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Abstract

The set of hybrid numbers is a noncommutative number system unified and generalized the complex,
dual and double(hyperbolic) numbers with the relation ih = —hi = ¢ 4+ i. Two hybrid numbers p and
q are said to be similar if there exist a hybrid number x satisfying the equality x 'qx = p. And it is
denoted by p ~ ¢. In this paper, we study the concept of similarity for hybrid numbers by solving the
linear equations px = xq and qx — xp = c for p,q,c € K.
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1 Introduction

The concept of similarity is one of the important subjects in Linear algebra. Two square matrices A and B
are called similar if B = P~' AP for some invertible square matrix P. Similar matrices have many common
properties such as rank, determinant, trace, eigenvalues, characteristic polynomial etc. Two square matrices
are similar if and only if they have the same Jordan normal form. There is the concept of similarity in number
systems as in the similarity of matrices. It is known that two complex numbers are similar to each other
if and only if they are equal. However, this definition is different for quaternions since quaternion algebra
is non-commutative. Two quaternions (or coquaternions) p and q are said to be similar if there exists a
quaternion a # 0, satisfying the equality a~!pa = q [28], [6], [7]. This definition equivalent to the linear
equation px = xq has a nonzero solution x. If p and q are similar, then it is denoted by p ~ q. Besides,
Two quaternions q =Sq + Vq and p =S5, + Vp, are similar if and only if Sq = Sp and ||[Vq|| = || Vpl|. The
similarity of quaternions is an equivalent relation. The roots of split quaternions can be examined with the
help of some classifications, which is the result of similarity [8], [17].

Besides, we encounter the concepts of semisimilarity and con-semisimilarity as well as the similarity of
quaternions in the literature [28], [14]. Two quaternions p and q are said to be semi-similar if there exist
quaternions x and y satisfying equations xpy = q and ypx = q. Also, p and q are said to be con-semisimilar
if there are x and y satisfying the equalities Xpy = q and ygx = p [21], [25]. The semi-similarity was
first defined and studied by Hartwing and Bevis [10], [1]. Both semi-similarity and con-semi-similarity are
equivalence relations. In this study, we will not deal with the concept of semi-similarity and con-semi-
similarity.

The similarity of quaternions and quaternion matrices is studied by many mathematicians. Similarity
in quaternion matrices is not as clear as the similarity of real and complex matrices, since the quaternion
product is non-commutative. So, it is not easy to solve linear and nonlinear equations in quaternions. Wolf
proved that the quaternion matrices A and B are similar if and only if the real matrices x (A4) and x (B) are
similar, where the matrix

=] 4 2

is the adjoint of the quaternion matrix A = A; + Asj [26], [23], [28]. The similarity of quaternion matrices
is closely related to the solution of linear quaternionic equations ax — xb = ¢, ax — xb = ¢ and xaX = b.



Therefore, the solution of these linear equations in the set of quaternions and split quaternions has been
studied by many mathematicians [5], [18], [21], [13].

In this article, the definition and some properties of similarity of hybrid numbers are studied. The hybrid
number system is a set of numbers defined by Ozdemir in 2018 and combining dual, complex and perplex
(hyperbolic) number sets. The set of hybrid numbers is isomorphic to split quaternions. Therefore, results
similar to those in split quaternions will be obtained. In the first section, this number set is summarized
briefly. Detailed information for hybrid numbers can be found in Ozdemir’s articles [15], [16].

2 Hybrid Numbers

The set of hybrid numbers, which is a noncommutative ring, is a generalization of complex, hyperbolic and
dual number sets and it is defined as

K = {a+bi+ce+dh : a,b,c,d € R, i?= — 1, £2=0, h®=1, ih=—hi=c+i} .

Multiplication table of hybrid numbers as follows.

i € h
i| -1 1—h|e+i
e | h+1 |0 —& (1)
h|-—-e—-1]|c¢ 1

Hybrid numbers are classified as timelike, spacelike and lightlike such as in split quaternions. Since the
algebra of hybrid numbers is isomorphic to the algebra of 2x2 real matrices, 2 x 2 matrices can be classified
with respect to kind of corresponding hybrid number. So, hybrid numbers provide great simplicity for finding
n-th roots of 2 x 2 matrices. We can define polar form of a 2 x 2 matrix and use De Moivre’s formulas to
find n-th roots of 2 x 2 matrices [16].

Many definitions such as conjugate and norm in hybrid numbers are similar to those in split quaternions.
The conjugate of a hybrid number q =a+bi+ce+dh =Req+Imq is defined as @ = Req—Imq = a—bi—ce—dh.
We say that a hybrid number;

q is spacelike if Cq < 0;
q is timelike  if Cq > 0;
q is lightlike  if Cq = 0.

where Cq = qq = Gq =a2 + (b — ¢)> — ¢ — d. The inverse of a hybrid number q =a + bi + ce + dh is found
as q~! =q/Cq.for ||q|| # 0. Lightlike hybrid numbers have no inverse. Besides, norm of q is defined as

|q|=mz\/yaz+(b_c)2_02_d2_

This norm definition is also consistent with the norm definition in complex, dual and double numbers.
Algebraic and geometric properties of these three number system can be found in the articles [12], [9], [3],
[20]. The vector, £ = ((b —¢), ¢, d) is called the hybrid vector of q. We say that a hybrid number;

q is elliptic it Ay <0;
q is hyperbolic if A, > 0;
q is parabolic  if A, =0.

where Ay = — (b — 0)2 +c?+d>?. Also, the real number 4/ |Aq‘ will be called as the norm of the hybrid vector

of q and will be denoted by ||&q]| . For detailed information about hybrid numbers see the references [15], [4]
and [16].



3 Matrix of hybrid numbers

Let q =q1 + ¢2i + g3¢ + g4h and x be two hybrid numbers. The linear transformations of the left and right
multiplications in K are defined as,
p, 7T : K=K

¢o(q) =gx and

7(q) = xq

respectively. The matrix representations of these transformations are as follows:

q1 43—q2 q2 qa q1 43—q2 q2 qa
G2 q1—4q4 0 7)) @2 q1+qa 0 —q2
= T = 2
wla) q3 —q4 qQ1tQqs G2—Q3 (a) q3 qa q1—q4 g3—q2 2)
q4 g3 —q2 q1 q4 —q3 q2 q1

Notice that, the eigenvalues of p(q) and 7(q) are g1 + [|Eq|| . ¢1 — [|Eq]| and q1 + ||Eqll , 1 — [|Eq|| respectively.
Also, we have

det ¢(q) = det 7(q) = [|q|*.

It is clear that the eigenvalues of ¢(q) and 7(q) are equal and they can be given by the Table 1, according
to character and type of the hybrid number.

Type \ Character | Spacelike | Lightlike | Timelike

Hyperbolic eS| @ @+ &g
Parabolic - 0 q1

Elliptic - - q1 £ ||Eql 1

Table 1 : Eigenvalues of the matrices ¢(q) and 7(q)

Using the matrices ¢(q) and 7(q), it can be obtained following corollary.

Lemma 1. Let p,q € K and A € R.Then

1. p(q) =¢(p) <= q = p < 7(q) =1(p)
2. p(a+p)=v(a) + ), 7(a@a+p)=r(a) + 7(p)
3. p(ap) = p(a)p(p), 7(ap) = 7(q)7(p)
4. p(q)7(p) = 7(P)p(a)
5. p(Aq) = ¢(q)) = Ap(a), T(A\q) =T(q)) = A7(q)
6. p(1)=7(1) =14
7. 0(Q) + (@) = 2¢114, 7(q) +7(Q) = 2114
8. o) =(p) Ha), 7(q')=71""q) where |q]#0
9. p(qQ)ap(q) =a, detp(q)=1
_ 1 0
0. @ = pl@s. €= |, |

11. det p(q) = det 7(q) = |lq|* .

@57@)57
027@57((1)5,

It has generalized inverse

q is spacelike
12. p(q7") = ém(q 1) = q is timelike

q is lightlike
Theorem 2. Let p,q € K. Then

ax = p(q)X
xq=7(q) X
axp = (q)7(p)X = 7(p)p(a) 7
and
e(@)7(p) = 7(P)¢(a)



Proof. Let real vector representation of q € K be ﬁ Then, it can be expressed as

3 = (p(q)bt> a = T(q)bt, b =(1,0,0,0).

According to Corollary 1, we have

I
5
fle]
B
<
I
5
=)
5
L)
<
I
5
2
“l

ax

and

B = alp) = p(a)@p) = p(a)7(p)X
—

B = (q)p = 7(p)(zp) = (p)p(a) X

Since these equations are provided that for all p,q € K, they can be written,

e(@)7(p) = 7(P)¢(a).

3.1 Generalized inverse

In the next chapters, we will need the generalized inverse of a matrix to solve some systems of linear equations.
Let’s give this definition and some features. For detalied infomation see [2] and [19].

Definition 3. Let A be an m x n matriz. The n x m matriz G, which provides the equation AGA = A, is
called the generalized inverse of the matrix A.

A_[R B]_[R B
~|c D|T|Cc CRB

be an m X n matriz with r = rank(A), where R is an invertible r X r matriz. Then, the generalized inverse

of A is B
=%, o)

where [0], are represented zero matrices of dimension necessary to make G an n X m matriz.

Theorem 4. Let

Theorem 5. Let A be an m X n matriz and its generalized inverse is G. Then, for any fired y € R™, the
followings are satisfied.

1. Ax =y, has a solution x € R" if and only if AGy =y.

2. If the equation Ax =y has a solution, then x is a solution of Ax =y if and only if

x=Gy+ (I-GA)z

for some z € R

4 The Similarity of Hybrid Numbers

Definition 6. Let q and p be two hybrid numbers. q and p are called to be similar hybrid numbers, if there
exists a hybrid number a # 0, satisfying the equality a~'qa = p, and it is denoted by q ~ p. The similarity
relation "~” on hybrid numbers is an equivalence relation, since it is reflexive, symmetric and transitive. It
is clear that q ~ p implies ||q| = ||p||, since |[a~'qal| = ||ql|.

Theorem 7. Let p,q € K .Then, q ~ p if and only if

Re(q) = Re(p) and &l = 1€l -



Proof. Let p and q be similar hybrid numbers. From the corollary 1, we find
Re(p) = Re(a™'qa) = Re(a™'aq) = Re(q)

Ipll = lla™"qal| = [[a~"{| llall llall = [l

where a is a hybrid number and |la|| # 0. Considering the above equations, the equality |Ep] = [|&q]l is
obtained. O

Theorem 8. Let q =q1 + g2 + q3¢ + g4h and p =p1 + p2i + pse + psh be two hybrid numbers. If we denote
as

Qqp = ¢(a) — 7(p), (3)

then we have the following properties.
1. The determinant of the matriz Qqp == ©(q) — 7(p) s,

det Qgqp =5 — 252 (A + Ap) + (Bg — )%,
where s = ¢q1 — p1. So, det Qqp = 0 if and only if Re(q) = Re(p) and ||Eqll = ||Ep]| -

2. The eigenvalues of the matriz Qqp can be given in the following table.

P~ q Hyperbolic Parabolic Elliptic
. s+ [0, £40], s+ (A, £i4,),
Hyperbolic o |AI; 1 AO;‘ st A, o (AI; 1 iAO;)
Parabolic s+ Ay s sEilg
o s+ (10, £4y), . s+ (A, £A0,) 1,
Elliptic o (iAI; N AO;) s+iA, o (AI; N A(;) ;

Table 2 : Eigenvalues of the matriz Qqgp
3. If 1 # p1 or ||&qll # 1€, then Qqp is a nonsingular matric and its inverse can be expressed as

ol =

ap '(a® = 2pia + [Ipl*)lp(a) - 7(P)]

o
o~ (2sa + IIpll” — llall*)lp(a) — 7(P)]

or

Oyt =771(p% = 2q1p + |la|*)[e(@) — 7(p)]
=Y 2sp + [lal” — [pI*)[e(@) — 7(p)).

4. If p and q are non-parabolic similar hybrid numbers, then Qqp is a singular matriz and its generalized
mverse 18 1
O l=— Q.
ap ap
4|8
5. If p and q are parabolic similar hybrid numbers with ||Eq|l = ||€pll = 0, then the matriz Qqp is also
singular, and its generalized inverse is
Qfl _ |: A_l [0] :|

ap [0] [0]
0 P2 —P3 —q2 +q3

q2 — P2 —P4 — 44
Besides, row echelon form of Qqp is

where A = ], G2 # D2, P2 — D3 # q2 — q3 and, [0] is a 2 by 2 zero matriz.

1 0 Patqa _ p3+4qs
P2—P3—q2+4s3 P2—P3—q2+4q3

0 1 92 —p2 ga—P4
P2—P3—q2+qs3 pP2—P3—q2+4qs3



Proof. 1. Let q =¢q1 + g2 + g3¢ + q4h and p =p; + p2i + pse + psh € K be two hybrid numbers, then from
the equality Qqp=¢(q) — 7(p), we obtain

S P2 —DP3—q2+G3 q2 — P2 G4 — P4
Q. — |2 P2 S—P4— s 0 P2+ a2
P gz —p3 —p1s— S+pataqr p2—p3+q—as
44 — P4 p3 +q3 —P2 — G2 S

where s = ¢1 — p1. Now, if we calculate determinant of Qqp,, we obtain

det Qqp = s*+25%(p3 — 2paps — pi + 45 — 2q2q3 — q3)
+(p3 — 2paps — pi — @5 + 20203 + 43)°

= 122D+ AL) + (g — Ap)?

2. The characteristic polynomial of Qqp, is
ML= Qqp| = [(A = 5)% = (Bg = 8)2[(A = 8)2 = (Bg + Lp)°]:

According to this equality, we can see that accuracy of Table 2
3. If we expand the product [p(q) — 7(P)] 2qp, We obtain

= ¢(q®) — p(a)T(p) — T(P)¢(a) + 7(P)T(P)
= ¢(a*)—¢(a)7(p)—¢(a)7(P)+7(PP)

= ¢(@®) - ¢(a)r(p +P) + 7(PP)

= o(q®) — ¢(q)2p1 + pl° Ls

= o(a® —2piq+|p|*)

and similarly, we can find the equality
(@) —7(p)] Qap = 7(P* —2a1p + al|*)-

If we multiply the first equation from left by o ~!(q? — 2p1q + ||p||2 ) and right by Qq;, then we obtain

Ol = o Ua® —2ma+p)?) [p(a) — 7(P)]
e~ (2sa— [la]® + [[pl]*) [p(a)—7(D)] -

Using the same way, we can calculate the below equation.

Qgp =7 (250 + [lall* — IpI*)[p(@) — 7(p)].

4. If q and p are similar non-parabolic hybrid numbers, then we have

Qqp = ¢(a) — 7(p) = v(Imq) — 7(Imp),

and
(Imq)? = (Imp)? ‘ A ’ .

Now, let’s calculate the below equation,
O%p = lp(Imq) — 7(Imp)]?
= [p(Imq)]* - 3 [p(Imq)]” 7(Imp)
+3¢(Imq) [r(Imp)]* — [r(Imp)]®
= |A4] p(Ima) — 3 [p(Imq)]* 7(Imp)
+3 |Aq’ »(Imq) — |Aq| 7(Imp)
= 4]Ag|[¢(Imq) — 7(Imp)].



So we obtain that, Qgp =4 ‘Aq| {lqp and consequently, we can find the equation.

1

-1
Qap = mgqp
5. If q,p are the parabolic hybrid numbers with ||Eq|| = ||€pl] = 0, row echelon form of the matrix Qqp can

be easily calculated. When the condition CR™!B = D is true for {qp, then according to Theorem 4, the
generalized inverse of Qqp is
Qfl — |: Ril [0] :|

P [0] [o]
and the condition {452 qu = Qqp is provided. O
Theorem 9. If q is a non-parabolic hybrid number and q ¢ R. The general solution of the linear equation
gx = xq 1S

x=z+ (Imq)z(Imq)

1
[Aq]
where z = z1 + 221 + 236 + z4h is an arbitrary hybrid number. If q is a parabolic hybrid number and the
coefficients of its i and € components are non-zero, then the matriz Qlqp and its row echelon form are

0 23 —2¢2 0 1o =2 0

_ _ a2
2(]2 2(]4 0 0 and 0 1 a3 0
292 —293 —2q1 2q4 O 00 0 O
0 0 0 0 00 0 O

respectively. So, the general solution of the equation qx = xq is

X = Z3q—4 + z;gq—Qi + z3e + z4h
q3 q3

where z = z1 + 201 + 236 + z4h € K is an arbitrary hybrid number and g3 # 0.

Proof. Let q be a non-parabolic hybrid number. Then, according to the equation gx = xq, we obtain
_>
[p(Imq) — 7(Imq)]X = 0.
The general solution of this equation can be expressed as
X =2[L — Qg Q4] 7,

where 7 is an arbitrary real vector. If we use it in the Theorem 8-4, we get

% o= oL - 027

4[ag
1
21, — 4|A | (2|0g|Ls — 2¢x (Imq)7(Imq))] Z
1
= [+ A | ¢ (Imq)7(Imq)| Z
= z+—1 (Imq)z(Imq). (4)

|24

Therefore, if we take z = (Imq)zp in, (4), we find that

x = (Imqg)z + (Imq) (Imq)zo (Imq)

[8q]
= (Imq)zo + 2z0(Imq)

(Imq) (Rezp + Imzg) + (Rezg + Imzg)(Imq)
2Rezp(Imq) + (Imq)(Imzp) + (Imzp)(Imq).



So, we can see that
(Imq)(Imzg) + (Imzp)(Imq) € R.

If q is a parabolic hybrid number and x = x1 + @21 + x3¢ + x4h, then, we obtain the matrices (??). The
equation gx = xq is identical to Q2gqx = 0 and it can be solved by writing this equation

0 26]3 —2(]2 0 z1
26]2 —QQ4 0 0 z9 -0
22 —2q3 —2q4 2q4 O 23 '
0 0 0 0 24
According to Theorem 5, a solution of the equation qx = xq is
q 1 g4 g4
2q§q3 30 0 0 0 0 O gg 0 z1 gg z23
x = E 0 0 0 0 + 0 0 q73 0 z9 _ (;’23 7
0 0O 0 O 0 0 0 1 O z3 23
0 0O 0 O 0 0 0 0 1 24 24
that isx:233—2+233—§i+235+24h. O

Corollary 10. If q is a non-parabolic hybrid number and q ¢ R, then the general solution of the linear
equation qx = Xq is X = Ag + A1q, where A\g = (Imq)(Imzp) + (Imzp)(Imq) and A1 = 2Re (20).

Example 11. Let’s find the solution of the equation qx = xq for the hybrid number q =q1 + g2+ q3€ + q4h.
The general solution is x = Ag + A1q, where

Ao = (Imq)(Imzg) + (Imzp)(Imq) = [20(]2 +2dgs —2b(g2 —¢q3) 0 0O O]t

and, A1 = 2Re (29) = 2a and, z = a+ bi+ cs + dh is arbitrary hybrid number. Therefore, the general solution
of qx = xq s

t
=X+ Aq=[ 20q1 + 2cq2 + 2dgs — 2b (g2 —q3)  2aq>  2aqs 2aqs | .
Actually, one can see the accuracy of this solution by checking in the equation.

Theorem 12. Let q,p € K be two non-parabolic hybrid numbers. Then we have the following properties. 1.
The linear equation qx = xp has a nonzero solution if and only if Re(q) =Re(p), and ||Eqll = ||Epll- 2. In
that case, the general solution of the equation qx = Xp is

x (Imq)z(Imp)

1
= Z + —_—
1€allI€pll

where z € K is an arbitrary hybrid number. In particular, if p # q and Imq + Imp # 0, then the general
solution of qx = px can be written as

x = Ao(Imq + Imp) + A1 [[[Eq]| [[€p || + (Imq) (Imp)]
where Ao, A1 are arbitrary real numbers.
Proof. According to Theorem 8, the equation gqx = px is equivalent to
[p(a) — 7(p)] X = qu? =0.

And this equation has a nonzero solution if and only if |Qqp| = 0, which is equivalent to Req =Rep, and
I€4ll = lI€p]l , according to Theorem 8-4. So, the general solution of this equation can be written as

X =2 [La - Qc;;qu} e



where 7 is an arbitrary real vector. Then, using Qar} in Theorem 8-4, we find
X = 2[L-QQp 7

= 2 [14 - 792((17 p)] 7

a

1
= 2 [14 1 Ay (2|0 Ts — Qw(Imq)T(Imp))] z

w(Imq)T(Imp)l e
= Z+ —¢(Imq)r(Imp)Z

- 24— (lmg)Z (Imp).
T EalEs] (e # (mp)

If p # q in gx = xp, then we write z = Imq and z = ||£4]| ||€p] in

1

=2t g () 7 (me)

X

respectively, it becomes
z1 =Imq+Imp and z9 = ||&] ||Epll + Imglmp.

Thus,
x = Ag[Imq + Imp] + A1 [||Eq|| [|Ep || + ImgImp]

is also a solution of gx = xp under the conditions Req =Rep and ||Eq|| = ||€p ]| - The independence of z; and
2o can be seen from two simple facts that Rex; = 0 and Rex; # 0. Accordingly

x = Ao[Tma + Tmp] + 2[4l €] + Imqlmp]
is exactly the general solution to gx = xp, since the rank of Qg is 2. O

Example 13. Let’s take the non-parabolic hybrid numbers  =2+i+c+2h and p =2+2i+2¢+h. The linear
equation qx = Xp has a nonzero solution. So, we have Imq+Imp=3i+ 3¢+ 3h and ||&q] [|€p]| + Imglmp =
9 — 3i and the general solution is x = A\o[31 + 3¢ + 3h] + A1[9 — 3i].

Theorem 14. Let q and p € K be two parabolic hybrid numbers. Then we have the following properties. 1.
The linear equation qx = xp has a nonzero solution. Also, q and p are similar if and only if Req =Rep,
and ||Eqll = |Epll = 0. 2. The general solution of gx = xp is

_ z4p3+2z4q3 z3pa+23qa Z3P2—23q2 Z4Pa—Z4qs 3
X = — itz zsh
(P2*p3*tI2+q3 P2*P3*Q2+Q3)+(p2*103*q2+q3 pz*Ps*q2+q3) tasetz

where z = z1 + zo1 + 2z3¢ + z4h € K is an arbitrary and ps # q2, p2—p3 # G2—qs.

Proof. Matrix representation of the equation qx = xp is qu? = c¢. Since q and p are similar parabolic
hybrid numbers, inverse of the matrix {2qp can be calculated from Theorem 4. According to the definition
of similarty for parabolic hybrid numbers, we have s = 0 and the matrix

0 P2—P3—G2+qG3 g2 —Dp2 qa — P4
Q. — |27 P2 —Ps— Q4 0 P2 + G2
P gz —p3 —pa— Patqs p2—Dp3+q—qs
g4 — P4 p3+4qs3 —D2 — Q2 0



We can easily see that the condition CR™!B = D of Theorem 4 is satisfied where

C — |B7P3 TP4amqs) p_ |927P2 GaP4
Qu—ps  pstags |’ 0 potao
D — patar pr—psta—a | p_| O P2—P3—q2+q3
—P2 = G2 0 92 — P2 —Pa—
Therefore, the generalized inverse of the matrix {qp is
_ Patqa 1
(P2—112)(P§1—P3—42+Q3) P2—q2 0 0
Q-7 = p2—pP3—q2+qs 00
ap 0 0 0 0
0 0 00

One can see that this matrix satisfies the condition of the definition 3 which is quQc;équ = Qgp. Thus,
we obtain the general solution of gx = xp as follows, according to the Theorem 5

Patqa

P2—P3—q2+qs3
Pa—qa
P2—P3—q2+qs

p3+qs
P2—pP3—q2+qs

P2—q2
P2—P3—q2+qs

— 23
+ 24
23
Z4

2

2
X = 3

O

Example 15. Let’s take the similar parabolic hybrid numbers, q =3 — 2i + 3¢ + 4h, p =3 — 8i 4 5¢ — 12h,
the linear equation qx = xp has a general solution

3 .
x=—(z4+23) + (231 + 224)i + 236 + 24h

where z = z1 + 221 + z3¢ + z4h is an arbitrary hybrid number. This linear equation can be written as

0 -8 6 16
6 8 0 —10

WX =| L, 5 g 15 | X0
16 8 10 0

We have det Qdqp = 0 and this matriz provide generalized inverse condition,

-2 8 16 -8

CRlB{ 16 SH—é; éHg —10_{ 10 _SS]D'
Therefore, the generalized inverse of Qqgp s
N
ar 0 0 0 0
0 0 0 0 |

According to the Theorem 5, we find, x = —(z4 + 23) + (232 + 224)i + 236 + z4h.
Now, let’s give a direct conclusion of Theorem 12.

Corollary 16. The equation qx = xq in hybrid numbers always has a nonzero solution. Moreover, q ~ q =
@1+ ||El| V where V = {i, ¢, h}.
Therefore, we have the following tables :

Type ~. Character | Spacelike | Lightlike | Timelike
Hyperbolic @+ [[€q]l @ @1+ [[€q]l
Parabolic - 0 a1

Elliptic - - a1 + [|€gll i
Table 3 : Similarity of q in K

10



Type ~. Character Spacelike Lightlike Timelike
Hyperbolic 2o (| Eq || h+Imq) Aolmqg 2o (]| Eq || h+Imq)
A1 ([[€qll + (Imq) h) T ([[€qll + (Imq) h)
Parabolic - 0 Molmq
FElliptic - - Ao (]|Eqll i+Imq))
h([€qll+ (Ima) 1)

Table 5 : General solution of qx = xq in K

where \g, \1 are arbitrary real numbers..

Theorem 17. Let q and p are non-parabolic similar hybrid numbers. Then, the equation qx — Xp = ¢ has
a solution if and only if qc = cp. Moreover, the general solution of qx — xp = ¢ can be expressed as

[t

(qc —cp) +z + ’ | (Imq)z(Imp)

A

where z is an arbitrary hybrid number.

Proof. The equation gx — xp = ¢ can be written as,
[p(a) ~ 7(P)IX = QqpX = <.
This equation is solvable if only if quQa;? = ¢ which is equivalent to
[p(Imq)(Imp)] € = — [Aq] €.

Returning it from matrix form to hybridian form, we can write the equation

(Imq)c(Imp) = — |A4| ©.
Therefore, we find
(Imq)(Imq)e(Imp) = —(Imq) [A,| €
<(mp) = —(Imq)T

and then gqc = cp. In that case, the general solution of (4) can be given as

x = Qg c +2[I4 + (Imq) (Imp)] Z,

\AI

where 7 = (a,b,c,d) is an arbitrary real vector. Thus, we can find

—

(qc —cp) +z + @(ImQ)Z(Imp)-

O

Example 18. Let’s find take the general solution of equation qx — xp = ¢ for the non-parabolic hybrid
numbers q =2+1i+ 2+ 3h, p =2+ 2i+ 3¢+ 2h, c =i+ ¢ — h. We have,

t
(qc—cp) =¢(q)c—7(p)c=[-2 -8 2 2| .
Therefore, according to the Theorem 17, we obtain the the general solution as

46a — 10b+ 8¢ — 2d — 1
1| 8—8a+8c+16d—4
T 24 |2a+10b+ 16¢ + 26d + 1

2a + 10b + 16¢ + 26d + 1

where Z = (a,b,c,d) is an arbitrary real vector.
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Theorem 19. Let q =q1 + g2 + g3 + q¢4h and p =p1 + p2i+ pse + psh be parabolic similar hybrid numbers
with py # qa2, p2 — p3 # q2 — q3. Then, the equation

gqx —Xp=c

has a solution where

—C + C — c + c —
( 1 (pataqa) B 2(g3—p3) et 1(p2 q2)+ 2(P4 Q4))h cK.
P2—q2 P2—q2 P2—q2 P2—q2

C=1C +Cgi+

The general solution of qx — xp = ¢ can be expressed as

X:$1+I2i+23€+24h

where
_ Zap3 +24q3 C1p4 + C1q4 C2 Z3pa + 23Q4
T = — — —
P2—D3—q2+q3  (p2—q2) (P2—P3—q2+q3) D2 — G2 P2—P3—q2+q3
c 23P9 — 2 Zapa — 2
2 1 + 3P2 342 + 4P4 444

 p2—p3—Qtqs  DP2—p3—Gatqs  P2—P3—aqatqs
and z = z1 + 221 + z3¢ + z4h is an arbitrary hybrid number.

Proof. Since q and p are similar parabolic hybrid numbers, the generalized inverse of Qg is as given in the
Theorem 4. So, its general solution is

4 p3+qs - Patqa _ e ., Patqa
P2—P3—q2+d3 (p2—q2)(p2—p3—q2+43) P2z q3p2—p3—qz+q3
C1 P2—qz2 4—q4
z z
X = P2—pP3—q2+qs3 + 3 p2—p3—qz2+qs + 4ps—p3—qotas
Z3
Z4

O

Example 20. Let’s find the general solution of equation qx — px = c for the parabolic hybrid numbers
q=—2—-4i+6c4+8h, p=—2—i+12¢+ 5h, c=1+1i+ 29¢ — 4h. According to Theorem 19, the solution
of Qgpx =c is

28 32 13 1 1 1 ‘

X = B—BZA—BZQ 524—1*523-‘1-1*5 23 24

where z = z1 + 221 4+ z3¢ + z4h is an arbitrary hybrid number.

Theorem 21. Let q and p be two non-similar hybrid numbers. Namely, Req # Rep or ||Eq|| # [1Ep| - Then
the equation qx — xXp = ¢ has a unique solution

z = (2sq + ||p|* - lall*) "' (qc — cp)
= (qc — cp)(2sq + [[p[* — [la/*) "
where s = Req — Rep.

Proof. Since q and p are not similar, det Qqp # 0 and qp has an inverse which it can be expressed as
Theorem 8-3

-1
qu

o 2sa+ Il llal)p(a) — (@)
Op = 7

'(=2sa+ [lpl* — llall*)[e(@ — 7(p)]-

Thus, we get

x Q1
¢ (2sq + [Ip))* — [lall®)[e(a) — 7(B)] €
(2sa+ pll* — [lall*)~*(ac — cp)

12



and
X = Q7
= 7' (=2sq+p|* — lal*)[e@) — 7(p)] €
(qc — cp)(2sq + [Ip]l* — lal*) ™"

O

Example 22. Let’s find the unique solution of the equation qx — xzp = ¢ for the hybrid numbers, =2 +1+
e+2h, p=1+2i+2c+h, c=-2+3i+¢+ 5h. Since q and p are not similar, we have

(2sa+ [p|* —llall*) =22 +i+c+2h) —4— (=1) = 1+ 2i + 2 + 4h

and
t

qc — Cﬁ =® (q> cC—7 (ﬁ) c= (167 _117 _77 _3)

Therefore, we obtain

X = (2sq + [Ip]* - lla/*) "' (ac — cp)
¢~ (2sqa+ [p|? - lal*)(ac — cp)
[

t

= '(1,2,2,4)[16 —-11 -7 -3

42 81 55 @]t
19 19 19 19

42 81 55 59
—79 T 19l t+ 19¢ + Jgh.

Conclusions

In this article, we examined the similarity of hybrid numbers and linear equations with hybrid coefficients.
For this purpose, we have examined the appropriate studies in quaternions. We found similarities in our
examination. As a result, when we examine and categorize a hybrid number according to its module and
casual character, we obtained different results in terms of the similarity of the two hybrid numbers. However,
while solving linear equations with hybrid number coefficients, in the solution of similar parabolic hybrid
equations naturally emerged different from the quaternions. This is because the ||E4]| of a parabolic hybrid
number q is zero. This difficulty is solved by the generalized inverse theorem which is used to find the inverse
of non-square matrices. The examination of these situations has brought a new solution to the systems of
linear equations.
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