(iv) For t0 ∈ T, e	a(t0, ·) is increasing on (−∞, t0]T.

(v) The series
∑∞
j=1 e	a(t, σ(t)− (j − 1)K) converges uniformly for t ∈ T. Moreover, for all t ∈ T,

∞∑
j=1

e	a(t, σ(t)− (j − 1)K) ≤ λa :=

{
1

1−e−a , T = R,
2 + aµ̄+ 1

aµ̄ , T 6= R,

where µ̄ = supt∈T µ(t).
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Now we are in the position to consider the following equation:

x∆(t) = A(t)x(t) + f(t), t ∈ T, (3.1)

where A ∈ R(T,Rn×n) and f ∈ SpAA(T,Rn) is continuous on T.

Theorem 3.1 Assume that A is almost automorphic on T, and the following condition is satisfied

‖eA(t, s)‖ ≤ Ce	a(t, s), t ≥ s. (3.2)

Then the equation (3.1) admits a unique almost automorphic solution x(t) given by

x(t) =

∫
(−∞,t]T

eA(t, σ(s))f(s)∆s, t ∈ T. (3.3)

Proof. By the similar argument of Lemma 4.7 in [12], we can show that (3.3) is the unique continuous

solution of (3.1), and here we omit the details. Now we prove it is almost automorphic on T. For each

sequence {t′n} ⊂ Π, there exist a subsequence {tn} ⊂ {t′n}, and functions Ā, f̄ , such that

lim
n→∞

|A(t+ tn)− Ā(t)| = 0, lim
n→∞

|Ā(t− tn)−A(t)| = 0 (3.4)

and

lim
n→∞

(
1

K

∫
[t,t+K]T

|f(s+ tn)− f̄(s)|p∆s

) 1
p

= 0, lim
n→∞

(
1

K

∫
[t,t+K]T

|f̄(s− tn)− f(s)|p∆s

) 1
p

= 0, (3.5)

for each t ∈ T. Let

x̄(t) :=

∫
(−∞,t]T

eĀ(t, σ(s))f̄(s)∆s,

U(t, σ(s)) := eA(t+ tn, σ(s+ tn))− eĀ(t, σ(s)), t ∈ T, 0 < t− s < K.

It is easy to get that

∂∆U(t, σ(s))

∂∆t
= A(t+ tn)eA(t+ tn, σ(s) + tn)− Ā(t)eĀ(t, σ(s))

= (A(t+ tn)− Ā(t))eA(t+ tn, σ(s) + tn) + Ā(t)(eA(t+ tn, σ(s) + tn)− eĀ(t, σ(s)))

= (A(t+ tn)− Ā(t))eA(t+ tn, σ(s) + tn) + Ā(t)U(t, σ(s)).

By the variation of constants formula, we have

U(t, σ(s)) =

∫
[σ(s),t]T

eĀ(t, σ(τ))(A(τ + tn)− Ā(τ))eA(τ + tn, σ(s) + tn)∆τ,

since U(σ(s), σ(s)) = 0. By (3.2), we have ‖eĀ(t, s)‖ ≤ Ce	a(t, s), t ≥ s. Then

|U(t, σ(s))| ≤
∫

[σ(s),t]T

|eĀ(t, σ(τ))| · |A(τ + tn)− Ā(τ)| · |eA(τ + tn, σ(s) + tn)|∆τ

≤
∫

[σ(s),t]T

C2|A(τ + tn)− Ā(τ)| · |e	a(t, σ(τ))e	a(τ + tn, σ(s) + tn)|∆τ

= C2e	a(t, σ(s))

∫
[σ(s),t]T

|A(τ + tn)− Ā(τ)| · |e	a(τ, σ(τ))|∆τ

= C2e	a(t, σ(s))

∫
[σ(s),t]T

|A(τ + tn)− Ā(τ)| · |1 + aµ(τ)|∆τ.
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By (3.4) and [Theorem 2.1, [10]], for any ε > 0, there exists a positive integer N1, such that when n > N1,

we have ∫
[σ(s),t]T

|A(τ + tn)− Ā(τ)| · |1 + aµ(τ)|∆τ < ε,

since A(τ), Ā(τ) and 1 + aµ(τ) are bounded on [σ(s), t]T. Thus

|eA(t+ tn, σ(s+ tn))− eĀ(t, σ(s))| ≤ C2εe	a(t, σ(s)) (3.6)

for n > N1, and each t ∈ T, 0 < t− s < K. Notice that

x(t+ tn)− x̄(t)

=

∫
(−∞,t+tn]T

eA(t+ tn, σ(s))f(s)∆s−
∫

(−∞,t]T
eĀ(t, σ(s))f̄(s)∆s

=

∞∑
j=1

∫
[t+tn−jK,t+tn−(j−1)K]T

eA(t+ tn, σ(s))f(s)∆s−
∞∑
j=1

∫
[t−jK,t−(j−1)K]T

eĀ(t, σ(s))f̄(s)∆s

=

∞∑
j=1

∫
[t−jK,t−(j−1)K]T

[eA(t+ tn, σ(s+ tn))f(s+ tn)− eĀ(t, σ(s))f̄(s)]∆s

=

∞∑
j=1

∫
[t−jK,t−(j−1)K]T

eA(t+ tn, σ(s+ tn))(f(s+ tn)− f̄(s))∆s

+

∞∑
j=1

∫
[t−jK,t−(j−1)K]T

(eA(t+ tn, σ(s+ tn))− eĀ(t, σ(s)))f̄(s)∆s

:=K1 +K2.

By Hölder inequality, (3.2), and Propersition 3.2, we have

K1 ≤
∞∑
j=1

(∫
[t−jK,t−(j−1)K]T

|eA(t+ tn, σ(s+ tn))|q∆s

) 1
q

·

(∫
[t−jK,t−(j−1)K]T

|f(s+ tn)− f̄(s)|p∆s

) 1
p

≤
∞∑
j=1

C

(∫
[t−jK,t−(j−1)K]T

|e	a(t+ tn, σ(s+ tn))|q∆s

) 1
q

· K
1
p

(
1

K

∫
[t−jK,t−(j−1)K]T

|f(s+ tn)− f̄(s)|p∆s

) 1
p

=

∞∑
j=1

C

(∫
[t−jK,t−(j−1)K]T

|e	a(t, σ(s))|q∆s

) 1
q

K
1
p

(
1

K

∫
[t−jK,t−(j−1)K]T

|f(s+ tn)− f̄(s)|p∆s

) 1
p

≤
∞∑
j=1

C|e	a(t, σ(t− (j − 1)K)| ·

(
1

K

∫
[t−jK,t−(j−1)K]T

|f(s+ tn)− f̄(s)|p∆s

) 1
p

≤Cλa

(
1

K

∫
[t−jK,t−(j−1)K]T

|f(s+ tn)− f̄(s)|p∆s

) 1
p

,
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where 1/p + 1/q = 1. By (3.4), for the ε given above, there exists a positive integer N > N1, such that

when n > N , we have K1 ≤ Cλaε. By (3.6) and Propersition 3.2, we get

K2 ≤
∞∑
j=1

(∫
[t−jK,t−(j−1)K]T

|f̄(s)|p∆s

) 1
p

·

(∫
[t−jK,t−(j−1)K]T

|eA(t+ tn, σ(s+ tn))− eĀ(t, σ(s))|q∆s

) 1
q

≤
∞∑
j=1

(∫
[t−jK,t−(j−1)K]T

|eA(t+ tn, σ(s+ tn))− eĀ(t, σ(s))|q∆s

) 1
q

K
1
p ‖f̄(s)‖Sp

≤
∞∑
j=1

(∫
[t−jK,t−(j−1)K]T

|C2εe	a(t, σ(s))|q∆s

) 1
q

K
1
p ‖f̄(s)‖Sp

≤C2‖f̄(s)‖SpεK
1
p

∞∑
j=1

e	a(t, σ(t)− (j − 1)K)K
1
q

≤C2λa‖f̄(s)‖Spε

for n > N , and t ∈ T, where 1/p+ 1/q = 1. Thus we get limn→∞ |x(t+ tn)− x̄(t)| = 0 for each t ∈ T. By

the similar argument, we can prove that limn→∞ |x̄(t− tn)− x(t)| = 0 for each t ∈ T. Thus x is almost

automorphic on T, and the proof is complete.

Remark 3.1 When T = R, it is easily to see that the condition (3.9) admits exponential dichotomy

condition on R, and the Theorem 3.1 is the generalization of Theorem 3.8 in [14].

4 Almost automorphic solutions of cellular neural networks on

time scales

In this section, we will study the existence and exponentially stable of almost automorphic solutions for

system

x∆
i (t) = −ci(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t)) +

n∑
j=1

bij(t)fj(xj(t− γij(t))) + Ii(t), t ∈ T, (4.1)

where fj ∈ C(R,R), and ci, γij are almost automorphic, and aij , bij , Ii are stepanov-like almost automor-

phic on T, i, j = 1, 2, · · · , n. The system (4.1) is supplemented with the initial values given by

xi(s) = ϕi(s), s ∈ [−γ, 0]T, (4.2)

where ϕi ∈ Crd([−γ, 0]T,R), and γ = max1≤i,j≤n{supt∈T |γij(t)|}.

Definition 4.1 System (4.1) with initial condition (4.2) is said to be globally exponentially stable, if

there are constants λ > 0 and M ≥ 1 such that for any two solutions x(t, ϕ) and x(t, ψ) with the initial

functions ϕ,ψ, respectively, one has

‖x(t, ϕ)− x(t, ψ)‖∞ ≤Me	λ(t, t0)‖ϕ− ψ‖∞, t ≥ 0,

with ‖f(·)‖∞ = supt∈T |f(t)|.
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By the similar argument of [Lemma 2.15, [6]], we can get the following result:

Lemma 4.1 Let ci(t) be an almost automorphic function on T, where ci(t) > 0,−ci(t) ∈ R+, i =

1, 2, · · · , n, t ∈ T, and min1≤i≤n{inft∈T ci(t)} = m̃ > 0, then the linear system

x∆(t) = diag(−c1(t),−c2(t), · · · ,−cn(t))x(t)

admits an exponential dichotomy on T.

In the following, we denote ci = inft∈T ci(t). In order to proof the following theorem, we need the

following conditions:

(H1) There exist positive constants Mj and αj such that

|fj(x)| ≤Mj , |fj(x)− fj(y)| ≤ αj |x− y|, x, y ∈ R, j = 1, 2, · · · , n.

(H2) inft∈T ci(t) > 0,−ci(t) ∈ R+, i = 1, 2, · · · , n.

(H3) λci

(
n∑
j=1

αj(‖aij‖Sp + ‖bij‖Sp)

)
< 1, where λci is given in Proposition 3.2.

Theorem 4.1 Assume (H1)–(H3) hold, and t− γij(t) ∈ T for i, j = 1, 2, · · · , n, t ∈ T. Then the system

(4.1) has a unique almost automorphic solution x∗(t). Moreover, the unique almost automorphic solution

of (4.1) with the initial condition (4.2) is exponentially stable.

Proof. Let E = {ϕ ∈ SpAA(T,Rn) : ‖ϕ‖Sp ≤ r}, where r = maxi{λci
∑n
j=1(Mj(‖aij‖Sp + ‖bij‖Sp) +

‖Ii‖Sp). For any given ϕ = (ϕ1, ϕ2, · · · , ϕn)T ∈ E, consider the following equation:

x∆
i (t) = −ci(t)xi(t) +

n∑
j=1

aij(t)fj(ϕj(t)) +

n∑
j=1

bij(t)fj(ϕj(t− γij(t))) + Ii(t), t ∈ T. (4.3)

By Lemma 4.1, the associated homogeneous equation

x∆
i (t) = −ci(t)xi(t), i = 1, 2, · · · , n.

admits an exponential dichotomy. By Proposition 2.1 and Theorem 2.1, we get the function

F (t) = (F1(t), F2(t), · · · , Fn(t))T

is stepanov-like almost automorphic, where

Fi(t) =

n∑
j=1

aij(t)fj(ϕj(t)) +

n∑
j=1

bij(t)fj(ϕj(t− γij(t))) + Ii(t), i = 1, 2, · · · , n.

By Theorem 3.1, we know the system (4.3) has an unique almost automorphic solution

xϕ(t) =

∫
(−∞,t]T

e−c(t, σ(s))F (s)∆s = (xϕ1(t), xϕ2(t), · · · , xϕn(t))T , t ∈ T,
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where

xϕi(t) =

∫
(−∞,t]T

e−ci(t, σ(s))

 n∑
j=1

aij(s)fj(ϕj(s)) +

n∑
j=1

bij(s)fj(ϕj(s− γij(s))) + Ii(s)

∆s.

Define the operator by

T (ϕ)(t) = (xϕ1(t), xϕ2(t), · · · , xϕn(t))T , ϕ ∈ E.

From Proposition 3.2, and (H1)–(H3), we get

|xϕi
(t)| =

∣∣∣∣∣∣
∫

(−∞,t]T
e−ci(t, σ(s))

 n∑
j=1

aij(s)fj(ϕj(s)) +

n∑
j=1

bij(s)fj(ϕj(s− γij(s))) + Ii(s)

∆s

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫

(−∞,t]T
e−ci(t, σ(s))

 n∑
j=1

(aij(s) + bij(s))Mj + Ii(s)

∆s

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑
l=1

∫
[t−lK,t−(l−1)K]T

e−ci(t, σ(s))

 n∑
j=1

(aij(s) + bij(s))Mj + Ii(s)

∆s

∣∣∣∣∣∣
≤
∞∑
l=1

(∫
[t−lK,t−(l−1)K]T

|e−ci(t, σ(s))|q∆s

) 1
q

· K
1
p

 1

K

∫
[t−lK,t−(l−1)K]T

|
n∑
j=1

(aij(s) + bij(s))Mj + Ii(s)|p∆s

 1
p

≤
∞∑
l=1

e−ci(t, σ(t− (l − 1)K))

n∑
j=1

(Mj(‖aij‖Sp + ‖bij‖Sp) + ‖Ii‖Sp)

≤λci
n∑
j=1

(Mj(‖aij‖Sp + ‖bij‖Sp) + ‖Ii‖Sp) = r, i = 1, 2, · · · , n.

Thus ‖T (ϕ)‖∞ ≤ r, and then T (E) ⊂ E.

Let ϕ,ψ ∈ E, by (H1), we have

|xϕi
− xψi

|

=

∣∣∣∣∣∣
∫

(−∞,t]T
e−ci(t, σ(s))

 n∑
j=1

aij(s)(fj(ϕj(s))− fj(ψj(s)))

+

n∑
j=1

bij(s)(fj(ϕj(s− γij(s)))− fj(ψj(s− γij(s))))

∆s

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫

(−∞,t]T
e−ci(t, σ(s))

 n∑
j=1

αj [aij(s)(ϕj(s)− ψj(s)) + bij(s)(ϕj(s− γij(s))− ψj(s− γij(s)))]

∆s

∣∣∣∣∣∣
≤λci

 n∑
j=1

αj(‖aij‖Sp + ‖bij‖Sp)

 ‖ϕ− ψ‖∞.
By (H3), we know T is a contraction mapping from E to E, and then T has a fixed point x∗(t) in E,

which is the almost automorphic solution for (4.1).
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By the similar argument of [Theorem 6.1 [10]], we can prove that the almost automorphic solution

x∗(t) is exponentially stable, and here we omit the details. The proof is complete.

At last, we give the following example to illustrate our results Theorem 4.1.

Example 4.1 Consider the following neural network:

x∆
i (t) = −ci(t)xi(t) +

2∑
j=1

aij(t)fj(xj(t)) +

2∑
j=1

bij(t)fj(xj(t− γij(t))) + Ii(t), t ∈ R, i = 1, 2,

with the initial codition

x1(s) = sin s, x2(s) = cos s, s ∈ [−1, 0],

where

c1(t) = sin
1

2 + cos t+ cosπt
+ 2, c2(t) = sin

1

2 + cos t+ cos
√
t

+ 2,

f1(t) =
1

12
cos2 t, f2(t) =

1

12
sin2 t,

(aij(t))2×2 =

(
1
2 | sin t|,

1
2 | cos t|

1
3 | sin t|,

1
3 | cos

√
2t|

)
, (bij(t))2×2 =

(
9
7 | cos t|, 9

7 | sin t|
10
7 | cos t|, 10

7 | sin
√

2t|

)
,

(γij(t))2×2 =

 cos 1
1+| sin t| , sin 1

1+| cos t|

cos 1
1+| sin

√
2t| , sin 1

1+| cos
√

2t|

 ,

I1(t) = g1(t)h1(t), I2(t) = g2(t)h2(t),

with

g1(t) =

{
1

1+t2 , t ∈ Z
cos t, t ∈ T \ Z

, g2(t) =

{
2

1+t2 , t ∈ Z
cos 2t, t ∈ T \ Z

,

h1(t) =

{
1, t ∈ Z
sin 1

2+sin
√

2t
. t ∈ T \ Z

, h2(t) =

{
1, t ∈ Z
cos 1

2+cos
√

2t
. t ∈ T \ Z

It is easy to see that f1, f2 satisfy (H1), and α1 = α2 = 1/6. It is not difficult to calculate that

c1 = 1, c2 = 1, and the condition (H2) is true. Since λc1 = 1
1−e−1 , λc2 = 1

1−e−1 , ‖a1j‖Sp = 1
2 , ‖a2j‖Sp = 1

3 ,

‖b1j‖Sp = 9
7 , ‖b2j‖Sp = 10

7 , for j = 1, 2, we have

λc1

2∑
j=1

α1(‖a1j‖Sp + ‖b1j‖Sp) < 1, λc2

2∑
j=1

α1(‖a2j‖Sp + ‖b2j‖Sp) < 1,

and (H3) holds. . Now, by Theorems 4.1, system (4.1) has a unique almost automorphic solution in the

region E = {ϕ ∈ SpAA(T,R2) : ‖ϕ‖∞ ≤ r}, with r = 25
7(1−e−1) , which is globally exponential stable.
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