Reference
  1. J.M. Mackenzie. Intracerebral hemorrhage. Lancet . 1992; 373(9675): 1632-1644.
  2. M.J. Ariesen, S. P. Claus, G.J.E. Rinkel, et al.. Risk Factors for Intracerebral Hemorrhage in the General Population: A Systematic Review. Stroke . 2003; 34(8): 2060-2065.
  3. I.C. Hostettler, D.J. Seiffge, D.J. Werring. Intracerebral hemorrhage: an update on diagnosis and treatment. Expert Review of Neurotherapeutics . 2019; 19(7): 679-694..
  4. W.M.T. Jolink, C.J.M. Klijn, P.J.A.M. Brouwers, et al.. Time trends in incidence, case fatality, and mortality of intracerebral hemorrhage.Neurology . 2015; 85(15): 1318-24.
  5. A.M. Thabet, M. Kottapally, J.C. Hemphill. Management of intracerebral hemorrhage. Critical Care Neurology Part I . 2017; 140(3): 177-193.
  6. Z.T. Brodrick, R. Freeze-Ramsey, R.A. Seupaul. Among Patients With Intracerebral Hemorrhage, Is Intensive Blood Pressure Decreasing Associated With Improved Outcome? Annals of Emergency Medicine . 2018; 72(5): 611-612.
  7. N.I.W. Participants. Priorities for clinical research in intracerebral hemorrhage: report from a National Institute of Neurological Disorders and Stroke workshop. Stroke; a journal of cerebral circulation . 2005; 36(3): 23-41.
  8. J. Emelia, S. Salim, W. Clifton, et al.. Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association. Circulation . 2018; 137: e67–e492.
  9. A.R. Parry-Jones, L. Paley, B.D. Bray, et al.. Care-limiting decisions in acute stroke and association with survival: analyses of UK national quality register data. International Journal of Stroke . 2016; 11(3): 321-331.
  10. L.B. Morgenstern, J.C. Hemphill Rd, C. Anderson, et al.. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke; a journal of cerebral circulation . 2015; 46(7): 2032.
  11. S. Thorsten, A.S. Rustam, B. Ronnie, et al.. European Stroke Organisation (ESO) guidelines for the management of spontaneous intracerebral hemorrhage. International Journal of Stroke . 2014; 9(7): 840-855.
  12. G.S. Power, D.A. Harrison. Why try to predict ICU outcomes?Current Opinion in Critical Care . 2014; 20(5): 544-549.
  13. S.Y. Peng, Y.C. Chuang, T.W. Kang, K.H. Tseng. Random forest can predict 30-day mortality of spontaneous intracerebral hemorrhage with remarkable discrimination. European Journal of Neurology . 2010; 17(7): 945-950.
  14. A.E.W. Johnson, T.J. Pollard, L. Shen, et al.. MIMIC-III, a freely accessible critical care database. Scientific Data . 2016; 3: 160035.
  15. E. Mendes. Introduction to Bayesian Networks. Springer Berlin Heidelberg . 2014: 61-71.
  16. S.B. Kim, K.S. Han, H.C. Rim, et al.. Some Effective Techniques for Naive Bayes Text Classification. IEEE Transactions on Knowledge and Data Engineering . 2006; 18(11):1457-1466.
  17. G. Guo, H. Wang, D. A. Bell, et al. KNN Model-Based Approach in Classification. Springer-Verlag Berlin Heidelberg . 2003: 986-996.
  18. Friedman J H . Greedy Function Approximation: A Gradient Boosting Machine[J]. The Annals of Statistics . 2001; 29(5):1189-1232.
  19. J.R. Quinlan. Induction of decision trees. Machine Learning . 1986; 1: 81-106.
  20. L. Rokach, O, Maimon. Top-Down Induction of Decision Trees Classifiers-A Survey. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C APPLICATIONS AND REVIEWS . 2005; 35(4): 476-487.
  21. L. Breiman. Random Forests. Machine Learning . 2001; 45(1): 5-32.
  22. R. Tibshirani. Regression Shrinkage and Selection Via the Lasso.Journal of the Royal Statistical Society Series B (Methodological) . 1996; 58(1): 267-288.
  23. D.F. Edwards, H. Hollingsworth, A.R. Zazulia, et al.. Artificial neural networks improve the prediction of mortality in intracerebral hemorrhage. Neurology . 1999; 53(2): 351.
  24. S. Lukic, Zarko Cojbasic, Z. Peric, et al.. Artificial neural networks based early clinical prediction of mortality after spontaneous intracerebral hemorrhage. Acta Neurologica Belgica . 2012; 112(4): 375-382.
  25. G. Celik, O.K. Baykan, Y. Kara, et al. Predicting 10-day Mortality in Patients with Strokes Using Neural Networks and Multivariate Statistical Methods. Journal of Stroke and Cerebrovascular Diseases . 2014; 23(6): 1506-1512.
  26. D.M.S. Boon, H.H.D.M.V. Vliet, R. Zietse, et al.. To Explore Intracerebral Hematoma with a Hybrid Approach and Combination of Discriminative Factors. Methods of Information in Medicine . 2016; 55(05): 450-454.
  27. R.A. Hanel, A.R. Xavier, Y. Mohammad, et al.. Outcome following intracerebral hemorrhage and subarachnoid hemorrhage.Neurological Research . 2002; 24(Supplement-1): 58-62.
  28. C. Weimar, M. Roth, V. Willig, et al.. Development and validation of a prognostic model to predict recovery following intracerebral hemorrhage. Journal of Neurology . 2006; 253(6): 788-793.
  29. A. Awad, M. Bader-El-Den, J. Mcnicholas, et al.. Early Hospital Mortality Prediction of Intensive Care Unit Patients Using an Ensemble Learning Approach. International Journal of Medical Informatics . 2017; 108: 185-195.
  30. J. C. Hemphill, D.C. Bonovich, L. Besmertis, et al.. The ICH Score.Stroke . 2001; 32(4): 891.