Reference
- J.M. Mackenzie. Intracerebral hemorrhage. Lancet . 1992;
373(9675): 1632-1644.
- M.J. Ariesen, S. P. Claus, G.J.E. Rinkel, et al.. Risk Factors for
Intracerebral Hemorrhage in the General Population: A Systematic
Review. Stroke . 2003; 34(8): 2060-2065.
- I.C. Hostettler, D.J. Seiffge, D.J. Werring. Intracerebral hemorrhage:
an update on diagnosis and treatment. Expert Review of
Neurotherapeutics . 2019; 19(7): 679-694..
- W.M.T. Jolink, C.J.M. Klijn, P.J.A.M. Brouwers, et al.. Time trends in
incidence, case fatality, and mortality of intracerebral hemorrhage.Neurology . 2015; 85(15): 1318-24.
- A.M. Thabet, M. Kottapally, J.C. Hemphill. Management of intracerebral
hemorrhage. Critical Care Neurology Part I . 2017; 140(3):
177-193.
- Z.T. Brodrick, R. Freeze-Ramsey, R.A. Seupaul. Among Patients With
Intracerebral Hemorrhage, Is Intensive Blood Pressure Decreasing
Associated With Improved Outcome? Annals of Emergency Medicine .
2018; 72(5): 611-612.
- N.I.W. Participants. Priorities for clinical research in intracerebral
hemorrhage: report from a National Institute of Neurological Disorders
and Stroke workshop. Stroke; a journal of cerebral circulation .
2005; 36(3): 23-41.
- J. Emelia, S. Salim, W. Clifton,
et al.. Heart Disease and Stroke Statistics—2018 Update: A Report
From the American Heart Association. Circulation . 2018; 137:
e67–e492.
- A.R. Parry-Jones, L. Paley, B.D. Bray, et al.. Care-limiting decisions
in acute stroke and association with survival: analyses of UK national
quality register data. International Journal of Stroke . 2016;
11(3): 321-331.
- L.B. Morgenstern, J.C. Hemphill Rd, C. Anderson, et al.. Guidelines
for the management of spontaneous intracerebral hemorrhage: a
guideline for healthcare professionals from the American Heart
Association/American Stroke Association. Stroke; a journal of
cerebral circulation . 2015; 46(7): 2032.
- S. Thorsten, A.S. Rustam, B. Ronnie, et al.. European Stroke
Organisation (ESO) guidelines for the management of spontaneous
intracerebral hemorrhage. International Journal of Stroke .
2014; 9(7): 840-855.
- G.S. Power, D.A. Harrison. Why try to predict ICU outcomes?Current Opinion in Critical Care . 2014; 20(5): 544-549.
- S.Y. Peng, Y.C. Chuang, T.W. Kang, K.H. Tseng. Random forest can
predict 30-day mortality of spontaneous intracerebral hemorrhage with
remarkable discrimination. European Journal of Neurology . 2010;
17(7): 945-950.
- A.E.W. Johnson, T.J. Pollard, L. Shen, et al.. MIMIC-III, a freely
accessible critical care database. Scientific Data . 2016; 3:
160035.
- E. Mendes. Introduction to Bayesian Networks. Springer Berlin
Heidelberg . 2014: 61-71.
- S.B. Kim, K.S. Han, H.C. Rim, et al.. Some Effective Techniques for
Naive Bayes Text Classification. IEEE Transactions on Knowledge
and Data Engineering . 2006; 18(11):1457-1466.
- G. Guo, H. Wang, D. A. Bell, et al. KNN Model-Based Approach in
Classification. Springer-Verlag Berlin Heidelberg . 2003:
986-996.
- Friedman J H . Greedy Function Approximation: A Gradient Boosting
Machine[J]. The Annals of Statistics . 2001;
29(5):1189-1232.
- J.R. Quinlan. Induction of decision trees. Machine Learning .
1986; 1: 81-106.
- L. Rokach, O, Maimon. Top-Down Induction of Decision Trees
Classifiers-A Survey. IEEE TRANSACTIONS ON SYSTEMS MAN AND
CYBERNETICS PART C APPLICATIONS AND REVIEWS . 2005; 35(4): 476-487.
- L. Breiman. Random Forests. Machine Learning . 2001; 45(1):
5-32.
- R. Tibshirani. Regression Shrinkage and Selection Via the Lasso.Journal of the Royal Statistical Society Series B
(Methodological) . 1996; 58(1): 267-288.
- D.F. Edwards, H. Hollingsworth, A.R. Zazulia, et al.. Artificial
neural networks improve the prediction of mortality in intracerebral
hemorrhage. Neurology . 1999; 53(2): 351.
- S. Lukic, Zarko Cojbasic, Z. Peric, et al.. Artificial neural networks
based early clinical prediction of mortality after spontaneous
intracerebral hemorrhage. Acta Neurologica Belgica . 2012;
112(4): 375-382.
- G. Celik, O.K. Baykan, Y. Kara, et al. Predicting 10-day Mortality in
Patients with Strokes Using Neural Networks and Multivariate
Statistical Methods. Journal of Stroke and Cerebrovascular
Diseases . 2014; 23(6): 1506-1512.
- D.M.S. Boon, H.H.D.M.V. Vliet, R. Zietse, et al.. To Explore
Intracerebral Hematoma with a Hybrid Approach and Combination of
Discriminative Factors. Methods of Information in Medicine .
2016; 55(05): 450-454.
- R.A. Hanel, A.R. Xavier, Y. Mohammad, et al.. Outcome following
intracerebral hemorrhage and subarachnoid hemorrhage.Neurological Research . 2002; 24(Supplement-1): 58-62.
- C. Weimar, M. Roth, V. Willig, et al.. Development and validation of a
prognostic model to predict recovery following intracerebral
hemorrhage. Journal of Neurology . 2006; 253(6): 788-793.
- A. Awad, M. Bader-El-Den, J. Mcnicholas, et al.. Early Hospital
Mortality Prediction of Intensive Care Unit Patients Using an Ensemble
Learning Approach. International Journal of Medical
Informatics . 2017; 108: 185-195.
- J. C. Hemphill, D.C. Bonovich, L. Besmertis, et al.. The ICH Score.Stroke . 2001; 32(4): 891.