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Abstract. In this paper, we mainly focus on the theory of evolution of
wave polarization in the normal direction of the curved path, which is as-
sumed to be the trajectory of the propagated light beam. The polarization
state of the wave is described by the unit complex transverse field com-
ponent by eliminating the longitudinal field component, which reduces the
dimension of the problem. A Coriolis term is also effectively used to describe
the relationship between the geometric phase and the parallel transport law
of the wave polarization vector of the evolving light beam in the normal
direction of the curved path. We further present a unified geometric inter-
pretation of the binormal evolution of the wave polarization vector in the
normal direction of the curved path via the nonlinear Schrodinger equation
of repulsive type. Finally, we conclude these discussions by investigating the
analytic solutions of the nonlinear Schrodinger equation of repulsive type,
which represents binormal evolution of the polarization vector in the normal
direction of the curved path trajectory, for some special cases by using the
traveling wave hypothesis approach.
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1 Introduction

The exploration of the geometric phase in the late of 1970s raised attention
in global geometrical and physical structures such as semiclassical equations
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of motion and topological monopoles with an emphasis on the evolution of
quantum particles. The semiclassical equations in quantum mechanics is
a counterpart of the geometrical optics approximation for the propagated
light wave in an inhomogeneous medium. Electromagnetic waves naturally
possess spin or polarization that causing the angular momentum transported
by light. The wave polarization and its geometric phase are also crucial
components to describe the optical Magnus effect or spin Hall effect of the
light beam [1− 10]. To measure the wave polarization and compute its
geometric phase it is important to choose an appropriate coordinate frame
having unit orthonormal vectors accompanying the light wave. This choice
also affects the gauge of the geometric potential and the Stokes parameters
at each point of the trajectory. Bliokh et al. managed to observe directly
the precession of the Stock vector and the spin Hall effect in the evolution
of light, which are perfectly agree with the theoretical predictions [11] .

The flow of vortex filaments or the motion of curves in the ordinary
space was firstly defined by Da Rios while he was examining the evolution
of one dimensional filament of vortices in an incompressible fluid. This study
leads to great interest and has been investigated from various perspectives
by many scientists. For instance, Hasimoto [12] calculated a direct corre-
lation between the nonlinear Schrodinger (NLS) equation and the vortex
flow. Lamb [13] improved a beautiful formulation that expanded this cor-
relation by including some other integrable equations. Later, Lakshmanan
[14] described a Hasimoto transformation to show the equivalence relation
between the Heisenberg ferromagnet model and the NLS equation in the or-
dinary space. The link between the sine-Gordon equation and the binormal
motion of curves was discovered by Mukherjee and Balakrishnan [15] . We
also showed that new kinds of binormal motions and related transformations
can be used to characterize the evolution of the electric and magnetic field
vectors on the monochromatic light wave coupling into an optical fiber and
their solutions of evolution equations are associated with the solutions of
the NLS type equations [16− 20] .

The paper is organized as follows. Section 2 gives a short introduction
to the geometric characterization of three-dimensional vector fields. It also
introduces the binormal evolution of the coordinate frame’s unit orthonor-
mal vectors accompanying the light wave. Section 3 deals with the various
aspect of the evolution of wave polarization vector in the normal direction
of the curved path including the geometric phase, Coriolis term, and paral-
lel transportation law. It also analyses a connection between the binormal
evolution of the polarization vector in the normal direction of the curved
path trajectory and the nonlinear Schrodinger equation of repulsive type.
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Here, we finally present a unique approach to solve the nonlinear differential
equation systems belonging to the binormal evolution of the wave polariza-
tion vector. In the final Section 4, we discuss fundamental geometric and
physical interpretations of the binormal Schrodinger evolution of the wave
polarization vector and mention the possible other applications.

2 Binormal motion of the coordinate frame’s vec-
tor along the curved path in the normal direc-
tion

In this introductory section, we recall some of the formulae which are used to
characterize a three-dimensional vector field and the geometry of curvature
and torsion of vector lines in terms of anholonomic coordinates. Assuming
that the light beam follows the curved path θ = θ (s, n, b) whose trajectory
corresponds to a three-dimensional space curve in the ordinary space, where
s is the distance along the s−lines of the curve in the tangential direction so
that unit tangent vector of s− lines is defined by

−→
t =

−→
t (s, n, b) = ∂θ

∂s , n is
the distance along the n− lines of the curve in the normal direction so that
unit tangent vector of n− lines is defined by −→n = −→n (s, n, b) = ∂θ

∂n , b is the
distance along the b−lines of the curve in the binormal direction so that unit

tangent vector of b − lines is defined by
−→
b =

−→
b (s, n, b) = ∂θ

∂b , the moving

trihedron of orthonormal unit vectors (
−→
t ,−→n ,

−→
b ) provides a platform for

investigating the intrinsic features of the light beam. Here,
−→
t denotes the

tangential vector, −→n denotes the normal vector, and
−→
b denotes the binormal

vector of the curved path θ. Directional derivatives of the moving trihedron

of the orthonormal unit vectors (
−→
t ,−→n ,

−→
b ) can be given by the extended
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Serret-Frenet relations in the following forms [21, 22] .

∂

∂s


−→
t
−→n
−→
b

 =

 0 κ 0
−κ 0 τ
0 −τ 0



−→
t
−→n
−→
b

 , (1)

∂

∂n


−→
t
−→n
−→
b

 =

 0 δns πb + τ

−δns 0 −
−→
b

− (πb + τ) div
−→
b 0



−→
t
−→n
−→
b

 , (2)

∂

∂b


−→
t
−→n
−→
b

 =

 0 − (πn + τ) δbs
(πn + τ) 0 κ+ div−→n
−δbs −

(
κ+ div−→n

)
0



−→
t
−→n
−→
b

 ,(3)

where δns = −→n ∂
∂n

−→
t and δbs =

−→
b ∂
∂b

−→
t . The gradient operator ∇ is expressed

by

∇ =
−→
t
∂

∂s
+−→n ∂

∂n
+
−→
b
∂

∂b
. (4)

Thus, other geometric quantities are computed by the vector analysis for-
mulae in the following manner.

div
−→
t = ∇ · −→t = δns + δbs, (5)

div−→n = ∇ · −→n = −κ+
−→
b · ∂
∂b
−→n , (6)

div
−→
b = ∇ ·

−→
b = −

−→
b · ∂

∂n
−→n , (7)

curl
−→
t = ∇×−→t = πs

−→
t + κ

−→
b , (8)

curl−→n = ∇×−→n = −(div
−→
b )
−→
t + πn

−→n + δns
−→
b , (9)

curl
−→
b = ∇×

−→
b = (κ+ div−→n )

−→
t −δbs−→n + πb

−→
b , (10)

where

πs = curl
−→
t ·−→t =

−→
b · ∂
∂n

−→
t −−→n · ∂

∂b

−→
t , (11)

πn = curl−→n ·−→n =
−→
t · ∂
∂b
−→n−τ, (12)

πb = curl
−→
b ·
−→
b =− τ −−→t · ∂

∂n

−→
b , (13)

which are called abnormalities of the
−→
t − field, −→n − field,

−→
b − field,

respectively.
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Now, we can define the binormal evolution of curved path θ (s, n, b; t) ,
which characterizes the trajectory of the light beam, in the normal direction.
For this purpose, we assume that the tangent vector of the curved path
θ (s, n, b; t) satisfies the following identity.

−→
t t (s, n, b; t) =

−→
t (s, n, b; t)× ∂2

∂n2
−→
t (s, n, b; t) . (14)

Thus the binormal evolution of the tangent vector of the curved path θ (s, n, b; t)
is induced to the following form by using Eqs. (2, 14) .

∂

∂t

−→
t (s, n, b; t) = (δnsdiv

−→
b (s, n, b; t)− ∂

∂n
(πb + τ))−→n (s, n, b; t)

+(
∂

∂n
δns + (πb + τ)div

−→
b (s, n, b; t))

−→
b (s, n, b; t) . (15)

Here, we can further compute the evolution of the normal and binormal vec-
tors of the curved path θ (s, n, b; t) . From the nature of the orthonormality
of Frenet-Serret vectors, it is canonically true that

−→
t (s, n, b; t) · −→n (s, n, b; t) = 0, (16)
−→
t (s, n, b; t) ·

−→
b (s, n, b; t) = 0, (17)

and

−→n (s, n, b; t) · −→n (s, n, b; t) = 1, (18)
−→
b (s, n, b; t) ·

−→
b (s, n, b; t) = 1. (19)

Thus, if we take the derivative of both identities in Eqs. (16, 17) and (18, 19)
with respect to t then it is obtained that

∂

∂t

−→
t (s, n, b; t) · −→n (s, n, b; t) = −−→t (s, n, b; t) · ∂

∂t
−→n (s, n, b; t) , (20)

∂

∂t

−→
t (s, n, b; t) ·

−→
b (s, n, b; t) = −−→t (s, n, b; t) · ∂

∂t

−→
b (s, n, b; t) , (21)

and

∂

∂t
−→n (s, n, b; t) · −→n (s, n, b; t) = 0, (22)

∂

∂t

−→
b (s, n, b; t) ·

−→
b (s, n, b; t) = 0. (23)
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Finally, we can construct the binormal evolution of Frenet-Serret vectors in
the normal direction as in the following form.

∂

∂t
−→n (s, n, b; t) = (−δnsdiv

−→
b (s, n, b; t) +

∂

∂n
(πb + τ))

−→
t (s, n, b; t)

+Λ
−→
b (s, n, b; t) , (24)

∂

∂t

−→
b (s, n, b; t) = (− ∂

∂n
δns − (πb + τ)div

−→
b (s, n, b; t))

−→
t (s, n, b; t)

−Λ−→n (s, n, b; t) , (25)

where Λ is a sufficiently smooth well-defined arbitrary function defined along
the curved path θ (s, n, b; t) . From now on, we will use following notations
for the t-parameter included vectors for the purpose of brevity and clarity.

−→
t =

−→
t (s, n, b; t) , −→n = −→n (s, n, b; t) ,

−→
b =

−→
b (s, n, b; t) . (26)

3 Evolution of the wave polarization along the curved
path in the normal direction

The evolution of electromagnetic vector waves requires advanced techniques
since it includes both external and internal degrees of freedom of the wave.

Geometrodynamical evolution equations of monochromatic electric field
−→
E

in a smooth inhomogeneous medium satisfies the following type of Maxwell
equations.

(λ20∇2 + n2)
−→
E − λ20∇(∇

−→
E ) = 0, (27)

where n2 = ε is the dielectric constant of the medium. The Eq. (27) has
almost similar interpretations with the Helmholz equation. However, Eq.
(27) involves wave polarization term different from the Helmholz equation,
which also makes the Eq. (27) non-diagonal. Thus, it is guaranteed that the
electric field of the polarized wave remains almost transverse with respect
to the momentum:

−→
E =

−→
E⊥ + E‖

−→
t ,
−→
E⊥ ⊥

−→
t ,

∣∣E‖∣∣� |E⊥| . (28)

Here,
−→
E⊥ is the projection of the electric field on the normal plane, E‖ =

−→
E
−→
t is the longitudinal component of the field, and

−→
t is the unit tangent
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vector of the ray trajectory. For the rest of the paper, we eliminate the lon-
gitudinal field component E‖ since the wave polarization is fundamentally

determined by the transverse field components
−→
E⊥. After a short introduc-

tory, we are ready to concentrate on computing the evolution of the wave
polarization vector in the normal direction.

In order to observe the evolution of the wave polarization the first im-
mediate action should be introduced a coordinate frame to describe the
evolution of the transverse field

−→
E⊥. We will consider the Frenet-Serret co-

ordinate frame whose orthonormal unit vectors are denoted by (
−→
t ,−→n ,

−→
b ).

Then it can be derived that (−→n ,
−→
b ) vectors provide an inherent basis for

linear polarizations:

−→
E⊥ = E+→$ + E−

→
$
∗
, $ =

−→n + i
−→
b√

2
, E± =

En ∓ iEb√
2

, (29)

where ∗ denotes the complex conjugate. As the unit tangent vector
−→
t varies

in the normal direction of the curved path in an inhomogeneous medium

the coordinate frame (
−→
t ,−→n ,

−→
b ) experiences a rotation with some angular

velocity n

→
Ω, which satisfies following identities.

∂

∂n

−→
t = n

→
Ω×−→t , ∂

∂n
−→n =n

→
Ω×−→n , ∂

∂n

−→
b =n

→
Ω×

−→
b , (30)

n

→
Ω = (

∂

∂n

−→
t · −→n )

−→
b + (

∂

∂n
−→n ·
−→
b )
−→
t + (

∂

∂n

−→
b · −→t )−→n . (31)

If we consider Eqs. (2, 30, 31) then the angular velocity vector is computed
by

n

→
Ω = (−div

−→
b )
−→
t − (πb + τ)−→n + δns

−→
b . (32)

Thus the longitudinal component of the angular velocity vector in the normal
direction is also computed by

n

→
Ω =n

→
Ω‖ ·
−→
t +
−→
t × ∂

∂n

−→
t , (33)

n

→
Ω‖ = −div

−→
b . Coriolis effect is known to be caused by the rotation of

the coordinate frame defined along the curved path. The Coriolis term is

determined by n

→
Ω × −→e and it can be considered to find differentiation of

the wave polarization field vector
(−→e ) in the normal direction of the curved

path that the light beam supposed to follow.

∂

∂n
−→e = (n

→
Ω−n)

→
Ω‖ ×−→e , (34)
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where −→e =
−→
E⊥
E⊥

. We will assume E⊥ = 1 for the rest of the paper due to the
simplicity reason. If we consider Eqs. (2, 28, 29, 32, 34) then it is obtained
that

∂

∂n
−→e = (k0ϕ0 + k1ϕ1)

−→
t , (35)

where

ϕ0 = − 1√
2
e−i

∫ n
0 div

−→
b dn(δns + i(πb + τ)), (36)

ϕ1 =
1√
2
ei

∫ n
0 div

−→
b dn(−δns + i(πb + τ)), (37)

Here we also calculate that

∂

∂n
E+ = −iE+div

−→
b k0,

∂

∂n
E− = iE−div

−→
b k1, (38)

which implies that

E+ = e−i
∫ n
0 div

−→
b dnk0, E

− = ei
∫ n
0 div

−→
b dnk1,

where k0, k1 are chosen as arbitrary constants and

∂

∂n
En = −Ebdiv

−→
b ,

∂

∂n
Eb = Endiv

−→
b . (39)

Eqs. (35− 40) has significant implications on estimating the polarization

measured in the ray-accompanying coordinate frame (
−→
t ,−→n ,

−→
b ) and de-

scribing the polarization dynamics. According to these equations, we firstly
arrive that −→e does not rotate locally around

−→
t in the normal direction and

it satisfies a new kind of parallel transportation law given below.

∂

∂n
−→e = −(−→e · ∂

∂n

−→
t )
−→
t . (40)

We also verify that polarization measured in the ray-accompanying (−→n ,
−→
b )

plane rotates by an angle ±div
−→
b , which is equal to the longitudinal compo-

nent of the angular velocity vector in the normal direction as we expected.

Thus, the divergence of binormal vector
−→
b characterizes local rotation of

polarization vector about the tangent vector
−→
t , and the geometric phase of

the polarization vector in the normal direction is

nΦ = σ

∫ n

0
div
−→
b dn, (41)
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where σ = ±1. Now, we will check the consequences of the binormal evo-
lution of the polarization vector in the normal direction along the curved
path. If we take into account Eqs. (2, 15, 24, 25, 36, 37) then the evolution of
the polarization vector in the normal direction with respect to t parameter
is computed by the following:

∂

∂t
−→e = i(k0

∂

∂n
ϕ0 − k1

∂

∂n
ϕ1)
−→
t + Λ

→
Ψ1 + Λ

→
Ψ2, (42)

where Λ is a sufficiently smooth well-defined arbitrary function along the
curved path and

→
Ψ1 = −i k0√

2
e−i

∫ n
0 div

−→
b dn(−→n + i

−→
b ), (43)

→
Ψ2 = i

k1√
2
ei

∫ n
0 div

−→
b dn(−→n − i

−→
b ). (44)

Here,
→
Ψ1 and

→
Ψ2 are called binormal Hasimoto transformations in the nor-

mal direction of the curved path. If we further consider the compatibility
and integrability conditions of the polarization vector ( ∂∂t

∂
∂n
−→e = ∂

∂n
∂
∂t
−→e )

together with Eqs. (2, 35− 37, 42− 44) then we obtain that

∂

∂t
ϕ0 = i

∂2

∂n2
ϕ0 − iΛϕ0, (45)

∂

∂t
ϕ1 = −i ∂

2

∂n2
ϕ1 + iΛϕ1. (46)

Thus, it can be observed that Eqs. (45, 46) are exactly the nonlinear Schrodinger
equations of repulsive type. Thus, we can conclude that the binormal evo-
lution of the polarization vector in the normal direction of the curved path
trajectory is equivalent to the nonlinear Schrodinger equation of repulsive
type.

Finally, we can sum up these discussions by investigating the analytic
solutions of the nonlinear Schrodinger equation of repulsive type, which rep-
resents binormal evolution of the polarization vector in the normal direction
of the curved path trajectory, for some special cases by using the traveling
wave hypothesis approach.

In the first case, we assume that the arbitrary function Λ given in the
Eqs. (45, 46) is selected in the following way.

Λ = −ϕ0ϕ1. (47)
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Hence, by considering the Eqs. (45, 46, 47) , we have the following identity.

∂

∂t
ϕ0 = i

∂2

∂n2
ϕ0 + iϕ2

0ϕ1, (48)

∂

∂t
ϕ1 = −i ∂

2

∂n2
ϕ1 − iϕ0ϕ

2
1. (49)

Here we consider the traveling wave transformation for Eqs. (48, 49) by
using expressions given below.

ϕ0 = u(φ), (50)

ϕ1 = w(φ), φ = n−Qt, (51)

where Q describe the speed of the wave. If we plug the Eqs. (50, 51) into
the Eqs. (48, 49) and consider imaginary section then it is obtained that

u′′(φ) + u2(φ)w(φ) +Qu(φ)− u(φ) = 0, (52)

w′′(φ) + u(φ)w2(φ)−Qw(φ)− w(φ) = 0. (53)

Moreover, solutions of the Eqs. (52, 53) can be written as the series expan-
sion solutions as the following way.

u(φ) = α0 + α1G(φ) + α2G
−1(φ), (54)

w(φ) = β0 + β1G(φ) + β2G
−1(φ), (55)

where α0, α1, α2, β0, β1, β2 are functions to be determined later and G(φ)
satisfies the fractional Riccati equation given as follows.

G′(φ) = σ +G2(φ), (56)

where σ is an arbitrary constant. N is obtained with the aid of balance
between the highest order derivatives and the nonlinear terms in the Eqs.
(52, 53) . A few special solutions of the Eq. (56) are given by following cases.
1) When σ < 0, we have

G1(φ) = −
√
−σ tanh(

√
−σφ), (57)

G2(φ) = −
√
−σ coth(

√
−σφ), (58)

2) When σ > 0, we have

G3(φ) =
√
σ tan(

√
σφ), (59)

G4(φ) =
√
σ cot(

√
σφ), (60)
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3) When σ = 0, ρ = const., we have

G5(φ) = − 1

φ+ ρ
, (61)

Now, if we replace the Eqs. (54, 55) and (56) into the Eqs. (52, 53) and
equate the all coefficients of G(φ) then we can solve these equations and
obtain the following functions.

α0 = 0, α1 =
(−1 + 3Q+ 2σ)α2

6σ2
, (62)

β0 = 0, β1 =
1 + 3Q− 2σ

3α2
, β2 = −2σ2

α2
. (63)

If we take σ = 1, G(φ) =
√
σ tan(

√
σφ) then we obtain that

u(φ) =
(3Q+ 1)α2

6
tan(φ) + α2(tan(φ))−1,

w(φ) =
3Q− 1

3α2
tan(φ) +− 2

α2
(tan(φ))−1.

Thus, we get the following set of solution systems.

ϕ0 =
(3Q+ 1)α2

6
tan(n−Qt) + α2(tan(n−Qt))−1, (64)

ϕ1 =
3Q− 1

3α2
tan(n−Qt) +− 2

α2
(tan(n−Qt))−1. (65)

Figure 1: The 3D graphic for analytical solutions of the Eqs. (48, 49) for
Q = 1.2, α2 = 2. a) for ϕ0 in solutions (64, 65), b) for ϕ1 in solutions (64, 65).
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In the second case, we assume that the arbitrary function Λ is selected
by

Λ = −iϕ0ϕ1. (66)

Hence, by considering the Eqs. (45, 46, 66) , we have the following identity.

∂

∂t
ϕ0 = i

∂2

∂n2
ϕ0 − iϕ2

0ϕ1, (67)

∂

∂t
ϕ1 = −i ∂

2

∂n2
ϕ1 + iϕ0ϕ1. (68)

Here we consider the traveling wave transformation for Eqs. (67, 68) by
using expressions given below.

ϕ0 = u(φ), (69)

ϕ1 = w(φ), φ = n−Qt, (70)

where Q describe the speed of the wave. If we plug the Eqs. (69, 70) into
the Eqs. (67, 68) and consider imaginary section then it is obtained that

u′′(φ) +Qu(φ)− u(φ) = 0, (71)

w′′(φ)−Qw(φ)− w(φ) = 0. (72)

By solving the Eqs. (71, 72) we obtain the followings.

u(φ) = e
√
1−Qφc1 + e−

√
1−Qφc2,

w(φ) = e
√
1+Qφc3 + e−

√
1+Qφc4.

Thus, we get the following set of solution systems.

ϕ0 =
(3Q+ 1)α2

6
tan(n−Qt) + α2(tan(n−Qt))−1, (73)

ϕ1 =
3Q− 1

3α2
tan(n−Qt) +− 2

α2
(tan(n−Qt))−1. (74)
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Figure 2: The 3D graphic for analytical solutions of the Eqs. (66, 67) for
Q = 1.2, c1 = c2 = c4 = 1, c3 = −1. a) for ϕ0 in solutions (73, 74), b) for ϕ1

in solutions (73, 74).

4 Conclusion

One of the direct consequences of Maxwell’s equations is the geometric
phases of the light beam, which has an also decent connection with the
parallel transportation law of the electric field. In this study, we improve
an alternative approach to derive the geometric phases and parallel trans-
port law of wave polarization vector of light in the normal direction. In this
case, the geometric phase is measured by the divergence of the binormal

and it leads to a rotation in (−→n ,
−→
b ) plane. This paper serves as a basis

for further research on investigating the spin Hall effect (SHE) of light in
the normal direction since the SHE and the geometric phase are reciprocal
concepts. SHE of light is an important phenomenon since it has potential,
natural, and dynamical interpretations and applications besides the purely
geometric meanings. This paper will also be a helpful source to connect
the geometric phase of the wave polarization vector in the normal direction
with different gauge fields in different nonadiabatic or adiabatic evolution
of light beam. As the wave polarization vector travels along the curved
path the geometry of the curve reveals an interesting model to determine
its evolution equation in the normal direction via the binormal motion. In-
terestingly, this evolution equation is found to be associated with the very
well-known formula of the Schrodinger equation. We will further investigate
such evolution in the binormal direction and aim to complete our series of
research on the evolution of wave polarization vector in the tangent, normal
and binormal direction.
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