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Abstract. We are interested in defining new energy functionals and
solving them by using the variational approach method. That is, we aim
to define a new class of elastic curves in the three-dimensional ordinary
space. We further improve an alternative method to find critical points of
the bending energy functionals acting on a class of magnetic curves. Then,
we classify these critical curves as elastic magnetic curves of the Frenet-
Serret vector family. Moreover, we investigate the dynamics of the elastic
magnetic curves of ferromagnetic and superparamagnetic models and discuss
their numerical and analytical analysis.
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1 Introduction

The research of elastic curves connects two traditional subjects; the me-
chanics of solids and the theory of curves. They were studied by Born,
Kirchhoff, Euler, Bernoulli family, Galileo, and many others. Their effort
played a crucial role in the improvement of the calculus of variations and
elliptic functions.

In 1691, J. Bernoulli attempted to formulate the bending deformation of
an ideal elastic rod with uniform density and circular cross-sections. Then,
D. Bernoulli showed that the thin elastic rod could be bent along the cen-
terline of the rod unless it has no twist so that the centerline is represented
by a simple curve. As a result, they suggested defining elastic curves as
the critical points of the bending energy functionals. Later, L. Euler [1]
applied the least action principle to the variational problem suggested by
Bernoulli’s and managed to classify the untwisted planar elastica explicitly.
Kirchhoff has made important contributions to the problem by modeling a



thin elastic rod subjecting to both twisting and bending. In 1910, Radon
[2] investigated the elastica in the three-dimensional space for the first time.
In this setting, more recently, Langer and Singer [3] gave a new variational
approach of symmetric and uniform Kirchhoff elastic rod in equilibrium.
They proved the existence of closed free elastic curves in a compact Rie-
mannian manifold and also present the classification of these curves in a
two-dimensional space structure [4]. Singer [5] compiled a series of lectures
on the variational problem of the Kirchhoff elastic rod and the Euler elastica
in the three-dimensional ordinary space and Riemannian manifolds. In his
work, he defined both the Hamiltonian and the Lagrangian characterizations
of the rod to test its integrability.

The Bernoulli-Euler-Kirchhoff model of elastica has also emerged as a
favorable tool in the research of geodesics and DNA molecule besides other
higher dimensional variational problems in the study of submanifolds, flu-
ids, relativity, plasmas, etc [6 — 11]. Moreover, it contributes to investigate
a deeper understanding of the physical and geometric model of the Hall ef-
fect [12]. It also gives a useful connection between the integrable evolution
equations and associated geometric evolution problems including localized
induction equation, Betchov-Da Rios equation, binormal motion, Hasimoto
evolution, etc. [13 — 18].

Even though the subject of elastica has been overwhelmingly studied
more than two centuries, there still exist some ambiguities for the entire
generalization of the concept. For example, equilibrium problems for the
large deformation and planar deformation remain not completely figured
out. In some cases, the geometric features carried by the configuration of
the thin elastic rod are not fully adaptable to the variational problem due
to the intuitive or false parametrization.

Based on the recent studies and experiments, in this manuscript, we
define a new kind of bending energy functionals and attempt to compute
their critical points. To be more specific, we focus on obtaining extremals
of the total squared curvature, the sum of the total squared curvature and
torsion, the total squared torsion among curves and magnetic curves having
the same boundary conditions and length.

The manuscript is organized as follows. In Section 2, we define n—elastic
curves and b—elastic curves as the critical points of the normal and bi-
normal bending energy functionals satisfying corresponding Euler-Lagrange
equations with suitable boundary conditions in the three-dimensional or-
dinary space. In Section 3, we develop an alternative method to obtain
critical points of the bending energy functionals acting on a class of mag-
netic curves by revealing the surprising connection between the variational



formula of the energy functionals and Lorentz force operator of magnetic
curves. As a result, we describe elastic magnetic curves of the Frenet-Serret
vector family, which are called as the t—elastic magnetic curves, n—elastic
magnetic curves, b—elastic magnetic curves, respectively. We also obtain
a new class of Killing vector fields and some fundamental results for both
cases. In Section 4, we focus on the dynamics of the elastic magnetic curves
of ferromagnetic and superparamagnetic models. In particular, we compute
the total energy of the elastic magnetic curves, which are exposed to inter-
nal magnetic torque and moment due to the action of the magnetic field.
In Section 5, we discuss the numerical and analytical analysis of the elastic
magnetic curves and related geometric invariants, which are obtained by
solving the associated Euler-Lagrange differential equations. In Section 6,
we finalize the manuscript by noting that the model of the elastic magnetic
curves has a number of rather intriguing features which may be examined
later.

2 Developing a variational approach of a new kind
of elasticae

An elastica or elastic curve is the critical point of the bending energy func-
tional

g (v) = /(/<a2 +9)ds, (1)
v

where the curvature of the curve v is represented by x and the constraint of
the length of the curve is given by 4. If § = 0 critical points of the functional
are called elasticae or free elastic curves and Eq. (1) is categorized into a
free model. On the other hand, if § # 0 these points are called J—elasticae
and Eq. (1) is categorized into a constrained model. A generalization of this
energy functional and associated variational approach has been studied by
considering the family

B (7) = / U () ds 2)
Y

acting on the curve ~. Here, U (k) denotes an arbitrary smooth function
along «. For appropriate selections of U (k) critical points of Eq. (2) con-
tain closed elasticae enclosing a fixed area, elasticae circular at rest, classical
elasticae, geodesics, etc. A family of bending energy functionals has aston-
ishing applications in Mathematics to the research of manifolds, where they



provide efficient ways to generate new algorithms and submanifolds; in Bio-
physics to the theory of vesicles and membranes; in Physics to the study of
modeling of p—branes and relativistic particles [11].

In this section, we are interested in defining new energy functionals and
solving them by using the variational approach method. Thus, we aim to
build a new kind of elastic curves lying in the three-dimensional ordinary
space characterized by the usual metric, which will be denoted by (E3, -).

In the following, we eventually define energy functionals acting on a
certain space of smooth curves with fixed length and boundary conditions
in (E3, -). Prior to these definitions, we firstly describe the space of regular
unit speed curves of (E3, ) in the following manner

POt = {79 : [07 1] - E37 V(q) =¢€, q¢€ {0’ 1}7 ”?93(3)H =1, Vse [07 1]}

Then, we can naturally construct the set of unit speed orthonormal Frenet-
Serret vectors as follows

1
¢ (u) = {t,n,b ¥ € $°°* such that Js =t, —Js=mn, t x n = b},
K

where ¢? € E3, ¢ € {0,1}, are arbitrary points of E? and k # 0 Vs €
[0, 1]. The subscript s denotes differentiation with respect to arc-length. The
following equations are known as Frenet-Serret equations and they satisfy

ts = kn, n, = —kt +7b, by = —7n, (3)
where x is the curvature and 7 is the torsion function of the curve ~. If we
consider a variation of the curve v, that is v¢(s) = 7 (¢, 8) : (—w,w) x [ —E3
with v (0,s) = ~y(s), then associated variational vector field along the curve
«v is described by B (s) = B(e,s) = (0v/0¢) (0,s). We will also take B =
B(e,s),t=t(e,s), k=r(es), etc., with trivial meaning.

Case 1: In the first case, we consider the following bending energy
functional described on a family of regular unit speed curves ¢® in E3.
Let ®0 : ¢%® (u) — R is given by

1 [° 1 [°
¥ () =5 [ Iltas = [ s (1)

where v, = t and v € ¢°“'. From the Lagrange principle, one can consider
the following identity corresponding to Eq. (4) for some pointwise multiplier
or Lagrange multiplier ©

1

¥ (t) = 5 [ (el + ©(11e1? - D), )
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Thus, under the above notation and conditions, we can define the variational
vector field B along the curve 7 as follows

d
%° (B) = @@5 (t + €Bs) |e=o = 0. (6)

So, the first variational formula is computed by

1o [¢
0 = —— [ (IIts + Bss||> + O(||t+eBs||* — 1))ds |e—o ,
286 0
0 = /(ts-Bss—i—@(t-Bs))ds. (1)
0

Then, if we use the integration by parts formula, we have

S
0 = [ts-Bs + (Ot — ts5) B8] + / E - Bds,
0
where E = ts5s — (Ot)s is called the Euler-Lagrange (££) equation. Thus,
a critical curve of ®° is characterized by the £L-equation provided E =0.
Solving the (££) —equation is not a trivial task even in the ordinary space.
In order to assert that the idea of using Noether’s theorem in combination
with Killing vector fields along the curve v has been developed to facili-
tate the computation of the integral. In particular, we have the following
constant vector along the curve ~y

J =t, — Ot. (8)

In order to compute the critical curve of ®° (t) associated with (£L£) —equation,
we differentiate constant vector field J to get J; = 0. In other words, v is a
critical curve iff

3 J
I€55+%—I€T2—§:0, KTs + 2ksT = 0, (9)
where © = —3x2 4 S, for some constant § [5].

Definition 2.1. A regular unit speed curve v € ¢°°! in E3 is called an
elastica or t—elastic curve if the (££) —equation (9) is satisfied [5].

Theorem 2.2. If a regular unit speed curve v € ¢! is an elastica in
E3 then the constant vector fields J and I defined in Eq. (10) are Killing
fields along the curve ~

J:ﬁz—é

t+rsn+r7Tb, I =kb =A + yxJ, (10)



where A is an arbitrary constant vector field [5].

Corollary 2.3. The associated Killing vector fields J and I defined
along v are commutative.

Proof. It is obvious from the fact that [J,I] = 0.

Case 2 : In the second case, we define the following normal bending
energy functional described on a family of regular unit speed curves ¢! in
E3. Let ®™ : ¢%° (u) — R is given by

1 [° 1 [*
pon (n) = 2/0 Hnsﬂzds = 2/0 (/4:2 +T2)d8, (11)

vs = t, %fysz n and v € ¢““. From the Lagrange principle, one can con-
sider the following identity corresponding to Eq. (11) for some normal
Lagrange multiplier ©"

¥ (n) = 5 [ (Inal? +©"(In? - D)ds. (12)

Thus, under the above notation and conditions, we can define the variational
vector field B" along the curve v as follows

B}
dP°" (B™) = Eqﬁ" (0 + eB?) =0 = 0. (13)

So, the first variational formula is computed by

1o [¢

0 = o [ (s +eBL]* +0"(IIn+eBy||* —1))ds | ,
286 0

0 = / (ns - B, + ©"(n- BY))ds. (14)
0

Then, if we use the integration by parts formula, we have

S
0 = [nsB 4+ (0"n — ng,)B"|; + /0 E" - B"ds,
where E"= n,g; — (©™n); is called the normal Euler-Lagrange (££") equa-
tion. Thus, a critical curve of ®" is characterized by the £L£"-equation
provided E"=0. Solving the (££") —equation is not a trivial task even in
the ordinary space. In order to assert that the idea of using Noether’s the-
orem in combination with Killing vector fields along the curve v has been



developed to facilitate the computation of the integral. In particular, we
have the following constant vector along the curve

J'=ns — O"n. (15)

In order to compute the critical curve of ®™ (n) associated with (£ £™) —equation,
we differentiate constant vector field J” to get J7 = 0. In other words, v is
a critical curve iff

Kss + Tss = (K+T) (I<J2 +72 4+ @”) , Thss — KTgs = 0, (16)

n
where O™ = —%/ﬁz — %7‘2 + %, for some constant ¢".

Arc-ength (s)

Figure 1. The prototypical evolution of the n—elastic curve.

Figure 1 shows the variation of the evolution of the n—elastic curve with
certain values of k, 7, and §".

Definition 2.4. A regular unit speed curve v € ¢%° in E? is called a
normal elastica or n—elastic curve if the (€L£™) —equation (16) is satisfied.

Theorem 2.5. If a regular unit speed curve v € ¢ is a normal
elastica in E3 then the constant vector fields J* and I" defined in Eq. (17)
are Killing fields along the curve ~y

K24 72— 6"

Jn: _Hst—i_fn‘i‘sty In:Tn :An_’yXJn7 (17)

where A" is an arbitrary constant vector field.
Proof. The proof is obvious if one considers the fact that the variational

vector is a symmetry and restriction of a rotation field, in which details can
be found in Noether’s theorem.



Corollary 2.6. The associated Killing vector fields J* and I" defined
along v are commutative.

Proof. It is obvious from the fact that [J",I"] = 0.

Case 3: In the third case, we define the following binormal bending
energy functional described on a family of regular unit speed curves ¢! in
E3. Let ®% : ¢% (u) — R is given by

1 [* 1 [
o (b) = 5 [ bufPds =5 [ s (18)
2 Jy 2y

v, = t, %%: n, t xn=D>b, and v € ¢*°. From the Lagrange principle,
one can consider the following identity corresponding to Eq. (18) for some
binormal Lagrange multiplier ©°

¥ (0) = 5 [ (bl + 67(b]* - 1)ds. (19)

Thus, under the above notation and conditions, we can define the variational
vector field B along the curve v as follows

907(B) = 061>+ )| =g = 0. (20)

So, the first variational formula is computed by

10 [*
0_286/0(

0 = /s(bs.B§8+@b(b-Bg))dS. (21)
0

2

2
by + B, +@b(Hb+eB§ ~1))ds |eo |

Then, if we use the integration by parts formula, we have

S
0 = [bs-B2 + (6°b — bys)B]S + / E’ . BYds,

0
where EV= b, — (O’b), is called the binormal Euler-Lagrange (5 [,b) equa-
tion. Thus, a critical curve of ®% is characterized by the £L£-equation
provided E*=0. Solving the (Eﬁb) —equation is not a trivial task even in
the ordinary space. In order to assert that the idea of using Noether’s the-
orem in combination with Killing vector fields along the curve v has been



developed to facilitate the computation of the integral. In particular, we
have the following constant vector along the curve

J’=b,, — @%D. (22)

In order to compute the critical curve of ®°° (b) associated with (5 Eb) —equation,
we differentiate constant vector field J* to get J% = 0. In other words, v is
a critical curve iff

Tss — T(HQ + 7% + @b) =0, 2rTs + ks =0, (23)

b
where ©F = —%7'2 + %, for some constant &°.

50 100 150

-50 0
Arc-length (s)

Figure 2. The prototypical evolution of the b—elastic curve.

Figure 2 shows the variation of the evolution of the b—elastic curve with
certain values of &, 7, and 4°.

Definition 2.7. A regular unit speed curve v € ¢®° in |3 is called a
binormal elastica or b—elastic curve if the (£ [,b) —equation (23) is satisfied.

Theorem 2.8. If a regular unit speed curve v € ¢®° is a binormal
elastica in B3 then the constant vector fields J® and I? defined in Eq. (24)
are Killing fields along the curve ~

24

;b I’=7b =A"—yxJ°, (24)

Jb:m7t+73n+

where A” is an arbitrary constant vector field.

Proof. The proof is obvious if one considers the fact that variational
vector is a symmetry and restriction of a rotation field, in which details can
be found in Noether’s theorem.



Corollary 2.9. The associated Killing vector fields J* and I? defined
along v are commutative.

Proof. It is obvious from the fact that [Jb, Ib] =0.

3 Characterizing a geometry of elasticae of mag-
netic curves

In this section, we create a geometric model of the elastic magnetic curves
and classify corresponding Euler-Lagrange equations satisfied by these curves.
The model is based on solving the critical curves belonging to special bending
energy functional paying close attention to magnetic curves and associated
magnetic fields in (E3, -). To sum up, we not only construct a theoretical
model to describe a new example of elasticae, but we also develop a math-
ematical tool for investigating physical parameters on the dynamics of a
magnetically driven particle having an elastic feature.

In physics, the characterization of magnetic curves is given by the motion
of a point charged particle of the associated magnetic field F* in (E3, -).
That is, a regular unit speed curve v in the three-dimensional ordinary space
with the usual metric is called a magnetic curve of (E3, -, F*) if the tangent
vector of v satisfies the following second-order non-linear Lorentz equation

V’st}/s = 0-('75)7 (25)

where V is the Levi-Civita connection of the given metric and o is the skew-
symmetric Lorentz force operator. On the other hand, in geometry, magnetic
curves are considered as local critical points of the following functional

Ly,= /(vs “Ys + €75)ds, (26)
.

where v € ¢ F* = de. Based on these two distinct approaches, it has
been investigated three important classes of magnetic curves for a given
magnetic field in (E3, -) [12].

Definition 3.1. Let v € ¢, t €¢® (u) and F be a magnetic field
in (E3, -). 7 is called a magnetic curve if it satisfies

V..t =o(t) = Fxt, (27)

10



and F =¢t +xb such that
o (t) = kn, o(n) = —kt+sb, o (b) = —¢n,
where ¢ is an arbitrary non-zero smooth function defined along v [12].

Definition 3.2. Let v € ¢*°, n €¢®“ (u) and F" be a magnetic field
in (B3, -). 7 is called an n—magnetic curve if it satisfies

V,n=o(n)=F"xn, (28)
and F"=7t—an +kb such that
o (t) = kn+ab, o(n) = —kt+7b, o (b) = —at—7n,
where « is an arbitrary non-zero smooth function defined along v [19].

Definition 3.3. Let v € ¢*“', b €¢®® (u) and F? be a magnetic field
in (B3, -). 7 is called a b—magnetic curve if it satisfies

V.. b=a(b) = F’xb, (29)
and F’=rt+uvb such that
o (t) =vn, o(n) = —vt+7b, o (b) = —7n,
where v is an arbitrary non-zero smooth function defined along ~ [19] .

Below, we present a new method to find the minimizer of the bending
energy functionals acting on a class of magnetic curves. Even though the
traditional approach is applicable for that case, we will not prefer to use
it for a couple of reasons. As is known, in the traditional approach, the
solution of the critical curves acting on the given integral is computed by
involving integration by parts, which leads to classical ££-equation. In most
cases, however, this equation looks intimidating and solving the equation re-
quires a heavy workload and hard work even for the least complicated space
and metric structures. However, the new method introduces a nice trick
to manipulate the bending energy functionals and finally allows investigat-
ing the critical curves together with their intrinsic properties in a simpler
manner. According to this method, the choice of the associated variational
vector field along the magnetic curve is not arbitrary. So, this selection
establishes a remarkable correlation between the £L-equation and Lorentz
force operator of magnetic curves. All in all, we determine the minimizer of

11



the bending energy functionals on a class of magnetic curves explicitly by
expending less effort and producing more efficient output.

Case 1 : In the first case, we suppose that v € ¢ is a magnetic curve
of the magnetic field F in (E3, -). Now, let us consider the bending energy
functional given by Egs. (4,5)

1

¥ ()= 5 | (eI + Ot - 1))as. (30)

If magnetic vector field F = F (e, s) is chosen as the variational vector field,
then we obtain the following equation of the variation of the magnetic curve

N
0 _/ (0(t) - Fos + O(t - Fo))ds. (31)
0

If we use the definition of magnetic curves then Eq. (31) is written by
0= / t(Fss X F + OF;)ds. (32)
0

Thus, Eq. (32) holds when the Lagrange multiplier satisfies the following
identity

f’
O = "2 (F X Fss). (33)
1 sl *
Then, by a straightforward computation, it is obtained that
1
0 = ((26sk + KsS — 2RsT (34)

V(ss)? + 82(s = 7)2 + (s)?
—Tsk)(KsS — ssk) + k(s — 7)(sssk — k(s — T)(/@2 —GT) + KssS))-

Theorem 3.4. A magnetic curve v of the magnetic field F in (E?, ) is
called as a t—elastic magnetic curve if the following Euler-Lagrange equation
is satisfied

O(ss + ks) = (¢ — K) (265K + RsS — 2KsT — T5K),
Sssk — ksss = k(s — 7)(© + K2+ ST),

where © is given by Eq. (34).

12



Proof. It can be proved by direct observation of Eqgs. (30 — 34).

Trajectories obtained as images of t-elastic magnetic curves on which they lie into magnetic field =

m
o
0.6 ; 4 0.9
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15 1 o5 o 0s 1 15 m

Figure 3. The shape of the t—elastic magnetic curve.

Figure 3 shows the shapes of the t—elastic magnetic curve for appropriate
values of the k, 7, and «.

Proposition 3.5. If v is a t—elastic magnetic curve of the magnetic
field F in (E3, -) then followings are Killing magnetic fields

J7"=(—k* — O©) t+rsn+rTb, I"=Kkb =A"+yxJ™, (35)
where A™ is an arbitrary constant vector field and © is given by Eq. (34).

Proof. The proof is obvious if one considers the fact that the magnetic
variational vector is a symmetry and restriction of a rotation field.

Corollary 3.6. The associated magnetic Killing vector fields J™ and
I'" defined along the t—elastic magnetic curve v are commutative.

Proof. It is obvious from the fact that [J”, I™] = 0.

Case 2 : In the second case, we suppose that v € ¢! is an n—magnetic
curve of the magnetic field 7" in (E?, -). Now, let us consider the normal
bending energy functional given by Egs. (11,12)

¥ (n) = 3 [ (Inel? + "(In? - D)ds. (36)

If magnetic vector field F"= F" (¢,s) is chosen as the variational vec-
tor field, then we obtain the following equation of the variation of the
n—magnetic curve

0= /S((U(n) FT 4 0"(n - FM))ds, (37)
0

13



If we use the definition of n—magnetic curves then Eq. (37) is written by
S
0— / n(F x F" + O"F7)ds. (39)
0

Thus, Eq. (38) holds when the normal Lagrange multiplier satisfies the
following identity

]:'n
0" = ——Z—(F" x F1). (39)
72l >
Then, by a straightforward computation, it is obtained that
1
or = ((1s + ar)(2asar

V(s +ar)? + (as)? + (—aT + k)2

7% — Kes — Tok? — QRS + Qesh — QKT + KsKT)
—045(2%7'2 + TsQT — KgsT 4 Tssk + 205k% + Kskar)

+(—aT + ko) (TshT + ak?T — ageT + a1 — K2 (40)

+Ts + 2050k + I{SOZQ)).

Theorem 3.7. An n—magnetic curve v of the magnetic field F" in
(E3, -) is called as an n—elastic magnetic curve if the following Euler-
Lagrange equation is satisfied

O"(ks +7s +a(k — 7)) = (ks + T5) (a2 + KT) + (K — 7) (g5 + QRT
—04(,%2 + kT +72) + 2050(k + 7) — o (Kgs — Tss) — KsT2 — Tsk2,
KgsT — Tgsh — QgO" = 20zs(/12 + 72) + a(ksk + TsT),
where O" is given by Eq. (40).
Proof. It can be proved by direct observation of Egs. (36 — 40).

Trajectories obtained as images of n-elastic magnetic curves on which they lie into magnetic field 7"

m

1.2}
2 15 1 0.5 0 05 b 15 m

Figure 4. The shape of the n—elastic magnetic curve.
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Figure 4 shows the shapes of the n—elastic magnetic curve for appropriate
values of the x, 7, and «.

Proposition 3.8. If v is an n—elastic magnetic curve of the magnetic
field 7™ in (E3, -) then followings are Killing magnetic fields

J'm= _ gt— (k% + 72 + O")n+1,b, I"=kb =A"" 4y x I, (41)
where A™™ is an arbitrary constant vector field and ©" is given by Eq. (40).

Proof. The proof is obvious if one considers the fact that the magnetic
variational vector is a symmetry and restriction of a rotation field.

Corollary 3.9. The associated magnetic Killing vector fields J™™ and
I defined along the n—elastic magnetic curve v are commutative.

Proof. It is obvious from the fact that [J™ I""] = 0.

Case 3 : In the third case, we suppose that v € ¢°°°! is a b—magnetic
curve of the magnetic field F? in (E3, -). Now, let us consider the binormal
bending energy functional given by Egs. (18,19)

B (b) = 5 [ (IbaI? + (b - )is. (42)

If magnetic vector field Fo= F° (e, s) is chosen as the variational vector field,
then we obtain the following equation of the variation of the b—magnetic
curve

0= / ((o(b) - FL + ©°(b - FD))ds. (43)
0
If we use the definition of b—magnetic curves then Eq. (43) is written by
0= / b(FL, x F* 4+ OV FP)ds. (44)
0

Thus, Eq. (44) holds when the binormal Lagrange multiplier satisfies the
following identity

eb = ﬂ(fb x FL). (45)
172 >
Then, by a straightforward computation, it is obtained that
1
et = = (275K + KsT — T5V (46)

V()2 + 72k — )2 + (vs)
—20,7)(VsT — TsV) + T (K — 0) (Tosv — T (k — v) (T + VK) — TUs).

15



Theorem 3.10. A b—magnetic curve v of the magnetic field F? in
(E3, -) is called as a b—elastic magnetic curve if the following Euler-Lagrange
equation is satisfied

O (s +75) = (T —0)(2Tsk + KsT — T50 — 20,T),

TesU — Vs = T (k—0) (0" + 72 + vk),
where ©° is given by Eq. (46).

Proof. It can be proved by direct observation of Eqs. (42 — 46).

Trajectories obtained as images of b-elastic magnetic curves on which they lie into magnetic field 7

1.5 1 0.5 o 0.5 1 15 m

Figure 5. The shape of the b—elastic magnetic curve.

Figure 5 shows the shapes of the b—elastic magnetic curve for appropriate
values of the k, 7, and v.

Proposition 3.11. If v is a b—elastic magnetic curve of the magnetic
field F? in (E?, -) then followings are Killing magnetic fields

I =grt—7,n — (O° 4+ 7%)b, I"=kb =A""+yxJ"", (47)
where A”™ is an arbitrary constant vector field and ©° is given by Eq. (46).

Proof. The proof is obvious if one considers the fact that the magnetic
variational vector is a symmetry and restriction of a rotation field.

Corollary 3.12. The associated magnetic Killing vector fields J¥” and
I’ defined along the b—elastic magnetic curve v are commutative.

Proof. It is obvious from the fact that [J bm. Ibm] =0.

16



Before going on, it should be noted that in this section, we show that Th.
(3.4), Th. (3.7), and Th. (3.10) can be both considered as definitions of
t—elastic magnetic curves, n—elastic magnetic curves, b—elastic magnetic
curves or examples of critical curves of bending energy functional, normal
bending energy functional, and binormal bending energy functional given by
Eq. (4), Eq. (11), and Eq. (18), respectively. In this section, we also ob-
tain new Killing magnetic fields associated with each elastic magnetic curve.
These fields may contain significant features to deal with the correspond-
ing Landau-Hall problem and Hall-Killing effect since both concepts could
be explained by Euler-Lagrange equations and variational approach. Later
on, we will discuss the numerical and analytical analysis of Euler-Lagrange
equations of elastic magnetic curves by considering the geometric invariants
of each curve satisfying certain differential equation systems given by Th.
(3.4), Th. (3.7), and Th. (3.10) up to certain parameters.

4 Investigating the dynamics of elastic magnetic
curves

The model of elastic magnetic curves has attracted great interest in recent
years due to its expected impact on many research areas such as mechan-
ical properties of the interior of cells, micromechanical sensors, magnetic
microdevices, viscous fluid, and elastic linkers. This model also allows one
to define various physical concepts including the self-propelling features of
the curve in magnetic field, nonsynchronous and synchronous regimes of the
curve motion in the nonrotating or rotating field relying on the dynamics of
curves on several physical and mathematical parameters such as coefficient
of friction, frequency of magnetic field, magnetoelastic number, etc.

Elastic magnetic curves are mostly produced in laboratories while they
can be created theoretically. In this paper, as outlined in the previous sec-
tion, the characterization of a new kind of elastic magnetic curves has been
constructed successfully based on the extension of Euler-Lagrange equations
by including magnetic vector field terms into corresponding bending energy
functionals. In this section, we focus on the dynamics and behavior of the
elastic magnetic curves under the action of the elastic and magnetic energy
together with magnetic torque and moment in the ordinary space.

Case 1 : In the first case, let v € ¢! be a t—elastic magnetic curve of
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the magnetic field F in (E3, -) such that F =ct +xb and
o (t) = kn, o(n) = —kt+sb, o (b) = —¢n,

where o is the skew-symmetric Lorentz force operator. In the Frenet frame,
the bending elastic energy of the t—elastic magnetic v curve is computed by

S

B (£) = &, = % / W2ds, (48)
0

and the magnetic energy of the t—elastic magnetic curve 7 is computed by
S

£ = — | M| /t.fds. (49)
0

The above definitions of energy functionals are valid when ~ is assumed to be
inextensible. Therefore, the t—elastic magnetic curve is assumed to satisfy
the following functional in most applications

Es = 2/Z(s)ds. (50)

Moreover, in Eq. (49), the magnetic energy functional of the t—elastic
magnetic curve holds when ~ is ferromagnetic. This definition can also be
extended to the following formula

Erp = _/ﬂ2X292(1 +2m0) L (t-F)%ds + ¢, (51)
0

when v is assumed to be a superparamagnetic [20]. Here, M is the mag-
netic moment of ~y, x is the radius of the curvature of v, g is the magnetic
susceptibility, and c is a constant term. The total energy of the t—elastic
magnetic curve is given by £ = £.+ &, +Ex. Now, we aim to obtain magnetic
force and torque acting on the t—elastic magnetic curve by considering the
energy functionals given by Egs. (48 — 51).

In the case of the ferromagnetic model of the t—elastic magnetic curve,
the torque is calculated by the following formula

T = —%(0 (t) X Vo0 (£) x F, (52)
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where m is any positive scalar. A straightforward calculation yields that

T :%3(7 —n. (53)
The torque acting on the local element of the t—elastic magnetic curve is
also obtained as follows

T=MxF. (54)

Hence, we can obtain the magnetic moment M along the t—elastic magnetic
curve by considering Egs. (53,54) in the following manner

m 5,6, T
M =—r*(Zt+-b), 55
ey (55)
where both k£ # 0 and ¢ # 0 along v. Now, if we take into account the
well-known formula of the magnetic force acting on the t—elastic magnetic
curve then the force G is computed by

G = —qrn, (56)
where ¢ is a non-zero scalar. Finally, let us consider the following identity
g - —Vgst + Et‘i’gr, (57)

where G, = — ||[M|| F. If we consider Egs. (52 — 56) and equate the respec-
tive coefficients of vectors t,n,b in Eq. (57) then it is obtained that

2 2 3 2 2
m S T ks 1 K S T
Y= —r4 Rk s, =, ==y 58
2gli2§2ql€m 27\ k2 G2 (58)
Thus, we not only compute the inextensibility coefficient > but we also
determine the scalars m and ¢ in terms of the curvature and torsion functions
of the t—elastic magnetic curve.
In the case of the superparamagnetic model of the t—elastic magnetic
curve we have 5 99
2w x40
=—(t-F)-F. 59

From Egs. (52 — 57,59) we have following equalities

22y 2 g
14270’

27T2x292 Ks T
E:—[Q2+7§2’ :—S’z:

14 27mp K
where 1 4+ 27m90 # 0, K # 0, and ¢ # 0.
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Teorem 4.1. Let v € ¢! be a t—elastic magnetic curve of the mag-
netic field F in (E3, -). In the case of the ferromagnetic model, the total
energy of the t—elastic magnetic curve is given by

S S
[ 2 2 [ 2 2
N m g S T m 3 S T
g——Eﬁl R2—I—g2/gd8+4/lig ?‘l—?dS, (61)
0 0

3

= _k 2—22+Z—§,/<;7é0,andg750.

where ¢ = ==, % —5-

Proof. It is obvious from Egs. (48 — 50,52 — 58).

Configuration of the distribution of energy functionals of t-elastic magnetic curves.
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Figure 6. The energy of the t—elastic magnetic curve.

Figure 6 shows the energy variation of the t—elastic magnetic curve for
appropriate values of the x, 7, m, and .

Teorem 4.2. Let v € ¢! be a t—elastic magnetic curve of the mag-
netic field F in (E3, -). In the case of the superparamagnetic model, the
total energy of the elastic magnetic curve is given by

€ =c, (62)

where ¢ = 52, T = —Qi’éiif, k #0,¢#0, and c is a constant.
Proof. It is obvious from Egs. (48,50 — 57,59, 60) .

Case 2 : In the second case, let v € ¢ be an n—elastic magnetic
curve of the magnetic field 7" in (E3, -) such that F"=7t—amn +xb and

o (t) = kn+ab, o(n) = —kt+7b, o (b) = —at—7n,
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where o is the skew-symmetric Lorentz force operator. In the Frenet frame,
the normal bending elastic energy of the n—elastic magnetic curve 7 is com-
puted by

S

@ (n) = €7 = | / (k2 + 72)ds, (63)
0

and the normal magnetic energy of the n—elastic magnetic curve 7y is com-
puted by

£ — — | M / n-Fds, (64)
0

The above definitions of energy functionals are valid when « is assumed to be
inextensible. Therefore, the n—elastic magnetic curve is assumed to satisfy
the following functional in most applications

S

£ = % / S (5)ds. (65)

0

Moreover, in Eq. (64), normal magnetic energy functional of the n—elastic
magnetic curve holds when « is a normal ferromagnetic. This definition can
be extended to the following formula

en = - / 72201+ 2m0) (- F")2ds + ¢, (66)
0

when ~ is assumed to be a normal superparamagnetic. Here, M" is the
normal magnetic moment of v, x is the radius of the curvature of v, g is the
magnetic susceptibility, and ¢” is a constant term. The total energy of the
n—elastic magnetic curve is given by £"= &} + £ 4+ £3. Now, we aim to
obtain normal magnetic force and torque acting on the n—elastic magnetic
curve by considering the energy functionals given by Egs. (63 — 66).

In the case of the normal ferromagnetic model of the n—elastic magnetic
curve, the normal torque is calculated by the following formula

mn

T"= —7(0 (n) x V, o (n)) x F", (67)

where m™ is any positive scalar. A straightforward calculation yields that

n n

T"="(an(i? 4 7) = A(k7), )+ 7o (—ar (5 4+ 7) + (k) )b, (68)
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The normal torque acting on the local element of the n—elastic magnetic
curve is also obtained as follows

Tr= M"xF™. (69)

Hence, we can obtain the normal magnetic moment M™ along the n—elastic
magnetic curve by considering Egs. (68,69) in the following manner

n_m7n 2 2 _("W)s mﬁ” 2 2,
M—2T((I€ +7) > )t+2n((/€ +77) "

)b, (70)

where o # 0 along . Now, if we take into account the well-known formula
of the normal magnetic force acting on the n—elastic magnetic curve then
the force G" is computed by

G" =q"(kt—7b), (71)
where ¢" is a non-zero scalar. Finally, let us consider the following identity
G" = _V'stn + X"n+G/", (72)

where G' = — ||[M"|| F". If we consider Egs. (67 —71) and equate the
respective coefficients of vectors t,n, b in Eq. (72) then it is obtained that

S = (2 ) — (72— (F&;)s)m’
%(HZ + 72— (IZ)S)\/ K2+ 72, (73)
"= :(/@2—1-72—(/2)8)\/&2—1—72,

2 (KsT — KTs)
(K2 4+ 72 — (ﬁ;)s) (1—kK)(k+T1)%

where 7 # £k, K #0, T #0, K2+712 # %, and « # 0. Thus, we not only
compute the inextensibility coefficient X" but we also determine the scalars
m'™ and ¢" in terms of the curvature and torsion functions of the n—elastic
magnetic curve.

In the case of the normal superparamagnetic model of the n—elastic

magnetic curve, we have

271_2 X2 92

n _ _
Gr = 14 2w

(n-F")- F". (74)
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From Egs. (67 — 72,74) we have following equalities

27T2X2Q2

2 2., 2
1+2m0" ¢" (K" +77) = (87),. (75)

Y= (k%12 +

where 1+ 27mp # 0.

Teorem 4.3. Let v € ¢*°® be an n—elastic magnetic curve of the
magnetic field 7" in (E3, -). In the case of the normal ferromagnetic model,
the total energy of the n—elastic magnetic curve is given by

& = n;n(/i+7)\/(f<c2+72—(m—)s)2/osads

(07

s

- [ S o err - Eopas o)

where ¢" and m™ are given by Eq. (73).

Proof. It is obvious from Egs. (63 — 65,67 — 73).

Configuration of the distribution of energy functionals of n-elastic magnetic curves.
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Figure 7. The energy of the n—elastic magnetic curve.

Figure 7 shows the energy variation of the n—elastic magnetic curve for
appropriate values of the x, 7, m™, and .

Teorem 4.4. Let v € ¢%°° be an n—elastic magnetic curve of the
magnetic field ™ in (E?, ). In the case of the normal superparamagnetic
model, the total energy of the n—elastic magnetic curve is given by

En=c", (77)

where ¢"(k? + 72) = (k7), and " is a constant.
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Proof. It is obvious from Egs. (63,65 — 72,74,75) .

Case 3 : In the third case, let v € ¢°°“! be a b—elastic magnetic curve
of the magnetic field 7 in (E3, -) such that F’=7t+uvb and

o (t) =vn, o(n) = —vt+7b, o (b) = —7n,

where v is the skew-symmetric Lorentz force operator. In the Frenet frame,
the binormal bending elastic energy of the b—elastic magnetic curve v is
computed by

s

1
P (b) =& = 3 / 72ds, (78)
0

and the binormal magnetic energy of the b—elastic magnetic curve =y is
computed by

g = HMbH /Sb-]-"bds. (79)
0

The above definitions of energy functionals are valid when « is assumed to be
inextensible. Therefore, the b—elastic magnetic curve is assumed to satisfy
the following functional in most applications

S

£ — % / S (s)ds. (80)

0

Moreover, in Eq. (79), binormal magnetic energy functional of the
b—elastic magnetic curve holds when ~ is a binormal ferromagnetic. This
definition can be extended to the following formula

&, = —/7r2x2g2(1 + 270) " H(b-F)2ds + ¢, (81)
0

when v is assumed to be a binormal superparamagnetic. Here, M? is the
binormal magnetic moment of v, x is the radius of the curvature of ~, ¢ is
the magnetic susceptibility, and ¢® is a constant term. The total energy of
the b—elastic magnetic curve is given by £b= €% + £ + &b Now, we aim to
obtain binormal magnetic force and torque acting on the b—elastic magnetic
curve by considering the energy functionals given by Egs. (78 — 81).
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In the case of the binormal ferromagnetic model of the b—elastic mag-
netic curve, the binormal torque is calculated by the following formula

b

T'= —"-(0 (b) x Vs,0 (b)) x 7, (82)
where m? is any positive scalar. A straightforward calculation yields that
b
Tb:%T3(E —v)n. (83)

The binormal torque acting on the local element of the b—elastic magnetic
curve is also obtained as follows

Th= MPxFP. (84)

Hence, we can obtain the binormal magnetic moment M? along the b—elastic
magnetic curve by considering Eqgs. (83,84) in the following manner

mb

K v
M= ——73(Zt + ~b), 85
- r3(Et+ Zb) (85)
both 7 # 0 and v # 0 along . Now, if we take into account the well-known
formula of the binormal magnetic force acting on the b—elastic magnetic

curve then the force G° is computed by
G* = ¢’rn, (86)
where ¢® is a non-zero scalar. Finally, let us consider the following identity
G"=-V2 b+ 5'b+4?, (87)

where G% = — ||MP|| Fb. If we consider Egs. (82— 86) and equate the
respective coefficients of vectors t,n, b in Eq. (87) then it is obtained that

2 V2

2 1 3
sh_ 2 M 3 KU Ts 70 |k +§- (88)

20T T b T Tk V2
Thus, we not only compute the inextensibility coefficient 3° but we also de-
termine the scalars m? and ¢® in terms of the curvature and torsion functions
of the b—elastic magnetic curve.

In the case of the binormal superparamagnetic model of the b—elastic
magnetic curve, we have

2,22

X9 4. 7). (89)

2w
1+ 2mp

Gl =
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From Egs. (82 — 87,89) we have following equalities
¥ =72 4 2m° X" 21)2, ¢ = E, - 727T2 it (90)
14 2mo T v 1+ 270"

where 1 4+ 2m90 # 0, 7 # 0, and v # 0.

Teorem 4.5. Let v € ¢*°®! be a b—elastic magnetic curve of the mag-
netic field 7 in (E?, -). In the case of the binormal ferromagnetic model,
the total energy of the b—elastic magnetic curve is given by

2 12 2
T oo o T
v
Whereqb:%, #:_;\/534'72’77&0’ k # 0 and v # 0.

Proof. It is obvious from Egs. (78 — 80,82 — 88).

Configuration of the distribution of energy functionals of b-elastic magnetic curves.
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Figure 8. The energy of b—elastic magnetic curve.

Figure 8 shows the energy variation of the b—elastic magnetic curve for
appropriate values of the k, 7, and v.

Teorem 4.6. Let 7 € ¢°°°! be a b—elastic magnetic curve of the mag-
netic field F° in (E?, -). In the case of the binormal superparamagnetic
model, the total energy of the b—elastic magnetic curve is given by

Eb=c, (91)

2.2 2 .
where ¢* = s, £ = Zﬁ%g , T#0,v#0, and ¥ is a constant.

Proof. It is obvious from Egs. (78,80 — 87,89,90) .
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5 Analytical solutions and numerical simulations
of elastic and elastic magnetic curves

In this section, we aim to obtain the analytical solutions and associated
numerical simulations of Euler-Lagrange equations satisfied by elastic or
elastic magnetic curves. We mainly consider a combined form of the Ado-
mian decomposition method and Laplacian transform method to solve these
nonlinear equations [21,12]. The combined technique provides to compute
the approximate solutions of the curvature functions belonging to elastic
and elastic magnetic curves. Thus, it gives a great opportunity for numer-
ical simulating of the analytical solutions of the Euler-Lagrange equations
calculated in the previous sections.

Here, we only solve the Euler-Lagrange equations satisfied by t—elastic
curve and t—elastic magnetic curve given by Def. 2.1 and Th. 3.4, respec-
ctively. Solutions of the other cases can be obtained by using the similar
argument and they are left to the reader.

Now, let us first consider the Euler-Lagrange equation satisfied by the
t—elastic curve as follows

3
Kss + % . — % = 0, (92)
KTs + 2ksT7 = 0, (93)

where 0 is a real valued constant. We can solve the Eq. (93) in the following
way

d d

dr _ _,ds

T K
which implies that

T = p1/<f2.

If we replace 7 = p1x~2 in the Eq. (92), we get the following identities

Ksst = —p1— = =0. (94)

Thus, we can consider the nonlinear problem given below

3

K K
S8 - 57 - = I
Kss + 5 5 ~P1= 0 (95)



If we take the Laplace transform method of both sides of the Eq. (95) then
we get that

3
22L[k] — zr(0) — K'(0) = —E[?] + gﬁ[m] + 1. (97)

The initial conditions of the Eq. (96) imply that

1 1 1 3 0 1
Following the algorithm, if we assume an infinite series solution is of the
(o)

form k = Z/@n, then we obtain that

n=0
SN U D R— »
5[72’%] =3 + 2 2225[7;)@71] + 2225[7;)/%] + o2 (99)

where the nonlinear operator f(k) = k3 is decomposed as in terms of the
Adomian polynomials. In general, we have

1 1
L = -4 =
[Ko] ~t
Llknt] = —iﬁ[iQ ]+ iﬁ[in [+ 2 n>0. (100)
n+1 = 9,2 Z n 9,2 ] n 527 = Y.
The first four Adomian polynomials for f(x) = s are given by
Qv = rp,
Ql = 3”%’{’17
Q2 = 3kKir2 + 3ok, (101)
Qs = 3/{%/{3 + 6ror1KRg + K3,

By operating with the Laplace inverse on both sides of the Eq. (100), we
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compute that

1 1
bl = 245
kg = 1+s,
Lln] = 5 LllQo] + oo Lino] + 2
K == —_—— _— K -
1 0 5 3~lrol + 3
1 1 3 6 6 6 .1 1 D1
= — — -+ =]+ = 102
922 [z 2 3+z4} 222[z+z2]+z2’ (102)
1.s2 3 st & § s 3
K1 = 5[54‘54‘*4‘20]"‘!‘*[*4‘6}4'3]717
1 1)
Llka) = —55LIQ) + 55 Lla] + 5,
Finally, the approximate solution is given by
K = Kot+K1+K+..
1.s2 3 st
=1 - = — 1
+ s 2[2+ +4+20] (103)
+§[f + S] + se1 +
A 6 SC1

In the case of the t—elastic magnetic curve, for the purpose of brevity, we
prefer to induce the Euler-Lagrange equation given by the Th. 3.4 to the
linear equation. Hence, we have the following special linear equations

gS + K/S - 0; (104)
Sssk — KgsS = 0. (105)

By using the Eq. (104), we have
K = Yo+ sys, (106)

= —sy3 — Y2+ ¥y, (107)

where y1, 2, y3 are constants of integration. For y1 = yo = y3 = 1, we
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have the following demonstraions of the functions x and .

Figure 9. The 2D graphic for the x of Egs. (104,105).

Figure 10. The 2D graphic for the ¢ of Egs. (104, 105).

Figures 9-10 show the 2D graphic of the numerical solutions of x and ¢ with
respect to obtained data.

6 Conclusion

The benign process of computing the critical curves of bending energy func-
tionals led to the research of an enormous family of elastic curves. This
significant process has been addressed by many researchers in a series of
seminar papers, conferences, research articles, and experimental studies. So
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far, the representation and analysis of critical curves of space curves have
been exploited by considering the classical variational approach. However,
in this manuscript, we mainly concentrate on finding the critical curves
of magnetic curves of a given magnetic field by improving an alternative
variational approach. Our approach deviates from traditional techniques
in the fact that the choice of the variational vector is not arbitrary and
it is also used the definition of the Lorentz force during the computation
process. This distinction leads to investigate surprising physically relevant
subjects known as ferromagnetic and superparamagnetic models of magnet-
ically driven elastic curves. This paper is a remarkable first step toward our
eventual aim of comprehending the complete generalization of the energy
functionals. In this manuscript, an evident omission is the large deforma-
tion of elastic curves including the twisting and stretching energy function-
als. We plan to concentrate on this issue for future research. This study also
plays an outstanding role to describe the elasticity of different types of mag-
netic curves such as frictional elastic magnetic curves, gravitational elastic
magnetic curves, elastic electromagnetic curves, etc. We aim to investigate
these curves in different structures to understand the distinct effect of the
deformations thoroughly including Minkowski spacetime, De-Sitter space-
time, and anti-De-Sitter spacetime, surfaces, manifolds, etc. We eventually
hope to give the geometric characterization of the elastic magnetic surface
and membranes formed by the evolution of the elastic magnetic curves and
strips.
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