
Received 26 April 2016; Revised 6 June 2016; Accepted 6 June 2016

DOI: xxx/xxxx

ARTICLE TYPE

A logarithmic barrier method for linear programming based on a
new minorant function

Linda Menniche*1 | Djamel Benterki2 | Imene Benchetta3

1LMAM,Faculty of Sciences, Jijel
Mohammed Seddik ben Yahia University,
Jijel,18000, Algeria

2Laboratory of Fundamental and Numerical
Mathematics LMFN,Faculty of Sciences,
Setif-1 Ferhat Abbas University,
Setif,19000, Algeria

3Laboratory of Fundamental and Numerical
Mathematics LMFN,Faculty of Sciences,
Setif-1 Ferhat Abbas University,
Setif,19000, Algeria

Correspondence
*Linda Menniche, LMAM,Faculty of
Sciences, Jijel Mohammed Seddik ben Yahia
University, Jijel,18000, Algeria Email:
djbenterki@univ-setif.dz

Summary

This paper presents a logarithmic barrier method without line search for solving
linear programming problem. The descent direction is the classical Newton’s one.
However, the displacement step is determined by a simple and efficient technique
based on the notion of the minorant function approximating the barrier function.
Numerical tests show the efficiency of this approach versus classical line search
methods.

KEYWORDS:
Linear Programming, Logarithmic Barrier methods. Minorant function.

1 INTRODUCTION

Linear programs are ubiquitous in many areas of applied science today. The primary reason for this is their flexibility: linear
programs frame problems in optimization as a system of linear inequalities. This template is general enough to express many
different problems in engineering, operations research, economics, and even more abstract mathematical areas such as combi-
natorics. The linear programming problem is usually solved through the use of one of two algorithms: either simplex, or an
algorithm in the family of interior point methods. Karmarkar’s5 projective method has initiated the fast developing field of inte-
rior point methods for linear programming. Since than, many different interior point methods have been proposed which appear
to have several similarity if one analysis then more carefully.
A well-known interior point method logarithmic barrier function method, proposed by Frish4 and further developed by Fiacco
and McCormick3. In this method the nonnegativity constraints of the linear programming problem are replaced by an additional
term in the objective function.
Several algorithms have been proposed to solve the linear programming problem, by the algorithmic barrier methods2, the two
covered basic elements are the direction of displacement that dominates the cost computation at each iteration and the dis-
placement step which plays an important role in the speed of convergence. Many alternatives are proposed to overcome the last
difficulty2,8. Unfortunately, the computation of displacement step, especially while using line search methods is expensive and
even more delicate in semidefinite programming problems2. Moreover, A. Leulmi et al.7 proposed a minorant function to deter-
mine easily the displacement step. Unfortunately, this function is limited for linear programming problem with small size and
does not work well for those of large size. The numerical tests that we effected prove it.
In this sens, we propose a new approximate function Geff of the barrier function called minorant function to compute the dis-
placement step by a simple and easy manner. This newminorant functionGeff is more efficient than that proposed by A. Leulmi

2 L. Menniche ET AL.

et al.7, and the line search methods, as shown by the numerical experiments that we carried out.
The paper is organized as follows: In section 2, we describe the linear programming problem to be studied, thereafter we give his
perturbed problem with some necessary notations and some theoretical results. In section 3, we discuss the numerical aspects of
perturbed problem and we present briefly the barrier logarithmic algorithm. In section 4, we present our new minorant function
to determine an effective displacement step. this procedure is used to avoid the line search methods and to accelerate the speed of
convergence of the algorithm. In section 5, we present numerical tests on some different examples to illustrate the effectiveness
of our new approach in comparison with the minorant function given by A. leulmi et al.7, and classical line search methods.

2 DESCRIPTION OF THE PROBLEM

We consider the following linear programming problem

(D)

⎧

⎪

⎨

⎪

⎩

min bty
Aty ≥ c
y ∈ ℝm,

where A ∈ ℝm×n is a matrix of full rank (rank(A) = m < n).
c and b are a vectors of ℝn and ℝm respectively.
The dual problem associated to (D) is defined as follows:

(P)

⎧

⎪

⎨

⎪

⎩

max ctx
Ax = b
x ∈ ℝn x ≥ 0.

The problem (D) can be written in the following standard form
⎧

⎪

⎨

⎪

⎩

min bty
Aty − s = c
y ∈ ℝm s ∈ ℝn s ≥ 0.

We denote by:

Y =
{

y ∈ ℝm ∶ Aty − c ≥ 0
}

, the feasible solutions set of (D),
Ŷ =

{

y ∈ ℝm ∶ Aty − c > 0
}

, the strictly feasible solutions set of (D),
W = {x ∈ ℝn ∶ Ax = b, x ≥ 0}, the feasible solutions set of (P),
Ŵ = {x ∈ ℝn ∶ Ax = b, x > 0}, the strictly feasible solutions set of (P),
The scalar product of two vectors u, v in ℝn is defined by

< u, v >= utv =
n
∑

i=1
uivi.

The Euclidean norm of u ∈ ℝn is ‖u‖ =< u, u >
1
2 .

Throughout this paper, we assume that the sets Ŷ and Ŵ are not empty.
To study (D), we associate it by the perturbed equivalent problem

(Dr)
{

min fr(y)
y ∈ ℝm.

Where r > 0 is the parameter barrier and fr is the barrier function defined by

fr(y) =

⎧

⎪

⎨

⎪

⎩

bty + nr ln r − r
n
∑

i=1
ln < ei, Aty − c > if Aty − c > 0,

+∞ otherwise.

Where (e1, e2,… , en) is the canonical base in ℝn.

L. Menniche ET AL. 3

3 THEORETICAL ASPECTS OF PERTURBED PROBLEM

3.1 Existence of solution of the problem (Dr)
Firstly, we give the following definition

Definition 1.
Let ℎ be a function defined from ℝm to ℝ ∪ {∞} and � ≥ 0. Then

1. The set S�(ℎ) = {y ∈ ℝm, ℎ(y) ≤ �} is called the �-level set of ℎ.

2. The function ℎ is called inf-compact if the level sets S�(ℎ) are compact for all � > 0.

3. The recession function of ℎ is the function (ℎ)∞ ∶ ℝm → ℝ ∪ {∞} defined by

(ℎ)∞(d) = lim
t→∞

fr(y + td) − fr(y)
t

4. The recession cone of ℎ is the 0-level set of the recession function of ℎ, denoted by S0((ℎ)∞).

To prove that (Dr) has an optimal solution, it is sufficient to prove that fr is inf-compact, which comes back in particular to
show that the cone of recession:

S0((fr)∞) =
{

d ∈ ℝn, (fr)∞(d) ≤ 0
}

amounts to zero, i.e.,
(fr)∞(d) ≤ 0 ⇒ d = 0

where (fr)∞ is defined by
(fr)∞(d) = lim

t→∞

fr(y + td) − fr(y)
t

= btd.

This needs to the following lemma
Lemma 1. 8

Suppose that Ŷ and Ŵ are not empty, if btd ≤ 0 and Atd > 0 then d = 0.

3.2 Uniqueness of the solution of the problem (Dr)
As the function (fr) is strictly convex, then if an optimal solution of problem (Dr) exists, it is unique.
As consequence, we deduce that (Dr) has a unique optimal solution.

3.3 Convergence of perturbed problem to (D)
Lemma 2. 8

For r > 0, let yr an optimal solution of the problem (Dr), then there exists y ∈ Y an optimal solution of (D) such that: lim
r→0

yr = y.

4 THE NUMERICAL ASPECTS OF PERTURBED PROBLEM

4.1 Newton descent direction
The problem (Dr) can be considered as without constraints so, interior point methods of types logarithmic barrier are conceived
for solving this problem type while being based on the optimality conditions which are necessary and sufficient.
As a consequence, (yr) is an optimal solution of (Dr) when it satisfies the following condition:

∇fr(yr) = 0,

therefore, the solution to every iteration of Newton’s method is given by yk+1 = yk + dk, where dk is the solution of the linear
system

[∇2fr(y)]dk = −∇fr(y).

4 L. Menniche ET AL.

Remark 1.
The strict feasibility of iterate yk+1 = yk+dk is not always guaranteed. To surmount this difficulty, we introduce a displacement
step tk and we put yk+1 = yk + tkdk.

4.2 Prototype algorithm
Begin algorithm

• Initialization: start with y0 a strictly feasible solution of (D), d0 ∈ ℝm, " a given precision and k = 0.

• While |btdk| > " do

– Resolve the system ∇2fr(yk)dk = −∇fr(yk)

– Compute the displacement step tk
– Take yk+1 = yk + tkdk and k = k + 1.

• End while

• End algorithm.

4.3 Computation of the displacement step
The most known methods used to compute the displacement step tk are the line search methods to minimizing the function

�(t) = 1
r
(fr(y + td) − fr(y)), y + td ∈ Ŷ .

Unfortunately, these methods are expensive and in general impossible in certain problem as semidefinite programming problems.
For this reason, J.P. Crouzeix et al.2 and L. Menniche et al.8 have used the notion of the majorant function that approaches the
function �(t) and offers a displacement step with a simple technique for linear semidefinite programming and linear programming
respectively.
Inspired by this idea, we propose in this work, to approach the function �(t) by a simple minorant function giving at each

iteration k, a displacement step tk in an easy way, simple and much less expensive than line search methods.

Remark 2.
At each iteration, it is necessary that the point y + td still in Ŷ to keep function �(t) well defined. This in turns requires finding
t̂ > 0 such that y + td ∈ Ŷ for any t ∈ [0, t̂[.
Lemma 3. 8

Let t̂ = sup
{

t, 1 + tzi > 0
}

with zi =
<ei,Atd>
<ei,Aty−c>

, ∀i = 1,… , n
∀t ∈ [0, t̂], the following function �(t) is well defined by

�(t) = (
n
∑

i=1
zi − ‖z‖2)t −

n
∑

i=1
ln(1 + tzi),

with
�(0) = 0, �′′(0) = −�′(0) =∥ z ∥2 .

Unfortunately, it does not exist an explicit formula that gives an optimal displacement step topt = argmin �(t)
t∈[0,t̂[

, and the reso-

lution of the equation �′(topt) = 0 through iterative methods need at each iteration to compute � and �′. These computations are
too expensive, especially in the problems of large size. These difficulties conduct us to look for other new alternatives.
Now, we look for a minorant function G of the function � on [0, t̂[which can be used as a lower approximation of �. Such a
lower approximation may be more efficient to manipulate than �. The function G is chosen to be simple and close enough to �
and to satisfy the following properties

G(0) = 0 and G′′(0) = −G′(0) =∥ z ∥2,
where G′ and G′′ denote the first and the second derivative of G respectively.

L. Menniche ET AL. 5

4.4 Minorant functions of �
Before determining these functions, we need the following theorem.
Let (x1, x2,… , xn) ∈ ℝn, then its mean x̄ and its standard deviation �x are respectively defined as

x̄ = 1
n

n
∑

i=1
xi and �2x =

1
n

n
∑

i=1
x2i − x̄

2 = 1
n

n
∑

i=1
(xi − x̄)2.

Theorem 1. 2

Assume that xi > 0 for i = 1, n, then

n ln(x̄ − �x
√

n − 1) ≤ A ≤
n
∑

i=1
ln(xi) ≤ B ≤ n ln(x̄),

with
A = (n − 1) ln(x̄ + �x

√

n−1
) + ln(x̄ − �x

√

n − 1),

B = ln(x̄ + �x
√

n − 1) + (n − 1) ln(x̄ − �x
√

n−1
).

4.5 First minorant function
This strategy consists to minimize the minorant approximation G of � over [0, t̂[. To be efficient, this approximation needs to be
simple and sufficiently close to �. In our case, it requires that

G(0) = �(0) = 0, G′′(0) = �′′(0) = −�′(0) = −G′(0) =∥ z ∥2 .

Firstly, A. Leulmi et al.7 give the following minorant function G0 on [0, t̂[

G0(t) =
0t − ln(1 + �0t) − (n − 1) ln(1 + �0t).

With
0 = nz̄− ∥ z ∥2, �0 = z̄ − �z
√

n−1
and �0 = z̄ + �z

√

n − 1.

The function G0 is well defined when t ≤ t̂0 with t̂0 =

{

−1
�0

if �0 < 0,
+∞ if not.

Lemma 4. We have G0(t) ≤ �(t), ∀t ∈ [0, t̂0[.

Proof. Using the previous theorem, we have
n
∑

i=1
ln(xi) ≤ ln(x̄ + �x

√

n − 1) + (n − 1) ln(x̄ −
�x

√

n − 1
).

This implies that
n
∑

i=1
ln(xi) + t ∥ z ∥2≤ ln(x̄ + �x

√

n − 1) + (n − 1) ln(x̄ −
�x

√

n − 1
) + t ∥ z ∥2,

which gives

nz̄(t) − (
n
∑

i=1
ln(xi)+ ∥ z ∥2 t) ≥ nz̄t − [ln(x̄ + �x

√

n − 1) + (n − 1) ln(x̄ − �x
√

n−1
)

+ ∥ z ∥2 t].

Taking xi = 1 + tzi, for any i = 1, n and t ∈ [0, t̂0[, hence x̄ = 1 + tz̄ and �x = t�z, we get

0t − ln(1 + �0t) − (n − 1) ln(1 + �0t) ≤ (nz̄− ∥ z ∥2)t −
n
∑

i=1
ln(1 + tzi).

With

⎧

⎪

⎨

⎪

⎩

0 = nz̄− ∥ z ∥2,
�0 = z̄ + �z

√

n − 1,
�0 = z̄ − �z

√

n−1
.

6 L. Menniche ET AL.

So, we have shown that
G0(t) ≤ �(t) on [0, t̂0[.

On the other hand, for any t ∈ [0, t̂0[, we have

�(0) = G0(0) = 0, �′(0) = −G′
0(0) =∥ z ∥

2,
�′′(0) = G′′

0 (0) =∥ z ∥
2 .

The function G0 is strictly convex on [0, t̂0[and G′
0(t) < 0. If t → ∞ and since G0 minimize � which is inf-compact, G0

admits a minimum on [0, t̂0[.
If t̂0 < +∞ so G0(t) → ∞ if t → t̂0. Consequently, G0 admits a unique minimum on [0, t̂0[. This minimum is obtained at t̄0

such that G′
0(t̄0) = 0.

This leads us to solve the second order following equation

t2 − 2b0t + c0t = 0.

With b0 =
1
2
(n

0
− 1

�0
− 1

�0
) and c0 = − ∥z∥2

�0�0
0

Let’s take one root of the two roots t̄0 = b0 ±
√

b20 − c0 that belong to [0, t̂0[.

4.5.1 Second minorant function
We can also think of better and simpler functions than the function G0. We consider our new function Geff defined by

Geff (t) = t
∥ z ∥2

�0
− p ln(1 + t

∥ z ∥2

�0
), ∀t ≥ 0, 0 < p < 1.

Lemma 5.
Geff is strictly convex for all t ≥ 0, and we have

−∞ ≤ Geff (t) ≤ �(t).

Proof.
One has �(t) = nz̄t − t ∥ z ∥2 −

n
∑

i=1
ln (1 + tzi), we put

k(t) = �(t) − Geff (t)

Then
k(0) = k′(0) = 0

and we have for all t ≥ 0

k′′(t) =
n
∑

i=1

z2i
(1 + tzi)2

−
z2i

(1 + t ∥z∥
2

�0
)2

≥ 0.

because
|zi| ≤∥ z ∥ and �0 ≤∥ z ∥ .

Which gives k(t) ≥ 0, ∀t ≥ 0.
So,

�(t) ≥ Geff (t), ∀t ≥ 0.
■

We deduce that the function �eff reaches its minimum in one unique point teff = �20
∥z∥2

.

5 NUMERICAL EXPERIMENTS

In this section, we present a comparative tests on different numerical examples of linear programming problem taken from the
literature6. The precision " is taken between 10−2 and 10−6. In the following tables:
Iter: indicate the number of iterations that have executed,

L. Menniche ET AL. 7

Time: indicate the time measured in seconds,
div: means that the algorithm has not converged,
ls: indicate the classical line search of Armijo-Goldstein-Price type.

5.1 Example with fixed size
Example 1:

A =
(

0 1 0 0
1 0 0 0

)

,

b = (2, 2)t , c = (1, 1,−1,−1)t.
The initial strictly feasible point is y0 = (1.5, 1.5)t.
The optimal solution is y∗ = (1, 1)t.
Example 2:

A =
⎛

⎜

⎜

⎝

−2 −1 0 1 0 0
0 0 −1 0 0 1
0 −1 −1 −1 −1 −1

⎞

⎟

⎟

⎠

,

b = (0, 0,−1)t , c = (−3, 1,−1, 0, 0, 0)t.
The initial strictly feasible point is y0 = (−1,−1,−2)t.
The optimal solution is y∗ = (−0.5,−0.0713,−0.5)t.
Example 3:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 4 −3 −1 −1 −1 0 0 0 0 0
−5 −3 −1 0 1 −3 0 −1 0 0 0 0
−4 −5 3 −3 4 −1 0 0 −1 0 0 0
0 1 0 −2 −1 5 0 0 0 −1 0 0
−2 −1 −1 −1 −2 −2 0 0 0 0 1 0
−2 3 −2 1 −4 −5 0 0 0 0 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

b = (−1,−4,−4,−5,−7,−5)t , c = (4, 5, 1, 3,−5, 8, 0, 0, 0, 0, 0, 0)t.
The initial strictly feasible point is y0 = (2,−4,−1,−1,−1,−1)t.
The optimal solution is y∗ = (−0.5,−1.5, 0, 0,−1.5, 0)t.
Example 4:

A =
⎛

⎜

⎜

⎝

1 −1 1 1 0 0
1 1 1 0 1 0
2 2 1 0 0 1

⎞

⎟

⎟

⎠

b = (6, 2, 4)t , c = (4,−2,−2, 0, 0, 0)t .
The initial strictly feasible point is y0 = (0.5, 1, 1)t.
The optimal solution is y∗ = (0, 0, 0)t.
The following table summarizes the results obtained for different sizes.

t̄eff t̄0 ls
Iter Time(s) Iter Time(s) Iter Time(s)

Example 1 17 0.0149 19 0.0207 45 0.1961
Example 2 18 0.0198 19 0.0152 50 0.1236
Example 3 22 0.0380 div div 46 0.2592
Example 4 13 0.0170 11 0.0178 45 0.2221

8 L. Menniche ET AL.

5.2 Example with variable size
Example 5:

(DL)

⎧

⎪

⎨

⎪

⎩

min
m
∑

i=1
2yi

yi − 1 ≥ 0, i = 1,… , m, n = 2m.

the initial strictly feasible point is y0 = (1.5, 1.5,… , 1.5)t ∈ ℝm.
The optimal solution is y∗ = (1, 1,… , 1)t ∈ ℝm.
The following table summarizes the results obtained for different sizes.

t̄eff ls
size(m, n) Iter Time(s) Iter Time(s)
(100, 200) 32 5.6187 77 13.8407
(200, 400) 35 23.2758 78 33.1803
(300, 600) 37 66.2671 79 137.942
(400, 800) 38 138.543 79 242.434
(500, 1000) 39 294.9521 79 605.497
(600, 1200) 40 552.5750 79 1304.16
(1000, 2000) 42 2564.8 81 4850.9

Example 6:

A(i, j) =
{

1 if i = j or j = m + i,
0 if not.

b(i) = 4; i = 1,… , m.

c(i) =
{

−1 i = 1,… , m
0 i = m + 1,… , n

, n = 2m.

The initial strictly feasible point is y0 = (4, 4,… , 4)t ∈ ℝm

The optimal solution is y∗ = (0, 0,… , 0)t ∈ ℝm.
The following table summarizes the results obtained for different sizes.

t̄eff ls
Size(m, n) Iter Time(s) Iter Time(s)
(100, 200) 35 6.1255 50 8.9519
(200, 400) 38 25.6466 51 32.1801
(300.600) 40 71.6350 52 89.4249
(400, 800) 41 128.7171 52 161.5772
(500, 1000) 42 320.9764 52 400.5419
(600, 1200) 43 643.0831 56 816.1027
(1000, 2000) 45 2754.8 58 3542.4

Example 7:

A(i, j) =

⎧

⎪

⎨

⎪

⎩

1
i+j

if i, j = 1,… , m,
1 if j = m + i,
0 if not.

b(i) =
m
∑

j=1

1
j+i

, i = 1,… , m.

c(i) =

{

b(i) + 1
i+1

i = 1,… , m
0 i = m + 1,… , n

, n = 2m.

The initial strictly feasible point is y0 = (1, 1,… , 1)t ∈ ℝm.

L. Menniche ET AL. 9

The optimal solution is y∗ = (0, 0,… , 0)t ∈ ℝm.
The following table summarizes the results obtained for different sizes.

t̄eff ls
Size(m, n) Iter Time(s) Iter Time(s)
(100, 200) 32 6.1143 47 8.5130
(200, 400) 34 20.6473 48 32.9780
(300, 600) 37 71.6678 48 88.2086
(400, 800) 38 142.7643 49 154.4763
(500, 1000) 39 301.4535 54 413.2245
(600, 1200) 44 557.5541 53 735.1828
(1000, 2000) 42 2567.3 53 3239.6

Comments
These numerical tests, show that the new minorant function, gives an optimal solution in reasonable time with small number of
iterations in comparison with the minorant function of A. Leulmi et al.7, and classical line search of Armijo-Goldstein-Price.
Note that if the dimension of the problem becomes important, the convergence of the algorithm based on the first minorant
function7 is no guaranteed. For this raison, we havn’t presented in tables of examples 5, 6 and 7 the optimal solution t̄0 of G0,
because the algorithm diverges in this case.

6 CONCLUSION

In this work, we have presented a logarithmic barrier method for solving the linear programming problem. Since the perturbed
is strictly convex, the KKT condition are necessary and sufficient. For this, we use Newton’s method that allows us to compute
a good descent direction and determine a new iterate, better than the current iterate.
To compute the displacement step, we have proposed in this work a new approach based on minorant functions. This allows us
to compute the effective displacement step by a simple and easy manner.
The numerical tests above show that the new minorant function that we have developed in this paper leads to a significant
reduction in computational time and number of iterations and an improvement in the quality of the results in comparison with
the classical line search methods.
The minorant function technique is a very reliable alternative that will be confirmed as an effective technique for determining
displacement steps in logarithmic barrier methods for linear programming. This technique will be also extended favorably for
other classes of optimization problems.

References

1. J.P. Crouzeix, A. Seeger, New bounds for the extreme values of a finite sample of real numbers, Journal of Mathematical
Analysis and Applications, 197 (2008) 411–426.

2. J.P. Crouzeix, B. Merikhi, A logarithm barrier method for semidefinite programming, RAIRO-Operations Research, 42
(2008) 123–139.

3. A.V. Fiacco, G.P. McCormick, Nonlinear programming: Sequential unconstrained minimization techniques, Wiley
Reprinted as volume 4 of SIAM Classics in Applied Mathematics Series, (1990).

4. R.A.K. Frish, The logarithmic potential method of convex programming, Technical report, University Institute of Eco-
nomics, Olso, Noway (1955).

5. N. Karmarkar, A new polynomial-time algorithm in linear programming, Combinatorica 4 (1984) 373–395.

6. A. Keraghel, D. Benterki, Sur les performances de l’algorithme de Karmarkar pour la programmation linéaire, Revue
Roumaine des sciences techniques mécaniques appliquées, 46 (2001) 87–96.

10 L. Menniche ET AL.

7. A. Leulmi, S. Leulmi, Logarithmic barrier method via minorant function for linear programming, Journal of Siberian
Federal University. Mathematics and Physic, 2(2) (2019) 91–201.

8. L. Menniche, D. Benterki, A logarithmic barrier approach for linear programming, Journal of computational and Applied
Mathematics 312 (2017) 267–275.

How to cite this article: Williams K., B. Hoskins, R. Lee, G. Masato, and T. Woollings (2016), A regime analysis of Atlantic
winter jet variability applied to evaluate HadGEM3-GC2, Q.J.R. Meteorol. Soc., 2017;00:1–6.

	A logarithmic barrier method for linear programming based on a new minorant function
	Abstract
	Introduction
	Description of the problem
	Theoretical aspects of perturbed problem
	Existence of solution of the problem (Dr)
	Uniqueness of the solution of the problem (Dr)
	Convergence of perturbed problem to (D)

	The numerical aspects of perturbed problem
	Newton descent direction
	Prototype algorithm
	Computation of the displacement step
	Minorant functions of
	First minorant function
	Second minorant function

	Numerical experiments
	Example with fixed size
	Example with variable size

	Conclusion
	References

