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1 | INTRODUCTION

The Lane-Emden equation was first proposed by J. H. Lane'l' during his analysis on the theory of stellar evolution and stud-
ied in details by R. Emden. The Lane-Emden equations are used to model several scientific events in mathematical physics,
astrophysics and biochemistry such as, the first kind Lane-Emden equation,

u’(t) + %u/(t) +u"(t) =0,

arises in the study of heat explosion. The Emden-Fowler type equation,
ayn _
yio +p

was used in calculation of oxygen concentration inside a spherical cell?. The second kind Lane-Emden equation,

V(0 + %y’(r) -

)

i E/ _ y(®) _
v+ ty(t) a exp<—1+§y(t)) =0,

was used in modeling thermal explosion in a rectangular slab® with k = 0 and in infinite cylinder and sphere® with k = 1,2,
respectively.
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In this paper, we consider the following class of coupled Lane-Emden boundary value problems
"(t) + il 10+ (8,x,(1), x,() =0, 1€(0,1)
X PR vt x(1), x,(1)) =0, , 1),

k
X (1) + =250+ y (13,0, x,(0) =0, M
x1(0) = x(0) =0, a; x;(1)+b; X\ (1) =¢;, a x,(1) + b, x,(1) = ¢y,

where k; >0, ky, > 0,a, >0,a, >0, by, b, ¢, and c, are real constants.

The coupled Lane-Emden equations (I)) have significant contribution in various scientific phenomenon such as, in 2011,
Flockerzi and Sundmacher” studied the existence of the following coupled Lane-Emden equations which arises in dusty fluid
model

x(1) + %x'l(t) = a; X1(1) + @, x, (1) x,(1), 1 € (0, 1),
XI() + %x;(:) = a3 X2(1) + ay x, (1) x,(1), @
X (0+) = x,(0+) = 0, x;(1) = B, x,(1) = B,

where «a,, a,, a;, a, are non-zero real constants and f,, f§, are positive real constants. They provided the integral manifold on
which the solutions of (Z)) necessarily lie by transforming the above boundary value problem to terminal value problem.

In 2014, Muthukumar et. al.® constructed a mathematical model on the oxygen and the carbon concentrations in surplus
sludge production from water treatment plants which is governed by the following system of Lane-Emden equations

x| (o) + % X (6) = —e + a y(x,(0), X,(0)) + b y,(x,(0), x,(0)),

X/(0)+ 2 x(0) = ¢ 1(1(0), %,(0)) + d ya(x,(0), 3, (0)), )

X0 =x,0)=0, x;()=x,(D=1, i=12,

where a, b, ¢, d and e are real constants, x,(c), x,(c) are the oxygen and the carbon concentrations, respectively. Here o is the
radius of a spherical floc particle. The nonlinear functions y(x;, x,) and y,(x,, x,) are given by

X1 (o) xz(a )
Iy + x,(0))(m; + x,(0))’
x1(0) x5(0)
(I, + x,(0))(my + x,(0))”
with /,, I,, m;, m, are appropriate real constants. They used Adomian decomposition method for approximating analytical
expressions for carbon and oxygen substrates for specific values of the parameters.

There is a huge literature on the numerical solution of Lane-Emden equations with various initial and boundary conditions such
as the finite difference method® %M, spline finite difference method'4, parametric-spline method!?, cubic spline method#, Tau
method?, B-spline collocation method!®, Adomian decomposition method with Green’s function 7181920/ T aguerre wavelets
collocation method?!' and the Haar-wavelet collocation method %223,

The system of Lane-Emden type equations with initial conditions were solved by the Hermite spline method?#, Adomian
decomposition method??, Chebyshev operational method2, differential transform methodZ, and Taylor series method2.

In??2% authors used modified Adomian decomposition method for finding numerical solution of (2) and (3), respectively.
InL authors provided numerical solution of (3)) using variational iteration method. In“2, authors applied the homotopy analysis
method with Green’s function for the approximate series solutions of (T). Recently, in“**#, authors used an numerical method
based on series approximation for solving ().

The Bernstein polynomials are one of the famous bases of polynomials space. Such polynomials have several meaningful
properties, such as the continuity, the positivity and complete basis formation. Numerical methods based on the Bernstein
polynomials have been used to solve various differential and integral equations®>*3738, The numerical methods based on the
Bernstein polynomials have been applied to solve Lane-Emden equation with initial value in“?#” and to solve some linear integral
system of equations in*!,

To the best of our knowledge, the the Bernstein collocation method has not been applied for numerical solution of the coupled
Lane-Emden equations (I)). In this paper, we propose an efficient collocation method based on the Bernstein polynomials for

vy (x,(0), x,(0)) =

W, (x1(0), x,5(0)) =
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numerical solution of the coupled Lane-Emden boundary value problems (T)). In order to avoid singularity, we first transform the
coupled Lane-Emden BVPs (T)) into the equivalent integral equations. The Bernstein collocation method is used to convert the
integral equations into a system of nonlinear equations. Then the iterative numerical technique is used to find solutions of the
system of nonlinear equations. In addition, the error analysis of the proposed method is provided under quite general conditions.
The accuracy of the proposed method is examined by calculating the maximum absolute error L, the L, error and the residual
error of five numerical examples. The obtained numerical results are compared with the exact solutions and the results obtained
by the other known techniques.

2 | INTEGRAL FORM OF THE COUPLED LANE-EMDEN BVPS

In this section, we establish the equivalent integral form of the coupled Lane-Emden BVPs
x" () + ﬁx'(t)+ (1,x,(1), x,(1)) =0, 1€(0,1)
1 P yi\Lx (1), Xo(0) ) =0, . D),
ky
X(1) + =20 + i (1.3, 1,(0) =0, “)
x1(0) = x5(0) =0, a; x,(1)+b; x[(1) = ¢, ay x,(1)+ b, x)(1) = c,

which is obtained as
1

Cl k
x,(t) = — +/G1(t, s) 551y (5, x,(5), x5(s)) ds, 1€ (0, 1),

4 ° 5)
xy(1) = 2—2 +/G2(t, $) 5%y, (5, %,(5), x,(5)) ds,
2
0

where G (¢, s) and G,(t, s) are the Green’s functions given by

bl b2
ln(s)—a—, t<s, In(s) — o t<s,
G,(t,s) = bl and G,(t,s) = b2 (6)
In()— =, s<t1, In()— =2, s<t,
a; a
fork, =k, =1and
sl=ki—1 b sl=k _1 b,
— = —, 1<y, — — —, <y,
1 - kl al § 1 - k2 (12 s
G,(t,s) = gk 1 b, and Gy(t,8) =1 |_,. S @)
— ——, s<t, - — . s<¢,
-k a -k a4

for k; # 1, k, # 1, respectively.

3 | THE BERNSTEIN COLLOCATION METHOD (BCM)

In this section, we will provide some preliminaries and notations of the Bernstein polynomials technique. We will also derive
the BCM for the numerical approximation of the integral equation ().

Definition 1. The Bernstein basis polynomials of degree n°> are defined as

<'7>t"(1 —ty i 0<i<n,
l

0, i<0,i>n,

B(1) = )

!
where (") = —— neN,i=0,1,2,--nandt € [0, 1].
i il(n—1i)!
These polynomials form a complete basis and have several useful properties. Some of the important properties are
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(i) B(1)20, Yie[0,1]andi=0,1,2,...,n.
(i) B(0)= B'(1)=land B/(0)= B'(1)=0, for 1 <i <n—1.
(i) Y, BI(1) = 1.

Any function g(f) € L?[0, 1] can be approximated by the Bernstein basis polynomials as

[~

g(t) = Z a; B'(1).

i=0
For numerical purpose, we consider the first (n + 1) terms of the above expansion as

n

g~ ) a,B!(1) = ATB(),
i=0

where A and B(?) are (n + 1) X 1 column vectors defined as
1", B() = [BL(), B(®), -, B' 0"

A = [a07a17 i 9an

3.1 | Derivation of the Bernstein Collocation Method

Let us again consider the integral equations of the coupled Lane-Emden BVPs (I)) as
1

_a k
x,() = a_1 + / G, (t,s) s ull(s,xl(s),xz(s)) ds, te€(,1),
1

X,(t) = 24 / G,(t,s) sk wz(s,xl(s), xz(s)) ds.

C
a

\

For convenience, we consider v, (t, x|, x,) and y,(t, X, x,) as

z1(1) =y (1, %, (1), X, (1)), 2,(8) =y, (2, %, (1), x,(1)).

On approximating x, (), x,(t), z;(¢) and z,(¢) by the Bernstein polynomial approximation, we get

x1 () ~ AT B(1), x,(1) ~ AT B(),
z,(1) ~ CT B(1), z,(t) ~ C} B(),
where AT = [a;), a1, a5, -+, a;,] and CT = ¢, ¢;1, ¢, -+, ¢, ), fori = 1,2,
Using (13), (T4) and (I3)), the integral equation (I2) becomes
(
1

ATB() =2+ / G\(t,5) s CT B(s)ds,
a

1

ATB() = 2 + / G, (t,5) s CT B(s)ds,
L)

L

which can further be written as

AT B() = Z—l +CT K,
1
T ) T
A5 B(t) = - +C, K1),
2

where
1 1

K, ()= /Gl(t, ) s51 B(s) ds, K,(t) = / G,(t,s) sk2 B(s) ds.

0 0

®

(10)

an

12)

13)

(14)
5)

(16)

a7

(18)
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Substituting the expressions from equation (I3)) into equation (I3) and using (T7), we have

CT B0 =w, <r, 2T K@, 2 +CT Kz(’)) :
a; a

(19)
c c
Cl B =y, <t, L+l k0,2 +CT K2(1)> .
a, a
Inserting the collocation points ¢; =t +//n, j = 0,1,2 ..., ninto (T9), we get the nonlinear system of equations as
T ! T & T
CTB()—w, (1, 2 +CT K1), 2 +C! Ky(1) ) =0,
a; a
(20)

C C
CI'B(t) - v, <z,, a—i +CT K1), a—z +CT Kz(tj)> =0,

with the unknowns CIT and Cg. We use Newton’s iteration method to find these unknowns. Firstly we write the system of
equation (20) in matrix form as

F(C) =0, 21
where
C= [C], C2]T’ (22)
F(C) = [F}((C), F;;(C), -+, F},(C), Fy(C), Fy,(C), -+, F,,(O)]", (23)
F(C)=CT B(t) - f, (1;.84)+CT K1), i=1.2, 24)
0 =1[0,0,--,0]" € R**2, (25)
To find the numerical value of the unknowns, the Newton’s iteration method is applied to the nonlinear system (2I)) as
Clml — ¢lml = —=1(c™HF(C!™), m=0,1,2, (26)
where _ -
deyg deyg  deyg deyg
dey deyy deyy deyy
OFg .. OFy, OFy | 9Py
J(C)= dcy, dcy, Odcy, dcy,
OFg .. 9h, OFy . 9Py
dcy dcyy  dcy dcyg
dcy, dcy, 0y, dcy,

and CI"! is the m-th iterative solution of (20). The numerical values of the unknown coefficients will be substituted in equation
(I'7) to get the numerical solution of (12)).

4 | ERROR ANALYSIS

In this section, the error bound of the BCM is provided. To do this, we consider the following integral equation
1
x=S4 / G(t,5) s*f(s,x(s)) ds =0, t€(0,1), 27)
2 0
where X = [x;,x,]", £ = [:—1, :Ti]T’ G =[G,G,]" k= [ky, k)", £ = [y, y,]".
Let Y = (C[0, 1], ||x||) be the Banach space with the norm defined as

[IxIl = max {Ilx;II, llx,1l}» (28)
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where ||x;|| = max |x;(#)| fori =1,2.
1€[0,1]

n

Theorem 1. For all functions g(#) in C[0, 1], the sequence { B,(g)} converges uniformly to g, where B, (g) = Z a; B (1) is the
i=0
Bernstein approximation function. l

Proof. For more details see4?. From this theorem we conclude that for any e > 0 there exists an » such that

1B,(g) —gll <e.
O

Theorem 2. If g is bounded and and g” exists in [0, 1] then the error bound for the Bernstein’s approximation function is given
as .
IB,(g) —gll < %t(l - nllig"ll, €, 1). (29)

Proof. For more details see®. O

Theorem 3. Let Y be the Banach space with the norm defined by (28)) and let x = [x,, x,]7 and x,, = [x,,,, X,,]” be the exact
and the approximate solutions of (27). Assume that the nonlinear function f(z, x) satisfies the Lipschitz condition

2
£G%) = £ X < Y Ll - xi] =12, (30)
j=1

where /| and [, are the Lipschitz constants. Then the error bound for the Bernstein collocation method is estimated as

max (1" 1I, <711}

X—Xx | <Ml
Ix = x, ]l < "

€1V}

Proof. Consider
1 1

max 2 + / G(t, s)s* £(s,x(s))ds — g - / G(t, s)s* f(s,x,(s))ds

t€(0,1]

lIx —x,]|

0 0
1

= max / G(t, s)s* (f(s, x(s))—f(s,x,,(s))>ds
0

1€[0,1]
1
< max /G(t,s)skds

t€(0,1]

£(s,x(s)) — £(s,x,(s))

Since f(¢, x) satisfies the Lipschitz condition, therefore the above inequality becomes
1

] /G(t,s)skds
0

IIx = x,Il < max Xj(8) = x;,(s)

2
X Zl- max
= 1 se[0,1]

1

/ G(t, s)s*ds
0

where I = max{/,,/,}. Since, X = [x, x,]" and x,, = [x,,, X,,]”, s0 we have

< max
1€[0,1]

X 21 Sré%g?l(] {'xl(s) - xln(s)|, )xz(s) — xz,,(s)l },

Ix —x,|| <2MI max |x(s) —x,(s)], (32)
se[0.1]

with
1

/G(t, s) sds

0

M = max
1€[0,1]
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Applying the Bernstein collocation method, the approximate solution of is B,(x). Hence replacing x,(s) by B,(x(s)),
equation (32) reduces to

IIx = x, Il < 2M1 max [x(s) = B,(x(s))]. (33)
s€|0,

Using the result from equation (Z9) into equation (33]), we obtain

X"l

Ix —x,|| <2Ml||x — B,(x)|| <2M! max [s(1 — s)]. (34
2n  selo,1]
Hence, we have
" max{||x}[|, [[x7]1}
x—x, | < i _ g 1D 35)
4n 4n
]

S | NUMERICAL RESULTS

In this section, we compare our numerical results with the exact solutions and the results obtained by some other known methods.
For comparison purpose, we define the maximum absolute error and the L, absolute error as

L = max |x;(t) — x;,(1)], (36)
t€[0,1]
m 1/2
LIZ = (Z |xi(tj) - xin(tj)|2> , i = 1’2’ (37)
j=1

where x;(t) and x;,,(¢) are the exact and the approximate solutions, respectively. When the exact solutions are not available in the
literature, we define the absolute residual errors as

k;
(0 1= X0 (0) + Tx,f,,(t) + (1, x,, (1), X2,(D)], (38)
ki .
R, (®) :=|¢] () + 7¢§m(t) +wi(t, §1, (), Pr, ), i =1,2, (39
and the maximal residual errors as
Mrin = tgl[(z)i,)l(] Irin(t)|’ (40)
MR,;,, := max |R,, ()], i=1,2, 41)
1€[0,1]

where ¢,,,(1) are the approximate solutions obtained by the series approximation method (SAM)=~.

Problem 1. Consider the following coupled Lane-Emden BVPs
X' (1) + §x’1 (1) = —8e01® — 16 1 €(0,1),

X;’(t) + %x’z(z‘) = Se_xz(t) + 8eX1(l)/2’ (42)
X(0)=x,(0) =0, x;(1)=-21n(2), x,(1) = 2In(2).

Clearly, (I) is equivalent to

-

1
x,(1) = -21In(2) + / G,(t,5) s’ <8e"1(”+ 16e"2“>/2> ds, te€(0,1),

3 ! 43)

X =2In(2) + / G,(t,s) s> < — 8702 8e”(”/2> ds.

0

\

The exact solutions are
x,() = =21In(1 4+ #*) and x,(t) = 2In(1 + %)
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and the Green’s kernel functions are

-1y t<s. -1y, r<s,
Gl(t,s)z{ (1-5) ’ andG2(t,s)={ ( f) ’ (44)

Hi-d). < H1=8). s
In Tables the numerical results obtained by the BCM and the exact solutions of problems (I)-(3)) are shown. It has been
observed that the results obtained by the present method are very close to the exact solutions. In the same tables, the numerical
results of errors, L’ and Lg (for i = 1,2) are provided. It can be seen that as the degree of the Bernstein polynomial increases,
the numerical errors decreases significantly.

= &
—

TABLE 1 Numerical results of solutions of problemwith n=>5

BCM Exact solutions
! x5(2) X,5(1) x, (1) X,()

0.1 -0.01973810 0.01972106 -0.01990066 0.01990066
0.2 -0.07831193 0.07830596 -0.07844143 0.07844142
0.3 -0.17223018 0.17223424 -0.17235539 0.17235539
0.4 -0.29670249 0.29670874 -0.29684001 0.29684001
0.5 -0.44615847 0.44616104 -0.44628710 0.44628710
0.6 -0.61487205 0.61487237 -0.61496940 0.61496940
0.7 -0.79747198 0.79747640 -0.79755224 0.79755224
0.8 -0.98929866 0.98930995 -0.98939248 0.98939248
0.9 -1.18656685 1.18657734 -1.18665369 1.18665369

TABLE 2 Numerical results of the errors of problemfor n=>5,6,...,10

n L L2 L) L

5 1.62E-04 1.79E-04 3.80E-04 2.71E-04
6 3.17E-05 1.41E-05 7.61E-05 5.68E-05
7 1.69E-06 2.03E-06 4.34E-06 2.92E-06
8 2.25E-06 2.39E-06 5.31E-06 3.88E-06
9 3.66E-07 3.98E-07 8.85E-07 6.71E-07
10 6.78E-08 6.70E-08 1.53E-07 1.08E-07

Problem 2. Consider the following coupled Lane-Emden BVPs
X @) + %X’l () = —6(*"" + 4™, 1€ (0,1),

x5 (1) + %x/z(t) = 6(c™1 4 Ay, )
X,I(O) = X’Z(O) = 0, xl(l) =-3 ln(3)’ xz(l) =3 1n(3)’

which are equivalent to the integral equations
1

x, (1) = =31In(3) + / G,(t,s) s* <6(e*2““/3+4)e2-‘1“>/3> ds, t€(0,1),

] ! (46)

x,(t) =31n(3) + / G,(t,5) s* < — 6™ + 4)e‘2x2“)/3> ds.
0

\
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The exact solutions are

x,(t) = =31n(2 + £*) and x,(1) = 3In(2 + %)

and the Green’s kernel functions are

1- 1, t<s, 1- i,
G(t,s) = and G,(t,s) = 1
t t

t<s,

TABLE 3 Numerical results of solutions of problemwith n=>5

BCM Exact solutions
t x15(1) Xp5(1) x, () X, (1)
0.1 -2.09438417 2.09438417 -2.09440417 2.09440417
0.2 -2.13883420 2.13883420 -2.13884942 2.13884942
0.3 -2.21147901 2.21147901 -2.21149220 2.21149220
0.4 -2.31031035 2.31031035 -2.31032467 2.31032467
0.5 -2.43277623 2.43277623 -2.43279065 2.43279065
0.6 -2.57597310 2.57597310 -2.57598486 2.57598486
0.7 -2.73683841 2.73683841 -2.73684813 2.73684813
0.8 -2.91232538 2.91232538 -2.91233675 2.91233675
0.9 -3.09954214 3.09954214 -3.09955345 3.09955345

TABLE 4 Numerical results of the errors of problemfor n=>5,6,...,10

n L 2 2 2

5 2.00E-05 2.00E-05 4.48E-05 3.17E-05
6 7.08E-07 7.08E-07 1.01E-06 7.16E-07
7 6.37E-07 6.37E-07 1.43E-06 1.01E-06
8 6.36E-08 6.36E-08 1.66E-07 1.17E-07
9 1.34E-08 1.34E-08 3.00E-08 2.12E-08
10 3.56E-09 3.56E-09 9.33E-09 6.60E-08

Problem 3. Consider the following coupled Lane-Emden BVPs

which is equivalent to

-

\

x'(t) + %x’l(t) =-@+x;0)x(1), 1€ (0, 1),

X (1) + ‘%x;(:) = (@4x72 () + Dx (),

X (0) =X, =0, x,(1)=

1

0
1

0

7 nh=v2,

x,(t) = % +/G1(t, 5) 57 ((3+x§(s))x§(s)> ds, 1€(0,1),

X, (1) = \/5+ / G,(t,s) st < — (4x1_2(s) + l)x;(s)) ds.

(47)

(48)

(49)
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The exact solutions are

and the Green’s kernel functions are
1
-
G,(t.5) = { fEl
S(1-

TABLE 5 Numerical results of solutions of problemwith n=>5

BCM Exact solutions
4 x5(1) X,5(1) x,(1) x,(1)
0.1 0.996045462 1.00580008 0.995037190 1.00498756
0.2 0.981491891 1.02056051 0.980580676 1.01980390
0.3 0.958620543 1.04469848 0.957826285 1.04403065
0.4 0.929146418 1.07759026 0.928476691 1.07703296
0.5 0.894959704 1.11847341 0.894427191 1.11803399
0.6 0.857883415 1.16651533 0.857492926 1.16619038
0.7 0.819498431 1.22087460 0.819231921 1.22065556
0.8 0.781042206 1.28075006 0.780868809 1.28062485
0.9 0.743387411 1.34541250 0.743294146 1.34536240

TABLE 6 Numerical results of the errors of problemfor n=>5,6,...,10

n L L2 L) L

5 1.01E-03 8.13E-04 2.01E-03 1.16E-03
6 3.08E-04 2.55E-04 6.19E-04 3.64E-04
7 6.58E-06 5.97E-06 1.34E-05 8.58E-06
8 1.93E-05 1.59E-05 3.86E-05 2.27E-05
9 4.77E-06 3.96E-06 9.58E-06 5.66E-06
10 2.719E-07 2.24E-07 5.58E-07 3.19E-07

Problem 4. Consider the following coupled Lane-Emden BVPs”

x (@) + %x’l ®)=a x%(t) +ay x,(t) x,(1), t€(0,1),

X (1) + %x'z(t) = a3 X3 (1) + g X, (1) X, (D),

X/(0) = x(0) =0, x;(1) =1, x,(1) =2,

where a,, a,, @3, a, are chemical constants.

(50)

(5D
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The equivalent integral equations are

-

1

0
1

X)) =2+ / G,(t,s) s ( — oy x%(s) —ay x,(5) x2(s)> ds,

0

L

where the Green’s kernel functions are

1-1 1<, 1-Lr<s,
G(t,s) = f and G,(t, s) = $

-2, s<t, 1—l,s§t.
t t

xﬁﬁ:kﬁ/GﬁJMz(—mxﬂ@—@xﬂﬂ@@ﬁd&te@JL

(52)

(33)

The numerical results of the solutions and the residual errors obtained by the BCM are given in Tables[7 |[8 Jand[0 Jof problem
The comparison of the maximal residual error of the BCM and the SAM®? are shown in Table where n is the degree of
Bernstein polynomial and m is number of terms in the solution series of the SAM. It can be observed that the present method
converges faster than the other method. Also we observe that as the value of n increases the maximal residual error decreases

rapidly.

TABLE 7 Numerical results of solutions for a; = ay = a3 = a4, =1 of problem@

! X14 X4 Iy o4
0.1 1.18641543 2.18641543 2.07E-08 2.07E-08
0.2 1.18048828 2.18048828 3.23E-08 3.23E-08
0.3 1.17064920 2.17064920 5.39E-08 5.39E-08
04 1.15695710 2.15695710 1.32E-07 1.32E-07
0.5 1.13949391 2.13949391 8.67E-07 4.34E-07
0.6 1.11836390 2.11836390 3.16E-07 3.16E-07
0.7 1.09369305 2.09369305 3.33E-07 3.33E-07
0.8 1.06562806 2.06562806 6.26E-07 6.26E-07
09 1.03433538 2.03433538 2.17E-06 2.17E-06

TABLE 8 Maximal residual error fora; = ay = a3 =a, =1 of problem@

n 3 4 5 6 7 8 9 10

Mr,,|8.32E-05 2.17E-06 1.58E-07 2.59E-09 1.20E-10 1.22E-12 4.75E-14 3.34E-13
Mr,,|8.32E-05 2.17E-06 1.58E-07 2.59E-09 1.20E-10 1.22E-12 4.87E-14 8.67E-14

Problem 5. Consider the following coupled Lane-Emden BVPs®

-

" ki, My x1(2) x,(2) Mz x1(1) x,5(F)
XV + —x; () =—p, + ,
! t ! 2T+ x@) (my+x0) (L +x,0) (my + x,0)
< Uy x1(2) x5(2) Hs x1(1) x5(2)

" k2/

23 = R
%M+1x4)(h+mmﬂm+@m) (L + x,0)) (m, + x,0))
X (0) = x4(0) =0, x,(1)=x,(1) = 1.

S

(54)
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TABLE 9 Numerical results of solutions fora; =1, @, =2/5, 3 = 1/2, a4 = 1 of problem

! X14 X4 g o4
0.1 0.98217896 2.27658356 1.03E-07 1.75E-07
0.2 0.98253345 2.26782191 1.62E-07 2.72E-07
0.3 0.98314976 2.25327349 2.71E-07 4.52E-07
0.4 0.98406619 2.23301923 6.68E-07 1.10E-06
0.5 0.98533652 220717128 8.67E-19 1.39E-06
0.6 0.98703020 2.17587205 1.62E-06 2.63E-06
0.7 0.98923272 2.13929305 1.72E-06 2.76E-06
0.8 0.99204612 2.09763356 3.25E-06 5.16E-06
09 0.99558954 2.05111915 1.13E-05 1.78E-05

TABLE 10 Maximal residual error fora; = 1, @y =2/5, a3, = 1/2, a4 = 1 of problem

BCM SAMS?
n Mry, Mr,, m MR, MR,,
3 8.61E-05 7.40E-05 3 2.40e-1 5.58e-1
4 1.13E-05 1.78E-05 4 4.22e-2 1.11e-1
5 1.05E-06 1.12E-06 5 1.13e-2 2.76e-2
6 3.60E-08 4.70E-08 6 1.73e-3 4.32e-3
7 3.50E-09 2.10E-10 7 3.25e4 8.18e-4
8 2.13E-10 2.33E-10 8 4.58e-5 1.17e-4
9 7.74E-12 3.50E-12 9 7.11e-6 1.84e-5
10 1.33E-14 3.67E-14 10 9.47e-7 2.48e-6

Its integral form is

1

x =1+ / G, (t,s) sk
0

1

X0 =1+ / G,(t,s) sk
0

where the Green’s kernel functions are

@) fork; =k, =1

(ii) fork;, =k, =2

G,(t,s) = {

G(t,s) =

M3 x1(8) x5(s)

(M — My X, (8) Xp(5) _
2 (ll+x1(s)> (m1+xz(s)) (12+x1(s)

><mz+»«2<s>>>‘“’

( Hy X1 (8) x5(8) _
(11+x](s)) (m1+x2(s))

In(s), t < s,

In(t), s <t,

1

1—-,1t<s,
S

and G,(t,s) = {

My X1 (8) X5(8) d
(12+x1(s)) (m2+x2(s)) ) 5

1-1

S

and G,(t, s) =

l—l,sgt,

t

1

In(s), t < s,

In(t), s <t,

, 1SS,

1—-, s<t.

1

(55)

(56)

(57)

The numerical results of the solutions, the residual errors and the maximal residual errors obtained by the BCM are given in
Tables[IT |and [I2 ] (for k) = k, = 1) and in Tables[I3 |and[14 |(for k; = k, = 2) with the fixed parameters I, = [, = m| =
m, = 0.0001, y; =5, u, =1, p3 = p, = 0.1 and ps = 0.05. From these table it can be observed that the convergence rate of
the BCM is fast since the maximal residual error decreases rapidly with an increase in the degree of Bernstein polynomial, .
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TABLE 11 Numerical results of solutions for k; = k, = 1 of problem

! X14 X4 F4 o4
0.1 2.01455441 1.03711925 2.52E-07 7.42E-09
0.2 1.98381003 1.03599441 6.64E-07 1.95E-08
0.3 1.93256937 1.03411969 6.31E-07 1.86E-08
0.4 1.86083252 1.03149507 2.44E-07 7.17E-09
0.5 1.76859959 1.02812058 8.72E-07 2.57E-08
0.6 1.65587071 1.02399620 3.31E-07 9.73E-09
0.7 1.52264603 1.01912194 1.19E-06 3.50E-08
0.8 1.36892577 1.01349782 1.86E-06 5.48E-08
09 1.19471026 1.00712383 1.29E-06 3.80E-08

TABLE 12 Maximal residual error for k; = k, = 1 of problem

n 3 4 5 6 7 8 9 10
Mr,,|3.30E-05 9.10E-06 2.89E-06 9.85E-07 3.51E-07 1.29E-07 4.83E-08 1.84E-08
Mr,,|9.69E-07 2.68E-07 8.51E-08 2.90E-08 1.03E-08 3.79E-09 1.42E-09 5.41E-10

TABLE 13 Numerical results of solutions for k; = k, =2 of problem

4 X4 Xo4 14 "4
0.1 1.67635958 1.02474587 5.35E-09 1.57E-10
0.2 1.65586359 1.02399599 8.66E-09 2.55E-10
0.3 1.62170364 1.02274619 1.51E-08 4.44E-10
0.4 1.57387977 1.02099646 3.89E-08 1.14E-09
0.5 1.51239204 1.01874682 9.71E-17 2.71E-19
0.6 1.43724054 1.01599727 1.06E-07 3.12E-09
0.7 1.34842540 1.01274781 1.21E-07 3.56E-09
0.8 1.24594676 1.00899843 2.50E-07 7.35E-09
09 1.12980486 1.00474916 9.68E-07 2.85E-08

TABLE 14 Maximal residual error for k; = k, =2 of problem

n 3 4 5 6 7 8 9 10
Mr,, |3.49E-06 9.68E-07 2.55E-07 6.05E-08 1.31E-08 2.41E-09 3.23E-10 1.12E-12
Mr,,|1.03E-07 2.85E-08 7.51E-09 1.78E-09 3.84E-10 7.08E-11 9.51E-12 1.47E-14

6 | CONCLUSION

The singular boundary value problem arises in various fields of applied mathematics, physical and chemical sciences like in
dusty fluid modelZ, in excess sludge production from water treatment plants®. In this work, the Bernstein collocation method
has been applied for numerical approximation of the coupled Lane-Emden problem with Neumann-Robin boundary conditions.
The equivalent integral form of the coupled Lane-Emden equation has been considered. Unlike the HAM“? and the SAM"2, the
proposed method requires less computational work which can be seen from Table[I0 | The error analysis of the the Bernstein
collocation method has been established under quite general conditions. The accuracy and efficiency of the present method has
been checked by evaluating the maximum absolute error L, the L, error and the residual error of several numerical examples.
The obtained numerical results demonstrated that the present method is very efficient to use and has high accuracy.
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