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Abstract

In this article, the truncated exponential-Gould-Hopper polynomials are taken
as base with the Appell polynomials to introduce a hybrid family of truncated
exponential-Gould-Hopper-Appell polynomials. These polynomials are framed
within the context of monomiality principle and their determinant definition and
properties are established. Further, we investigate some members belonging to
this family. In addition graphical representation and zeros of these members are
demonstrated using computer experiment..
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1 INTRODUCTION AND PRELIMINARIES

Generalized and multivariable forms of the special functions of mathematical physics has, in its various forms, been an object
of speculation and application during the recent years. Most of the special functions of mathematical physics and their gen-
eralizations have been suggested by physical problems. Recently, a systematic study of certain new classes of mixed special
polynomials associated to the Appell polynomials sequences is introduced, see for example1,2,3. These mixed special polyno-
mials are important due to the fact that they posses important properties such as differential equations, generating functions,
series definitions, integral representations etc. We recall the 3-variable truncated exponential based Gould-Hopper polynomials
(3VTEGHP), denoted by e(r)H

(s)
n (u, v,w), defined by means of the following generating function4:

exp(ut +wts)
1 − vtr

=
∞
∑

n=0
e(r)H

(s)
n (u, v,w) t

n

n!
(1)

and posses the following equivalent forms of series representation in terms of 2 variable truncated exponential polynomials
(2VTEP)5, denoted by e(r)n (u, v); Gould-Hopper polynomials (GHP)6, denoted byH (s)

n (u,w); and in terms of u, v and w:

e(r)H
(s)
n (u, v,w) = n!

[ n
s
]

∑

k=0

wk e(r)n−sk(u, v)
k!(n − sk)!

, (2)

e(r)H
(s)
n (u, v,w) = n!

[ n
r
]

∑

m=0

vm H (s)
n−rm(u,w)

(n − rm)!
(3)

and

e(r)H
(s)
n (u, v,w) = n!

sk+rm≤n
∑

k,m=0

un−sk−rmvmwk

k!(n − sk − rm)!
, (4)

0Abbreviations: TEGHAP, truncated exponential-Gould-Hopper based Appell polynomials; 3VTEGHP, 3-variable truncated exponential based Gould-Hopper
polynomials; 2VTEP, 2 variable truncated exponential polynomials
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respectively.
It is shown in4, that the 3VTEGHP e(r)H

(s)
n (u, v,w) are quasimonomial7,8 under the action of the following multiplicative and

derivative operators:
M̂

e(r)H (s) = u + rv)vv)r−1u + sw)s−1u (5)
and

P̂
e(r)H (s) = )u, (6)

respectively.
Again since e(r)H

(s)
0 (u, v,w) = 1, so in view of monomiality principle the 3VTEGHP e(r)H

(s)
n (u, v,w) can be explicitly

constructed as:

e(r)H
(s)
n (u, v,w) = M̂n

e(r)H (s){1} =
(

u + rv)vv)r−1u + sw)s−1u

)n {1}, (7)
which yields the series definition (4).
Identity (7) implies that the exponential generating function of the GHPH (s)

n (u, v) can be cast in the form:

exp(M̂
e(r)H (s) t){1} =

∞
∑

n=0
e(r)H

(s)
n (u, v,w) t

n

n!
, (8)

which yields generating function (1).
The operational representation of 3VTEGHP e(r)H

(s)
n (u, v,w) is given by:

e(r)H
(s)
n (u, v,w) = exp

(

w)su + v)vv)
r
u

)

un. (9)

The operational representation connecting the 3VTEGHP e(r)H
(s)
n (u, v,w) with the 2VTEP e(r)n (u, v) and GHP H (s)

n (u, v) is
given by:

e(r)H
(s)
n (u, v,w) = exp

(

w)su
)

e(r)n (u, v) (10)
and

e(r)H
(s)
n (u, v,w) = exp

(

v)vv)
r
u

)

H (s)
n (u,w), (11)

respectively.
The integral representation for the 3VTEGHP e(r)H

(s)
n (u, v,w) in terms of 2-iterated Gould-Hopper polynomials (2IGHP)9 is

given by:

e(r)H
(s)
n (u, v,w) =

∞

∫
0

e−xH (r)H (s)
n (u, vx,w)dx. (12)

Sequences of polynomials are a topic of interest in enumerative combinatorics, algebraic combinatorics and applied mathe-
matics. They play an important role in numerous branches of sciences. One of the important class of polynomial sequences is the
class of Appell polynomial sequences10. They are very often found in different applications in pure and applied mathematics.
Properties of Appell sequences are naturally handled within the framework of modern classical umbral calculus by Roman11.
In 1880, Appell10 introduced and studied sequences of n-degree polynomials An(u), n = 0, 1, 2,⋯ satisfying the recurrence

relation
d
du
An(u) = nAn−1(u), n = 0, 1, 2,⋯ . (13)

The generating function of the sequence of polynomials An(u) is given as:

A(t) exp(ut) =
∞
∑

n=0
An(u)

tn

n!
, (14)

where A(t) has (at least the formal) expansion:

A(t) =
∞
∑

n=0
An
tn

n!
, (A0 ≠ 0). (15)

Series representation of Appell polynomials is given by:

An(u) =
n
∑

k=0

nCkAku
n−k. (16)

The Appell polynomials constitute an important class of polynomials because of their remarkable applications in numerous
fields. The Bernoulli polynomials Bn(u) and the Euler polynomials En(u) are some of the important polynomials belonging to
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TABLE 1 Certain members belonging to the Appell family.

S. No. A(t) Name of the Special Polynomial Generating Function Series Definition

I t
e(t)−1

Bernoulli polynomials12 t
e(t)−1

exp(ut) =
∑∞
n=0 Bn(u)

tn

n!
Bn(u) =

∑n
k=0

[n
k

]

Bkun−k

II 2
e(t)+1

Euler polynomials12 2
exp(t)+1

e(ut) =
∑∞
n=0 En(u)

tn

n!
En(u) =

∑n
k=0

[n
k

]

q
Ekun−k

the class of Appell sequences. These polynomials plays a fundamental job in different extensions and approximations formulae,
which are valuable both in classical and numerical analysis and in analytic theory of numbers. By selecting appropriate function
A(t), different members of Appell family can be obtained. Notations, names, generating functions and series definitions of
certain members belonging to the Appell family are listed in Table 1 .
In this article, a hybrid class of truncated exponential-Gould-Hopper based Appell polynomials is introduced and many

important properties of these polynomials are investigated. The generating function, series representation and determinant forms
for this hybrid class of polynomials are derived. Further, we study some members belonging to this newly introduced class of
special polynomials. In addition, shapes and zeros of this family are shown graphically.

2 APPELL CONVOLUTION

In this section, a new hybrid class of truncated exponential-Gould-Hopper based Appell polynomials (TEGHAP) denoted by

eHA
(r,s)
n (u, v,w) is introduced by convoluting the 3VTEGHP and Appell polynomials by means of generating function.

In view of replacement and operational techniques, replacing u by the multiplicative operator M̂
e(r)H (s) of the 3VTEGHP

e(r)H
(s)
n (u, v,w) in the generating function (14) and using equations (1), (5) and (8) and thereafter denoting An(u + rv)vv)r−1u +

sw)s−1u ) by
eHA

(r,s)
n (u, v,w), that is

An(M̂e(r)H (s)) = An(u + rv)vv)r−1u + sw)s−1u ) =
eHA

(r,s)
n (u, v,w), (17)

we define the truncated exponential-Gould-Hopper based Appell polynomials as:

Definition 1. The truncated exponential-Gould-Hopper based Appell polynomials are defined by means of the generating
function:

A(t)
exp(ut +wts)

1 − vtr
=

∞
∑

n=0
eHA

(r,s)
n (u, v,w) t

n

n!
. (18)

Remark 2.1. We remark that equation (17) gives the operational correspondence between the 3VTEGHP e(r)H
(s)
n (u, v,w) and

TEGHAP
eHA

(r,s)
n (u, v,w).

Next, replacing u by M̂
e(r)H (s) in the series definition (16) and utilizing equations (7) and (17), we obtain the following series

definition of the TEGHAP
eHA

(r,s)
n (u, v,w):

Definition 2. The truncated exponential-Gould-Hopper based Appell polynomials are defined by the series:

eHA
(r,s)
n (u, v,w) = n!

n
∑

k=0

nCk Ak e(r)H
(s)
n−k(u, v,w). (19)

Also, we can find the following equivalent forms of the series representation of TEGHAP
eHA

(r,s)
n (u, v,w):

eHA
(r,s)
n (u, v,w) = n!

k+sm≤n
∑

k,m=0

Ak wm e(r)n−k−sm(u, v)
k!m!(n − k − sm)!

, (20)

eHA
(r,s)
n (u, v,w) = n!

k+rm≤n
∑

k,m=0

Ak vm H
(s)
n−k−rm(u,w)

k!(n − k − rm)!
, (21)

eHA
(r,s)
n (u, v,w) = n!

rm+sp≤n
∑

m,p=0

vm wp An−rm−sp(u)
(n − rm − sp)!

(22)
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TABLE 2 Certain members belonging to convoluted Appell family.

S. No. Aq(t) Notation and Name of Generating Function Series Definition
the Resultan Member

I A(t) = t
e(t)−1 eHB

(r,s)
n (u, v,w) ∶= t exp(ut+wts)

(et−1)(1−vtr) eHB
(r,s)
n (u, v,w)

Truncated exponential-Gould =
∑∞
n=0 eHB

(r,s)
n (u, v,w) t

n

n!
= n!

∑n
k=0

nCk Bk e(r)H
(s)
n−k(u, v,w)

-Hopper-Bernoulli polynomials
(TEGHBP)

II A(t) = 2
e(t)+1 eHE

(r,s)
n (u, v,w) ∶= 2 exp(ut+wts)

(et+1)(1−vtr) eHE
(r,s)
n (u, v,w)

Truncated exponential-Gould =
∑∞
n=0 eHE

(r,s)
n (u, v,w) t

n

n!
= n!

∑n
k=0

nCk Ek e(r)H
(s)
n−k(u, v,w)

-Hopper-Euler polynomials
(TEGHEP)

and

eHA
(r,s)
n (u, v,w) = n!

k+rm+sp≤n
∑

k,m,p=0

Ak un−k−rm−sp vm wp

k!p!(n − k − rm − sp)!
. (23)

Fewmembers of Appell family are listed in Table 1 . On appropriate selection of functionA(t) in generating function (18), we
obtain different members belonging to convoluted Appell family. Notations, names, generating functions and series definitions
of these members are mentioned in Table 2 .
Over the last few years, there has been increasing interest in a new approach related to special polynomials, that is, determi-

nant approach. Costabile et al.13 have established a new definition to Bernoulli polynomials based on a determinant approach.
Further, this approach has been extended to provide determinant definitions of the Appell polynomials14. Recently, Keleshteri
and Mahmudov15 introduce the determinant form of q-Appell polynomials. Because of the importance of determinant forms for
applied and computational purposes, the determinant representation of the TEGHAP

eHA
(r,s)
n (u, v,w) along with few members

belonging to this class are obtained.
By following the methodology presented in3 and in view of equations (7) and (17), the following determinant form for

eHA
(r,s)
n (u, v,w) is obtained:

Definition 3. The TEGHAP
eHA

(r,s)
n (u, v,w) of degree n are defined by

eHA
(r,s)
0 (u, v,w) = 1

�0
,

eHA
(r,s)
n (u, v,w) =

(−1)n

(�0)n+1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1 e(r)H
(s)
1 (u, v,w) e(r)H

(s)
2 (u, v,w) ⋯ e(r)H

(s)
n−1(u, v,w) e(r)H

(s)
n (u, v,w)

�0 �1 �2 ⋯ �n−1 �n
0 �0

(2
1

)

�1 ⋯
(n−1

1

)

�n−2
(n
1

)

�n−1
0 0 �0 ⋯

(n−1
2

)

�n−3
(n
2

)

�n−2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ �0

( n
n−1

)

�1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

, (24)

where n = 1, 2,⋯ , and e(r)H
(s)
n (u, v,w) (n = 1, 2,⋯ are the 3VTEGHP; �0 ≠ 0 and

�0 =
1
A0
,

�n = − 1
A0

( n
∑

k=1

(

n
k

)

Ak�n−k

)

, n = 1, 2,⋯ . (25)

Remark 2.2. Since the TEGHBP
eHB

(r,s)
n (u, v,w) and TEGHEP

eHE
(r,s)
n (u, v,w) given in Table 2 are particular members

of TEGHAP
eHA

(r,s)
n (u, v,w). Thus, by making appropriate selection for the coefficients �0 and �i (i = 1, 2,⋯ , n) in deter-

minant representation of TEGHAP
eHA

(r,s)
n (u, v,w), the determinant definition of TEGHBP

eHB
(r,s)
n (u, v,w) and TEGHEP

eHE
(r,s)
n (u, v,w) can be obtained. For instance, taking �0 = 1 and �i =

1
i+1
, (i = 1, 2,⋯ , n) in equation (24), the following

determinant definition of TEGHBP
eHB

(r,s)
n (u, v,w) is obtained:



YASMIN ET AL 5

Definition 4. The TEGHBP
eHB

(r,s)
n (u, v,w) of degree n are defined by

eHB
(r,s)
0 (u, v,w) = 1, (26)

eHB
(r,s)
n (u, v,w) = (−1)n

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1 e(r)H
(s)
1 (u, v,w) e(r)H

(s)
2 (u, v,w) ⋯ e(r)H

(s)
n−1(u, v,w) e(r)H

(s)
n (u, v,w)

1 1
2

1
3

⋯ 1
n

1
n+1

0 1
(2
1

) 1
2

⋯
(n−1

1

) 1
n−1

(n
1

) 1
n

0 0 1 ⋯
(n−1

2

) 1
n−2

(n
2

) 1
n−1

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1

( n
n−1

) 1
2

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

, (27)

where e(r)H
(s)
n (u, v,w) (n = 1, 2,⋯) are the 3VTEGHP e(r)H

(s)
n (u, v,w) defined by equation (1).

Further, it has been shown in14 that for �0 = 1 and �i =
1
2
, (i = 1, 2,⋯ , n) the determinant definition of Appell polynomials

An(u) reduces to determinant definition of Euler polynomials En(u). Therefore, taking �0 = 1 and �i =
1
2
, (i = 1, 2, 3,⋯ , n) in

equations (24), gives the following determinant form of the TEGHEP
eHE

(r,s)
n (u, v,w):

Definition 5. The TEGHEP
eHE

(r,s)
n (u, v,w) of degree n are defined by

eHE
(r,s)
0 (u, v,w) = 1, (28)

eHE
(r,s)
n (u, v,w) = (−1)n

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1 e(r)H
(s)
1 (u, v,w) e(r)H

(s)
2 (u, v,w) ⋯ e(r)H

(s)
n−1(u, v,w) e(r)H

(s)
n (u, v,w)

1 1
2

1
2

⋯ 1
2

1
2

0 1
(2
1

) 1
2

⋯
(n−1

1

) 1
2

(n
1

) 1
2

0 0 1 ⋯
(n−1

2

) 1
2

(n
2

) 1
2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1

( n
n−1

) 1
2

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

, (29)

where e(r)H
(s)
n (u, v,w) (n = 1, 2,⋯) are the 3VTEGHP e(r)H

(s)
n (u, v,w) defined by equation (1).

3 PROPERTIES

In order to frame the TEGHAP
eHA

(r,s)
n (u, v,w) within the context of monomiality principle, we first determine multiplicative

and derivative operators:

Theorem 1. The TEGHAP
eHA

(r,s)
n (u, v,w) are quasi-monomial under the action of the following multiplicative and derivative

operators:

M̂
eHA

(r,s) = u + rv)vv)r−1u + sw)s−1u +
A′()u)
A()u)

(30)

and
P̂
eHA

(r,s) = )u , (31)

respectively.

Proof. Consider the identity

)u

(

A(t) exp (ut +wts)
1 − vtr

)

= t
(

A(t) exp (ut +wts)
1 − vtr

)

. (32)

Replacing u by the multiplicative operator M̂
e(r)H (s) in the generating function (14), we get

A(t) exp(M̂
e(r)H (s) t) =

∞
∑

n=0
An(M̂e(r)H (s)) t

n

n!
. (33)

Next, differentiating equation (33) partially with respect to t, we find
(

M̂
e(r)H (s) +

A′(t)
A(t)

)

A(t) exp(M̂
e(r)H (s) t) =

∞
∑

n=0
An(M̂e(r)H (s)) tn−1

(n − 1)!
. (34)

Using equation (33) on l.h.s. and then using relation (17) on both sides of equation (34), we obtain
(

M̂
e(r)H (s) +

A′(t)
A(t)

) ∞
∑

n=0
eHA

(r,s)
n (u, v,w) t

n

n!
=

∞
∑

n=0
eHA

(r,s)
n (u, v,w) tn−1

(n − 1)!
. (35)
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Now, putting the value of multiplicative operator of 3VTEGHP e(r)H
(s)
n (u, v,w) from (5) and using generating function of

TEGHAP
eHA

(r,s)
n (u, v,w) (18) in the l.h.s. of above equation, we get

(

u + rv)vv)r−1u + sw)s−1u +
A′(t)
A(t)

)

A(t) exp(ut +wts)
1 − vtr

=
∞
∑

n=0
eHA

(r,s)
n (u, v,w) tn−1

(n − 1)!
(36)

which on using identity (32) and then using generating function of TEGHAP
eHA

(r,s)
n (u, v,w) (18) in the l.h.s. gives

(

u + rv)vv)r−1u + sw)s−1u +
A′()u)
A()u)

) ∞
∑

n=0
eHA

(r,s)
n (u, v,w) t

n

(n)!
=

∞
∑

n=0
eHA

(r,s)
n (u, v,w) tn−1

(n − 1)!
. (37)

Equating coefficients of the same powers of t gives
(

u + rv)vv)r−1u + sw)s−1u +
A′()u)
A()u)

)

eHA
(r,s)
n (u, v,w) =

eHA
(r,s)
n+1 (u, v,w) (38)

which in view of monomiality principle yields assertion (30).
In order to prove assertion (31), we use generating function of TEGHAP

eHA
(r,s)
n (u, v,w) (18) in both sides of the identity

(32) and then equating coefficients of the same powers of t in both sides of the resultant equation, we find

)u
{

eHA
(r,s)
n (u, v,w)

}

= n
eHA

(r,s)
n−1 (u, v,w), (39)

which in view of monomiality principle yields assertion (31).

Remark 3.1. We remark that equations (38) and (39) are the differential recurrence relations satisfied by the TEGHAP

eHA
(r,s)
n (u, v,w).

To derive the differential equation for the TEGHAP
eHA

(r,s)
n (u, v,w), we prove the following result:

Theorem 2. The TEGHAP
eHA

(r,s)
n (u, v,w) satisfy the following differential equation:
(

u)u + rv)vv)ru + sw)su + )u
A′()u)
A()u)

− n
)

eHA
(r,s)
n (u, v,w) = 0. (40)

Proof. Using expressions (30) and (31) and in view of monomiality principle, we get assertion (40).

Now, we derive some operational representations for TEGHAP
eHA

(r,s)
n (u, v,w). First we will prove the following operational

rule:

Theorem 3. The following operational representation connecting TEGHAP
eHA

(r,s)
n (u, v,w) and Appell polynomials An(u)

holds true:

eHA
(r,s)
n (u, v,w) = exp

(

w)su + v)vv)
r
u

)

An(u). (41)

Proof. Using operational representation (9) of 3VTEGHP e(r)H
(s)
n (u, v,w) in the r.h.s of the series definition (19) of TEGHAP

eHA
(r,s)
n (u, v,w), we get

eHA
(r,s)
n (u, v,w) = n!

n
∑

k=0

nCk Ak exp
(

w)su + v)vv)
r
u

)

un−k. (42)

which on using the series representation (16) of Appell polynomials An(u) on the r.h.s, gives assertion (41).

Theorem 4. The following operational representation connecting TEGHAP
eHA

(r,s)
n (u, v,w) and 2-variable truncated

exponential-Appell polynomials (2VTEAP)2 denoted by e(r)An(u, v) holds true:

eHA
(r,s)
n (u, v,w) = exp

(

w)su
)

e(r)An(u, v). (43)

Proof. Using operational representation (10) of 3VTEGHP e(r)H
(s)
n (u, v,w) in the r.h.s of the series definition (19) of TEGHAP

eHA
(r,s)
n (u, v,w), we get

eHA
(r,s)
n (u, v,w) = n!

n
∑

k=0

nCk Ak exp
(

w)su
)

e(r)n (u, v). (44)

As 2VTEP e(r)n (u, v) is quasi-monomial, so by using monomiality principle and series representation (16) of Appell
polynomials An(u) on the r.h.s, gives assertion (43).
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Theorem 5. The following operational representation connecting TEGHAP
eHA

(r,s)
n (u, v,w) and Gould-Hopper-Appell poly-

nomials (GHAP)1 denoted by H (s)An(u, v) holds true:

eHA
(r,s)
n (u, v,w) = exp

(

v)vv)
r
u

)

H (s)An(u,w). (45)

Proof. Using operational representation (11) of 3VTEGHP e(r)H
(s)
n (u, v,w) in the r.h.s of the series definition (19) of TEGHAP

eHA
(r,s)
n (u, v,w), we get

eHA
(r,s)
n (u, v,w) = n!

n
∑

k=0

nCk Ak exp
(

v)vv)
r
u

)

H (s)
n (u,w). (46)

As GHP H (s)
n (u,w) is quasi-monomial, so by using monomiality principle and series representation (16) of Appell

polynomials An(u) on the r.h.s, gives assertion (45).

Recall that 2-iterated Gould-Hopper polynomials (2IGHP) H (r)H (s)
n (u, v,w)9 is defined by the following generating function:

exp(ut + vtr +wts) =
∞
∑

n=0
H (r)H (s)

n (u, v,w) t
n

n!
. (47)

It is shown in9, that 2IGHP H (r)H (s)
n (u, v,w) are quasimonomial under the action of the following multiplicative and derivative

operators:
M̂

H(r)H (s) = u + rv)u + sw)s−1u (48)

and
P̂
H(r)H (s) = )u, (49)

respectively.
From monomiality principle, the exponential generating function of the 2IGHP H (r)H (s)

n (u, v,w) can be cast in the form:

exp(M̂
H(r)H (s) t){1} =

∞
∑

n=0
H (r)H (s)

n (u, v,w) t
n

n!
, (50)

Replacing u by the multiplicative operator M̂
H(r)H (s) of the 2IGHP H (r)H (s)

n (u, v,w) in the generating function (14) of Appell
polynomials An(u), we get

A(t) exp(M̂
H(r)H (s) t) =

∞
∑

n=0
An(M̂H(r)H (s)) t

n

n!
. (51)

Now using equation (50) in l.h.s. and denoting the resultant in the r.h.s. by
H(r)H (s)An(u, v,w), we find

A(t)
∞
∑

n=0
H (r)H (s)

n (u, v,w) t
n

n!
=

∞
∑

n=0
H(r)H (s)An(u, v,w)

tn

n!
, (52)

which on using generating function (47) of 2IGHP H (r)H (s)
n (u, v,w), in the l.h.s. gives the generating function for the new family

of polynomials called 2-iterated Gould-Hopper-Appell polynomials (2IGHAP), denoted by
H(r)H (s)An(u, v,w):

A(t) exp(ut + vtr +wts) =
∞
∑

n=0
H(r)H (s)An(u, v,w)

tn

n!
. (53)

Now, we will establish an integral representation for the TEGHAP
eHA

(r,s)
n (u, v,w) in terms of 2IGHAP

H(r)H (s)An(u, v,w) :

Theorem 6. The following integral representation for the TEGHAP
eHA

(r,s)
n (u, v,w) in terms of 2IGHAP holds true:

eHA
(r,s)
n (u, v,w) =

∞

∫
0

e−x
H(r)H (s)An(u, vx,w)dx. (54)

Proof. First, we recall the following integral representation of 3VTEGHP e(r)H
(s)
n (u, v,w)4:

e(r)H
(s)
n (u, v,w) =

∞

∫
0

e−xH (r)H (s)
n (u, vx,w)dx. (55)
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Using generating function (1) of 3VTEGHP e(r)H
(s)
n (u, v,w) in the generating function (18) of TEGHAP

eHA
(r,s)
n (u, v,w) ,

we obtain
∞
∑

n=0
eHA

(r,s)
n (u, v,w) t

n

n!
= A(t)

∞
∑

n=0
e(r)H

(s)
n (u, v,w) t

n

n!
, (56)

which on using integral representation (55) of 3VTEGHP e(r)H
(s)
n (u, v,w) gives

∞
∑

n=0
eHA

(r,s)
n (u, v,w) t

n

n!
= A(t)

∞
∑

n=0

⎛

⎜

⎜

⎝

∞

∫
0

e−xH (r)H (s)
n (u, vx,w)dx

⎞

⎟

⎟

⎠

tn

n!
. (57)

Making use of generating function (47) of 2IGHP H (r)H (s)
n (u, v,w), we get

∞
∑

n=0
eHA

(r,s)
n (u, v,w) t

n

n!
=

∞

∫
0

A(t) exp(−x + ut + vxtr +wts)dx. (58)

Finally, using generating function (53) of 2IGHAP
H(r)H (s)An(u, v,w) gives

∞
∑

n=0
eHA

(r,s)
n (u, v,w) t

n

n!
=

∞
∑

n=o

⎛

⎜

⎜

⎝

∞

∫
0

e−x
H(r)H (s)An(u, vx,w)dx

⎞

⎟

⎟

⎠

tn

n!
, (59)

which on equating the coefficients of the same powers of t yields assertion (54).

Further, corresponding results for the above properties established for members belonging to the truncated exponential Gould
Hopper Appell family are derived and mentioned in Table 3 .
Where, e(r)Bn(u, v) is truncated exponential-Bernoulli polynomials2, H (s)Bn(u,w) is Gould-Hopper-Bernoulli polynomi-

als1, Table 2 (I) and
H(r)H (s)Bn(u, v,w) is 2-iterated Gould-Hopper-Bernoulli polynomials which can be obtained by reducing

Appell polynomials to Bernoulli polynomials by taking A(t) = t
et−1

in the generating function definition (53) of 2IGHAP

H(r)H (s)An(u, v,w).
Further in Table 3 , e(r)En(u, v) is truncated exponential-Euler polynomials2, H (s)En(u,w) is Gould-Hopper-Euler polynomi-

als1, Table 2 (II) and
H(r)H (s)En(u, v,w) is 2-iterated Gould-Hopper-Euler polynomials which can be obtained by reducing Appell

polynomials to Euler polynomials by takingA(t) = 2
et+1

in the generating function definition (53) of 2IGHAP
H(r)H (s)An(u, v,w).

4 RECURRENCE RELATIONS, SHIFT OPERATORS AND DIFFERENTIAL EQUATIONS

In this section, we derive the recurrence relations and shift operators for the TEGHAP
eHA

(r,s)
n (u, v,w). Then using shift operators

we derive the differential, integro-differential and partial differential equations for the TEGHAP
eHA

(r,s)
n (u, v,w). First we derive

the recurrence relation for the TEGHAP
eHA

(r,s)
n (u, v,w) by proving the following result:

Theorem 7. The TEGHAP
eHA

(r,s)
n (u, v,w) satisfy the following recurrence relations:

eHA
(r,s)
n+1 (u, v,w) = (u + �0)eHA

(r,s)
n (u, v,w) +

n−1
∑

k=0

nCk�n−keHA
(r,s)
k (u, v,w) + n!

(n − s + 1)!
sw

eHA
(r,s)
n−s+1(u, v,w)

+
n−r−1
∑

k=0

n!
k!(n − r − k + 1)!

rv e(r)n−k−r+1(0, v) eHA
(r,s)
k (u, v,w), (60)

where the coefficients {�k}k∈ℕ0
are given by the expansions

A′(t)
A(t)

=
∞
∑

n=0
�n
tn

n!
(61)

and e(r)n (u, v) are the truncated exponential polynomials defined by the generating function:

eut

1 − vtr
=

∞
∑

n=0
e(r)n (u, v) t

n

n!
. (62)
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TABLE 3 Results for the TEGHBP
eHB

(r,s)
n (u, v,w) and TEGHEP

eHE
(r,s)
n (u, v,w).

S.No Special Results Expressions
Polynomials

Multiplicative and M̂
eHB

(r,s) = u + rv)vv)r−1u + sw)s−1u + exp()u)(1−)u)−1
)u(exp()u)−1)

derivative operators P̂
eHB

(r,s) = )u

Differential equation
(

u)u + rv)vv)ru + sw)su +
(

exp()u)(1−)u)−1
)u(exp()u)−1)

)

)u − n
)

I TEGHBP
eHB

(r,s)
n (u, v,w) = 0

eHB
(r,s)
n (u, v,w) Operational rules

eHB
(r,s)
n (u, v,w) = exp

(

w)su + v)vv)
r
u

)

Bn(u)

eHB
(r,s)
n (u, v,w) = exp

(

w)su
)

e(r)Bn(u, v)

eHB
(r,s)
n (u, v,w) = exp

(

v)vv)ru
)

H (s)Bn(u,w)

Integral
eHB

(r,s)
n (u, v,w) = ∫ ∞

0 e−x
H(r)H (s)Bn(u, vx,w)dx

representation

Multiplicative and M̂
eHE

(r,s) = u + rv)vv)r−1u + sw)s−1u − exp()u)
exp()u)+1

derivative operators P̂
eHE

(r,s) = )u

Differential equation
(

u)u + rv)vv)ru + sw)su −
(

exp()u)
exp()u)+1

)

)u − n
)

II TEGHEP
eHE

(r,s)
n (u, v,w) = 0

eHE
(r,s)
n (u, v,w) Operational rules

eHE
(r,s)
n (u, v,w) = exp

(

w)su + v)vv)
r
u

)

En(u)

eHE
(r,s)
n (u, v,w) = exp

(

w)su
)

e(r)En(u, v)

eHE
(r,s)
n (u, v,w) = exp

(

v)vv)ru
)

H (s)En(u)

Integral
eHE

(r,s)
n (u, v,w) = ∫ ∞

0 e−x
H(r)H (s)En(u, vx,w)dx

representation

Proof. Differentiating both sides of generating function (18) with respect to t, we have
∞
∑

n=0
eHA

(r,s)
n+1 (u, v,w)

tn

n!
=
(

A′(t)
A(t)

+ u +wsts−1 + vrtr−1 1
1 − vtr

)

A(t)
exp(ut +wts)

1 − vtr
. (63)

Using equation (18), (61) and (62) in the right hand side of the above equation we get
∞
∑

n=0
eHA

(r,s)
n+1 (u, v,w)

tn

n!
=

( ∞
∑

n=0
�n
tn

n!
+ u +wsts−1 + vrtr−1

∞
∑

n=0
e(r)n (0, v) t

n

n!

) ∞
∑

n=0
eHA

(r,s)
n (u, v,w) t

n

n!
. (64)

Applying Cauchy product rule and comparing the coefficients of similar powers of t gives assertion (60).

Now, we proceed to explore the shift operators for the TEGHAP
eHA

(r,s)
n (u, v,w) by proving following two results:

Theorem 8. The lowering operators for the TEGHAP
eHA

(r,s)
n (u, v,w) are given by:

un ∶=
1
n
Du, (65)

vn ∶=
1
n

D−(r−1)
u Dv

exp(Dr
u vDvv)

, (66)
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wn ∶=
1
n
D−(s−1)
u Dw, (67)

where

Du ∶=
)
)u
, Dv ∶=

)
)v
, Dw ∶= )

)w
and D−1

u ∶=

u

∫
0

f (�)d� .

Proof. Differentiating generating function (18) with respect to u and then equating the coefficients of similar powers of t on
both sides of the resultant equation gives

Du
{

eHA
(r,s)
n (u, v,w)

}

= n
eHA

(r,s)
n−1 (u, v,w). (68)

Consequently, we have

un
{

eHA
(r,s)
n (u, v,w)

}

= 1
n
Du

{

eHA
(r,s)
n (u, v,w)

}

=
eHA

(r,s)
n−1 (u, v,w), (69)

hence, assertion (65) follows.
Differentiating generating function (18) with respect to v and then equating the coefficients of similar powers of t on both

sides of the resultant equation, it follows that

Dv
{

eHA
(r,s)
n (u, v,w)

}

= n!
(n − r)!

exp(Dr
u vDvv) eHA

(r,s)
n−r (u, v,w), (70)

which in view of (68) can be rewritten as

Dv
{

eHA
(r,s)
n (u, v,w)

}

= n exp(Dr
u vDvv) Dr−1

u eHA
(r,s)
n−r−1(u, v,w). (71)

which finally gives

vn
{

eHA
(r,s)
n (u, v,w)

}

=
Dv

n exp(Dr
u vDvv)Dr−1

u

{

eHA
(r,s)
n (u, v,w)

}

=
eHA

(r,s)
n−1 (u, v,w). (72)

Thus assertion (66) is proved.
Again, differentiating generating function (18) with respect to w and then equating the coefficients of similar powers of t on

both sides of the resultant equation yields

Dw
{

eHA
(r,s)
n (u, v,w)

}

= n!
(n − s)! eHA

(r,s)
n−s (u, v,w), (73)

which in view of (68) can be rewritten as

Dw
{

eHA
(r,s)
n (u, v,w)

}

= nDs−1
u eHA

(r,s)
n−1 (u, v,w). (74)

Consequently, we have

wn
{

eHA
(r,s)
n (u, v,w)

}

=
Dw

nDs−1
u

{

eHA
(r,s)
n (u, v,w)

}

=
eHA

(r,s)
n−1 (u, v,w), (75)

which proves assertion (67).

Theorem 9. The raising operators for the TEGHAP
eHA

(r,s)
n (u, v,w) are given by

un ∶= u + �0 + swDs−1
u +

n−1
∑

k=0

�n−k
(n − k)!

Dn−k
u + rv

n−r−1
∑

k=0

e(r)n−k−r+1(0, v)
(n − k − r + 1)!

Dn−k
u , (76)

vn ∶= u+�0+sw
D−(r−1)(s−1)
u Ds−1

v

[exp(Dr
u vDvv)]s−1

+
n−1
∑

k=0

�n−k
(n − k)!

D−(r−1)(n−k)
u Dn−k

v

[exp(Dr
u vDvv)]n−k

+rv
n−r−1
∑

k=0

e(r)n−k−r+1(0, v)
(n − k − r + 1)!

D−(r−1)(n−k)
u Dn−k

v

[exp(Dr
u vDvv)]n−k

, (77)

wn ∶= u + �0 + swD−(s−1)2
u Ds−1

w +
n−1
∑

k=0

�n−k
(n − k)!

D−(s−1)(n−k)
u Dn−k

w + rv
n−r−1
∑

k=0

e(r)n−k−r+1(0, v)
(n − k − r + 1)!

D−(s−1)(n−k)
u Dn−k

w , (78)

where

Du ∶=
)
)u
, Dv ∶=

)
)v
, Dw ∶= )

)w
and D−1

u ∶=

u

∫
0

f (�)d� .
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Proof. In order to derive the expression for raising operator (76), the following relation is used:

eHA
(r,s)
k (u, v,w) = uk+1 uk+2 ⋯ un−1 un

{

eHA
(r,s)
n (u, v,w)

}

, (79)

which in view of (69) can be simplified as

eHA
(r,s)
k (u, v,w) = k!

n!
Dn−k
u eHA

(r,s)
n (u, v,w). (80)

Making use of equation (80) in recurrence relation (60), we find

eHA
(r,s)
n+1 (u, v,w) =

(

u + �0 + swDs−1
u +

n−1
∑

k=0

�n−k
(n − k)!

Dn−k
u + rv

n−r−1
∑

k=0

e(r)n−k−r+1(0, v)
(n − k − r + 1)!

Dn−k
u

)

eHA
(r,s)
n (u, v,w), (81)

which yields expression (76) of raising operator un.
Next, to obtain the raising operator vn, the following relation is used:

eHA
(r,s)
k (u, v,w) = vk+1 vk+2 ⋯ vn−1 vn

{

eHA
(r,s)
n (u, v,w)

}

, (82)

which in view of (72) can be simplified as

eHA
(r,s)
k (u, v,w) = k!

n!
D−(r−1)(n−k)
u Dn−k

v

[exp(Dr
u vDvv)]n−k eHA

(r,s)
n (u, v,w). (83)

Making use of equation (83) in recurrence relation (60), we find

eHA
(r,s)
n+1 (u, v,w) =

(

u + �0 + sw
D−(r−1)(s−1)
u Ds−1

v

[exp(Dr
u vDvv)]s−1

+
n−1
∑

k=0

�n−k
(n − k)!

D−(r−1)(n−k)
u Dn−k

v

[exp(Dr
u vDvv)]n−k

+rv
n−r−1
∑

k=0

e(r)n−k−r+1(0, v)
(n − k − r + 1)!

D−(r−1)(n−k)
u Dn−k

v

[exp(Dr
u vDvv)]n−k

)

eHA
(r,s)
n (u, v,w), (84)

which yields expression (77) of raising operator vn.
Further, to obtain the raising operator wn, the following relation is used:

eHA
(r,s)
k (u, v,w) = wk+1 wk+2 ⋯ wn−1 wn

{

eHA
(r,s)
n (u, v,w)

}

, (85)

which in view of (75) can be simplified as

eHA
(r,s)
k (u, v,w) = k!

n!
D−(s−1)(n−k)
u Dn−k

w eHA
(r,s)
n (u, v,w). (86)

Making use of equation (86) in recurrence relation (60), we find

eHA
(r,s)
n+1 (u, v,w) =

(

u + �0 + swD−(s−1)2
u Ds−1

w +
n−1
∑

k=0

�n−k
(n − k)!

D−(s−1)(n−k)
u Dn−k

w

+rv
n−r−1
∑

k=0

e(r)n−k−r+1(0, v)
(n − k − r + 1)!

D−(s−1)(n−k)
u Dn−k

w

)

eHA
(r,s)
n (u, v,w), (87)

which yields expression (78) of raising operator wn.

Next, the differential and integro-differential equations for the TEGHAP
eHA

(r,s)
n (u, v,w) are derived by proving the following

results.

Theorem 10. The TEGHAP
eHA

(r,s)
n (u, v,w) satisfy the following differential equation:

(

(u + �0)Du + swDs
u +

n−1
∑

k=0

�n−k
(n − k)!

Dn−k+1
u + rv

n−r−1
∑

k=0

e(r)n−k−r+1(0, v)
(n − k − r + 1)!

Dn−k+1
u − (n + 1)

)

eHA
(r,s)
n (u, v,w) = 0. (88)

Proof. Consider the following factorization relation:

un+1 un
{

eHA
(r,s)
n (u, v,w)

}

=
eHA

(r,s)
n (u, v,w). (89)

which on using expressions (65) and (76) of the shift operators in the above equation, we get assertion (88).
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Theorem 11. The TEGHAP
eHA

(r,s)
n (u, v,w) satisfy the following integro-differential equations:

(

(u + �0)
Dv

exp(Dr
u vDvv)

+ sw
D−(r−1)(s−1)
u Ds

v

[exp(Dr
u vDvv)]s

+
n−1
∑

k=0

�n−k
(n − k)!

D−(r−1)(n−k)
u Dn−k+1

v

[exp(Dr
u vDvv)]n−k+1

+rv
n−r−1
∑

k=0

e(r)n−k−r+1(0, v)
(n − k − r + 1)!

D−(r−1)(n−k)
u Dn−k+1

v

[exp(Dr
u vDvv)]n−k+1

− (n + 1)Dr−1
u

)

eHA
(r,s)
n (u, v,w) = 0, (90)

(

(u + �0)Dw + swD−(s−1)2
u Ds

w +
n−1
∑

k=0

�n−k
(n − k)!

D−(s−1)(n−k)
u Dn−k+1

w

+rv
n−r−1
∑

k=0

e(r)n−k−r+1(0, v)
(n − k − r + 1)!

D−(s−1)(n−k)
u Dn−k+1

w − (n + 1)Ds−1
u

)

eHA
(r,s)
n (u, v,w) = 0, (91)

(

(u + �0)Dv + swD−(s−1)2
u Ds−1

w Dv +
n−1
∑

k=0

�n−k
(n − k)!

D−(s−1)(n−k)
u Dn−k

w Dv

+rv
n−r−1
∑

k=0

e(r)n−k−r+1(0, v)
(n − k − r + 1)!

D−(s−1)(n−k)
u Dn−k

w Dv − (n + 1) exp(Dr
u vDvv)Dr−1

u

)

eHA
(r,s)
n (u, v,w) = 0, (92)

(

(u + �0)Dw + sw
D−(r−1)(s−1)
u Ds−1

v Dw

[exp(Dr
u vDvv)]s−1

+
n−1
∑

k=0

�n−k
(n − k)!

D−(r−1)(n−k)
u Dn−k

v Dw

[exp(Dr
u vDvv)]n−k

+

rv
n−r−1
∑

k=0

e(r)n−k−r+1(0, v)
(n − k − r + 1)!

D−(r−1)(n−k)
u Dn−k

v Dw

[exp(Dr
u vDvv)]n−k

− (n + 1)Ds−1
u

)

eHA
(r,s)
n (u, v,w) = 0. (93)

Proof. Use of expressions (66) and (77) of the shift operators in the following factorization relation:

vn+1 vn
{

eHA
(r,s)
n (u, v,w)

}

=
eHA

(r,s)
n (u, v,w), (94)

yields assertion (90).
Use of expressions (67) and (78) of the shift operators in the following factorization relation:

wn+1 wn
{

eHA
(r,s)
n (u, v,w)

}

=
eHA

(r,s)
n (u, v,w), (95)

yields assertion (91).
Use of expressions (66) and (78) of the shift operators in the following factorization relation:

vn+1 wn
{

eHA
(r,s)
n (u, v,w)

}

=
eHA

(r,s)
n (u, v,w), (96)

yields assertion (92).
Use of expressions (67) and (77) of the shift operators in the following factorization relation:

wn+1 vn
{

eHA
(r,s)
n (u, v,w)

}

=
eHA

(r,s)
n (u, v,w), (97)

yields assertion (93).

Remark 4.1. The partial differential equations for the TEGHAP
eHA

(r,s)
n (u, v,w) is deduced as the following consequence of

Theorem 11:

Corollary 1. The TEGHAP
eHA

(r,s)
n (u, v,w) satisfy the following partial differential equations:

(

(u + �0)
Dn(r−1)
u Dv

exp(Dr
u vDvv)

+ sw
D(n−s+1)(r−1)
u Ds

v

[exp(Dr
u vDvv)]s

+
n−1
∑

k=0

�n−k
(n − k)!

Dk(r−1)
u Dn−k+1

v

[exp(Dr
u vDvv)]n−k+1

+rv
n−r−1
∑

k=0

e(r)n−k−r+1(0, v)
(n − k − r + 1)!

Dk(r−1)
u Dn−k+1

v

[exp(Dr
u vDvv)]n−k+1

− (n + 1)D(n+1)(r−1)
u

)

eHA
(r,s)
n (u, v,w) = 0, (98)

(

(u + �0)Dn(s−1)
u Dw + swD(n−s+1)(s−1)

u Ds
w +

n−1
∑

k=0

�n−k
(n − k)!

Dk(s−1)
u Dn−k+1

w
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+rv
n−r−1
∑

k=0

e(r)n−k−r+1(0, v)
(n − k − r + 1)!

Dk(s−1)
u Dn−k+1

w − (n + 1)D(n+1)(s−1)
u

)

eHA
(r,s)
n (u, v,w) = 0, (99)

(

(u + �0)Dn(s−1)
u Dv + swD(n−s+1)(s−1)

u Ds−1
w Dv +

n−1
∑

k=0

�n−k
(n − k)!

Dk(s−1)
u Dn−k

w Dv + rv
n−r−1
∑

k=0

e(r)n−k−r+1(0, v)
(n − k − r + 1)!

Dk(s−1)
u Dn−k

w Dv − (n + 1) exp(Dr
u vDvv)Dn(s−1)+(r−1)

u

)

eHA
(r,s)
n (u, v,w) = 0, (100)

(

(u + �0)Dn(r−1)
u Dw + sw

D(n−s+1)(r−1)
u Ds−1

v Dw

[exp(Dr
u vDvv)]s−1

+
n−1
∑

k=0

�n−k
(n − k)!

Dk(r−1)
u Dn−k

v Dw

[exp(Dr
u vDvv)]n−k

+ rv
n−r−1
∑

k=0

e(r)n−k−r+1(0, v)
(n − k − r + 1)!

Dk(r−1)
u Dn−k

v Dw

[exp(Dr
u vDvv)]n−k

− (n + 1)Dn(r−1)+(s−1)
u

)

eHA
(r,s)
n (u, v,w) = 0. (101)

Proof. Differentiating integro-differential equation (90) n(r− 1) times with respect to u, we get the partial differential equation
(98). Similarly, by taking the derivatives of the integro-differential equation (91) n(s − 1) times with respect to u, we get the
partial differential equation (99). In the same way the partial differential equation (100) can be obtained by taking the derivatives
of the integro-differential equation (92) n(s−1) times with respect to u and the partial differential equation (101) can be obtained
by taking the derivatives of the integro-differential equation (93) n(r − 1) times with respect to u.

Remark 4.2. For A(t) = t
e(t)−1

, TEGHAP
eHA

(r,s)
n (u, v,w) reduces to TEGHBP

eHB
(r,s)
n (u, v,w) (Table 2 (I)). So in view of

equation (61), corresponding results for the differential, integro-differential and partial differential equations derived above can
be obtained for TEGHBP

eHB
(r,s)
n (u, v,w) by putting

�n = −
Bn+1(1)
n + 1

and �0 = −1
2
. (102)

Remark 4.3. For A(t) = 2
e(t)+1

, TEGHAP
eHA

(r,s)
n (u, v,w) reduces to TEGHEP

eHE
(r,s)
n (u, v,w) (Table 2 (II)). So in view of

equation (61), corresponding results for the differential, integro-differential and partial differential equations derived above can
be obtained for TEGHEP

eHE
(r,s)
n (u, v,w) by putting

�n = −
En(1)
2

and �0 = −1
2
. (103)

5 CONCLUDING REMARKS

Over the years, there has been rise in interest in solving physical andmathematical problemswith the help of computers. By using
computers, we can understand concepts much more easily and in less time than in the past. The ability to manipulate and create
figures on the screen of computer enables us to produce and visualize several problems, demonstrate the properties of figures
and examine the patterns. This section aims to demonstrate the benefit of using numerical investigation to support theoretical
prediction and to discover new interesting pattern of the zeros of the TEGHAP

eHA
(r,s)
n (u, v,w). The TEGHBP

eHB
(r,s)
n (u, v,w)

can be determined explicitly. A few of them for r = s = 1 are:

eHB
(r,s)
0 (u, v,w) = 1,

eHB
(r,s)
1 (u, v,w) = −(1∕2) + u + v +w,

eHB
(r,s)
2 (u, v,w) = 2(1∕2(1∕6 − u + u2) + (−(1∕2) + u)v + v2 + (−(1∕2) + u)w + vw +w2),

eHB
(r,s)
3 (u, v,w) = 6(1∕6(u∕2 − (3u2)∕2 + u3) + 1∕2(1∕6 − u + u2)v + (−(1∕2) + u)v2 + v3

+ 1∕2(1∕6 − u + u2)w + (−(1∕2) + u)vw + v2w + (−(1∕2) + u)w2 + vw2 +w3).
We display the shapes of the TEGHBP

eHB
(r,s)
n (u, v,w) and investigate its zeros. We plot the graph of TEGHBP

eHB
(r,s)
n (u, v,w) for n = 1, 2, 3,⋯ , 10 combined together. The shape of TEGHBP

eHB
(r,s)
n (u, v,w) for r = 1, s = 2, v = 1, w =

−1 and −6 ≤ u ≤ 6 are displayed in Figure 1 .
The surface plot of TEGHBP

eHB
(r,s)
n (u, v,w) for r = 16, s = 24 and n = 20 are displayed in Figure 2 .
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FIGURE 2 Surface plot of TEGHBP
eHB

(r,s)
n (u, v,w).

Our numerical results for number of real and complex zeros of the TEGHBP
eHB

(r,s)
n (u, v,w) for r = 1, s = 2, v = 1 and

w = −1 are listed in Table 4 .
Next, we have calculated an approximate solution satisfying the TEGHBP

eHB
(r,s)
n (u, v,w) = 0 for r = 1, s = 2, v = 1 and

w = −1. The results are given in Table 5 .
Further, we investigate the beautiful zeros of the TEGHBP

eHB
(r,s)
n (u, v,w) = 0 by using computer. The zeros of the TEGHBP

eHB
(r,s)
n (u, v,w) = 0 for r = 1, s = 2, v = 1, w = −1 and u ∈ ℂ are plotted in Figure 3 .

In Figure 3 , we choose n = 10 (top-left), n = 20 (top-right), n = 30 (bottom-left) and n = 40 (bottom-right).

Using computers it has been checked for several values of n that for b, d ∈ ℝ and u ∈ ℂ,
eHB

(r,s)
n (u, b, d) has Im(u) = 0

reflection symmetry. However,
eHB

(r,s)
n (u, b, d) has not Re(u) = a reflection symmetry (see Figure 4 ). But, it still remains

unknown whether this is true or not for all values n.
Next, we plot the real zeros of the TEGHBP

eHB
(r,s)
n (u, v,w) = 0 for r = 1, s = 2, v = 1, w = −1, u ∈ ℝ and 1 ≤ n ≤ 20

in Figure 5 .
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TABLE 4 Numbers of real and complex zeros of
eHB

(r,s)
n (u, v,w) = 0.

Degree n Number of Real Zeros Number of Complex Zeros

1 1 0

2 2 0

3 3 0

4 2 2

5 1 4

6 2 4

7 3 4

TABLE 5 Approximate solutions of
eHB

(r,s)
n (u, v,w) = 0

.

Degree n Real Roots Complex Roots

1 −0.5 –

2 −1.5408, 0.5408 –

3 −2.5551, 0.8149, 0.24014 –

4 −3.0015, − 1.9976 1.4996 − 1.3223 i, 1.4996 + 1.3223 i

5 −0.5218 −3.3166 − 0.8748 i, −3.31662 + 0.8748 i,
2.3275 − 2.0808 i, 2.3275 + 2.0808 i

6 −1.7873, 0.5408 −3.9641 − 1.4325 i, −3.9641 + 1.4325 i,
3.0873 − 2.8173 i, 3.0873 + 2.8173 i

7 −3.3141, 0.2401, 0.8149 −4.4455 − 2.0174 i, −4.4455 + 2.0174 i,
3.8250 − 3.5428 i, 3.8250 + 3.5428 i

Stacks of zeros of TEGHBP
eHB

(r,s)
n (u, v,w) = 0 for r = 1, s = 2, v = 1, w = −1 and 1 ≤ n ≤ 20 form a 3-D structure and

are presented in Figure 6 .
We expect that the research in this direction will be a new approach using numerical computations for the study of the

TEGHAP
eHA

(r,s)
n (u, v,w). The figures presented here gives an unrestricted ability to carry out visual mathematical examinations

of the behaviour of TEGHAP
eHA

(r,s)
n (u, v,w). The methodology presented in this research work is general and opens new

prospect to deal with other convoluted class of special polynomials. The results established in this research work may find
several applications in solving the existing as well as new emerging problems of certain branches of mathematics, physics and
engineering.
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FIGURE 3 Zeros of TEGHBP
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n (u, v,w) = 0.

-20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

Re HuL

Im
Hu
L

FIGURE 4
eHB

(r,s)
50 (u, b, d) has Im(u) = 0 reflection symmetry.
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