References:
1. Ghosh, C., C. Aranas Jr, and J.J. Jonas, Dynamic transformation
of deformed austenite at temperatures above the Ae3. Progress in
Materials Science, 2016. 82 : p. 151-233.
2. Yada, H., C.-M. Li, and H. Yamagata, Dynamic
γ→α Transformation during Hot Deformation in
Iron–Nickel–Carbon Alloys. ISIJ International, 2000.40 (2): p. 200-206.
3. Yada, H., Y. Matsumura, and K. Nakajima, Ferritic steel having
ultra-fine grains and a method for producing the same . 1984, Google
Patents.
4. Basabe, V.V., J.J. Jonas, and C. Ghosh, Formation of
Strain-induced Ferrite in Low Carbon Steels at Temperatures Above the
Ae<sub>3</sub>. ISIJ
International, 2013. 53 (12): p. 2233-2241.
5. Essadiqi, E. and J.J. Jonas, Effect of deformation on the
austenite-to-ferrite transformation in a plain carbon and two
microalloyed steels. Metallurgical Transactions A, 1988.19 (3): p. 417-426.
6. Ghosh, C., et al., Dynamic Transformation Behavior of a
Deformed High Carbon Steel at Temperatures Above the
Ae<sub>3</sub>. ISIJ
International, 2013. 53 (5): p. 900-908.
7. Chadha, K., et al., Influence of strain rate on dynamic
transformation of austenite in an as-cast medium-carbon low-alloy
steel. Materialia, 2018. 1 : p. 155-167.
8. Chadha, K., et al., On the Role of Chromium in Dynamic
Transformation of Austenite. Metals and Materials International, 2019.25 (3): p. 559-569.
9. Jonas, J.J., et al., The Critical Strain for Dynamic
Transformation in Hot Deformed Austenite. ISIJ International, 2013.53 (1): p. 145-151.
10. Ghosh, C., V.V. Basabe, and J.J. Jonas, Determination of the
Critical Strains for the Initiation of Dynamic Transformation and
Dynamic Recrystallization in Four Steels of Increasing Carbon Contents.steel research international, 2013. 84 (5): p. 490-494.
11. Poliak, E.I. and J.J. Jonas, Initiation of dynamic
recrystallization in constant strain rate hot deformation. ISIJ
International, 2003. 43 (5): p. 684-691.
12. Poliak, E.I. and J.J. Jonas, A one-parameter approach to
determining the critical conditions for the initiation of dynamic
recrystallization. Acta Materialia, 1996. 44 (1): p. 127-136.
13. Bale, C.W., et al. Recent Developments in Factsage
Thermochemical Software and Databases . 2016. Cham: Springer
International Publishing.
14. Aranas Jr, C., et al., Flow Softening-based Formation of
Widmanstätten Ferrite in a 0.06%C Steel Deformed Above the
Ae<sub>3</sub>. ISIJ
International, 2015. 55 (1): p. 300-307.
15. Poliak, E.I. and J.J. Jonas, Critical strain for dynamic
recrystallization in variable strain rate hot deformation. ISIJ
International, 2003. 43 (5): p. 692-700.
16. Grewal, R., et al., Formation of Widmanstätten ferrite at very
high temperatures in the austenite phase field. Acta Materialia, 2016.109 : p. 23-31.
17. Park, N., et al., Occurrence of dynamic ferrite transformation
in low-carbon steel above Ae3. Scripta Materialia, 2013.68 (7): p. 538-541.
18. Reick, W., M. Pohl, and A.F. Padilha,Recrystallization–Transformation Combined Reactions during
Annealing of a Cold Rolled Ferritic–Austenitic Duplex Stainless
Steel. ISIJ International, 1998. 38 (6): p. 567-571.
19. Aranas Jr, C. and J.J. Jonas, Effect of Mn and Si on the
dynamic transformation of austenite above the Ae3 temperature. Acta
Materialia, 2015. 82 : p. 1-10.