Reference

1. Kislik VS. Solvent Extraction : Classical and Novel Approaches . Elsevier Science; 2011.
2. Liu J-Q, Li S-W, Jing S. Axial Mixing and Mass Transfer Performance of an Annular Pulsed Disc-and-Doughnut Column. Solvent Extr Ion Exch . 2015;33(6):592-606.
3. Marchisio DL, Fox RO. Multiphase Reacting Flows: Modelling and Simulation . Wien: Springer-Verlag; 2007.
4. Thickett SC, Gilbert RG. Emulsion polymerization: State of the art in kinetics and mechanisms. Polymer . 2007;48(24):6965-6991.
5. Windhab EJ, Dressler M, Feigl K, Fischer P, Megias-Alguacil D. Emulsion processing—from single-drop deformation to design of complex processes and products. Chem Eng Sci . 2005;60(8):2101-2113.
6. Vankova N, Tcholakova S, Denkov ND, Ivanov IB, Vulchev VD, Danner T. Emulsification in turbulent flow: 1. Mean and maximum drop diameters in inertial and viscous regimes. J Colloid Interface Sci . 2007;312(2):363-380.
7. Ramkrishna D. Population Balances: Theory and Applications to Particulate Systems in Engineering . Elsevier; 2000.
8. Coulaloglou CA, Tavlarides LL. Drop size distributions and coalescence frequencies of liquid-liquid dispersions in flow vessels.AIChE J . 1976;22(2):289-297.
9. Bart H-J, Jildeh H, Attarakih M. Population Balances for Extraction Column Simulations—An Overview. Solvent Extr Ion Exch . 2020;38(1):14-65.
10. Kopriwa N, Buchbender F, Ayesterán J, Kalem M, Pfennig A. A Critical Review of the Application of Drop-Population Balances for the Design of Solvent Extraction Columns: I. Concept of Solving Drop-Population Balances and Modelling Breakage and Coalescence. Solvent Extr Ion Exch . 2012;30(7):683-723.
11. Falzone S, Buffo A, Vanni M, Marchisio DL. Simulation of Turbulent Coalescence and Breakage of Bubbles and Droplets in the Presence of Surfactants, Salts, and Contaminants. In: Parente A, De Wilde J, eds.Advances in Chemical Engineering . Vol 52. Academic Press; 2018:125-188.
12. Sathyagal AN, Ramkrishna D, Narsimhan G. Droplet breakage in stirred dispersions. Breakage functions from experimental drop-size distributions. Chem Eng Sci . 1996;51(9):1377-1391.
13. Kostoglou M, Karabelas AJ. A contribution towards predicting the evolution of droplet size distribution in flowing dilute liquid/liquid dispersions. Chem Eng Sci . 2001;56(14):4283-4292.
14. Kostoglou M, Karabelas AJ. Toward a unified framework for the derivation of breakage functions based on the statistical theory of turbulence. Chem Eng Sci . 2005;60(23):6584-6595.
15. O’Rourke AM, MacLoughlin PF. A study of drop breakage in lean dispersions using the inverse-problem method. Chem Eng Sci . 2010;65(11):3681-3694.
16. Eastwood CD, Armi L, Lasheras JC. The breakup of immiscible fluids in turbulent flows. J Fluid Mech . 2004;502:309-333.
17. Coulaloglou CA, Tavlarides LL. Description of interaction processes in agitated liquid-liquid dispersions. Chem Eng Sci . 1977;32(11):1289-1297.
18. Narsimhan G, Gupta JP, Ramkrishna D. A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersions. Chem Eng Sci . 1979;34(2):257-265.
19. Hsia MA, Tavlarides LL. Simulation analysis of drop breakage, coalescence and micromixing in liquid-liquid stirred tanks. Chem Eng J . 1983;26(3):189-199.
20. Narsimhan G, Nejfelt G, Ramkrishna D. Breakage functions for droplets in agitated liquid-liquid dispersions. AIChE J . 1984;30(3):457-467.
21. Chatzi EG, Erickson AD, Kiparissides C. Generalized model for prediction of the steady-state drop size distributions in batch stirred vessels. Ind Eng Chem Res . 1989;28(11):1704-1711.
22. Tsouris C, Tavlarides LL. Breakage and coalescence models for drops in turbulent dispersions. AIChE J . 1994;40(3):395-406.
23. Luo H, Svendsen HF. Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J . 1996;42(5):1225-1233.
24. Bahmanyar H, Dean DR, Dowling IC, Ramlochan KM, Slater MJ, Yu W. Studies of drop break-up in liquid-liquid systems in a rotating disc contactor. Part II: Effects of mass transfer and scale-up. Chem Eng Technol . 1991;14(3):178-185.
25. Bahmanyar H, Slater MJ. Studies of drop break-up in liquid-liquid systems in a rotating disc contactor. Part I: Conditions of no mass transfer. Chem Eng Technol . 1991;14(2):79-89.
26. Cabassud M, Gourdon C, Casamatta G. Single drop break-up in a Kühni column. Chem Eng J . 1990;44(1):27-41.
27. Fang J, Godfrey JC, Mao Z-Q, Slater MJ, Gourdon C. Single liquid drop breakage probabilities and characteristic velocities in Kühni columns. Chem Eng Technol . 1995;18(1):41-48.
28. Galinat S, Masbernat O, Guiraud P, Dalmazzone C, Noı¨k C. Drop break-up in turbulent pipe flow downstream of a restriction. Chem Eng Sci . 2005;60(23):6511-6528.
29. Jareš J, Procházka J. Break-up of droplets in Karr reciprocating plate extraction column. Chem Eng Sci . 1987;42(2):283-292.
30. Maaß S, Kraume M. Determination of breakage rates using single drop experiments. Chem Eng Sci . 2012;70:146-164.
31. Percy JS, Sleicher CA. Drop breakup in the flow of immiscible liquids through an orifice in a pipe. AIChE J . 1983;29(1):161-164.
32. Gourdon C, Casamatta G, Angelino H. Single drop experiments with liquid test systems: A way of comparing two types of mechanically agitated extraction columns. Chem Eng J . 1991;46(3):137-148.
33. Galinat S, Risso F, Masbernat O, Guiraud P. Dynamics of drop breakup in inhomogeneous turbulence at various volume fractions. J Fluid Mech . 2007;578:85-94.
34. Solsvik J, Jakobsen HA. Single drop breakup experiments in stirred liquid–liquid tank. Chem Eng Sci . 2015;131:219-234.
35. Korb C, Bart H-J. Solvent extraction in columns in a droplet breakage domain. Hydrometallurgy . 2017;173:71-79.
36. Ashar M, Arlov D, Carlsson F, Innings F, Andersson R. Single droplet breakup in a rotor-stator mixer. Chem Eng Sci . 2018;181:186-198.
37. Solsvik J, Maaß S, Jakobsen HA. Definition of the Single Drop Breakup Event. Ind Eng Chem Res . 2016;55(10):2872-2882.
38. Liu H, Jing S, Fang Q, Li S. Droplet Breakup in a Square-Sectioned Pulsed Disc and Doughnut Column. Ind Eng Chem Res . 2016;55(7):2242-2251.
39. Fang Q, Jing D, Zhou H, Li S. Population balance of droplets in a pulsed disc and doughnut column with wettable internals. Chem Eng Sci . 2017;161:274-287.
40. Zhou H, Jing S, Fang Q, Li S, Lan W. Direct measurement of droplet breakage in a pulsed disc and doughnut column. AIChE J . 2017;63(9):4188-4200.
41. Zhou H, Yu X, Jing S, Zhou H, Lan W, Li S. Measurement of droplet breakage in a pump-mixer. Chem Eng Sci . 2019;195:23-38.
42. Hesketh RP, Etchells AW, Russell TWF. Experimental observations of bubble breakage in turbulent flow. Ind Eng Chem Res . 1991;30(5):835-841.
43. Andersson R, Andersson B. On the breakup of fluid particles in turbulent flows. AIChE J . 2006;52(6):2020-2030.
44. Zhou H, Jing S, Yu X, Zhou H, Lan W, Li S. Study of droplet breakage in a pulsed disc and doughnut column-Part I: Experiments and correlations. Chem Eng Sci . 2019;197:172-183.
45. Zhou H, Yang J, Jing S, Lan W, Zheng Q, Li S. Influence of Dispersed-Phase Viscosity on Droplet Breakup in a Continuous Pump-Mixer.Ind Eng Chem Res . 2019;58(51):23458-23467.
46. Zhang Y, Gao Z, Li Z, Derksen JJ. Transitional flow in a Rushton turbine stirred tank. AIChE J . 2017;63(8):3610-3623.
47. Placek J, Tavlarides LL. Turbulent flow in stirred tanks. Part I: Turbulent flow in the turbine impeller region. AIChE J . 1985;31(7):1113-1120.
48. Placek J, Tavlarides LL, Smith GW, Fořt I. Turbulent flow in stirred tanks. Part II: A two-scale model of turbulence. AIChE J . 1986;32(11):1771-1786.
49. Han L, Gong S, Li Y, et al. Influence of energy spectrum distribution on drop breakage in turbulent flows. Chem Eng Sci . 2014;117:55-70.
50. Bates RL, Fondy PL, Corpstein RR. Examination of Some Geometric Parameters of Impeller Power. Ind Eng Chem Process Des Dev . 1963;2(4):310-314.
51. Shinnar R. On the behaviour of liquid dispersions in mixing vessels.J Fluid Mech . 1961;10(2):259-275.
52. Batchelor GK. The Theory of Homogeneous Turbulence . Cambridge University Press.; 1956.
53. Kolmogorov A. On the breakage of drops in a turbulent flow. In: Vol 66. ; 1949:825-828.
54. Karimi M, Andersson R. Stochastic simulation of droplet breakup in turbulence. Chem Eng J . 2020;380:122502.
55. Vankova N, Tcholakova S, Denkov ND, Vulchev VD, Danner T. Emulsification in turbulent flow: 2. Breakage rate constants. J Colloid Interface Sci . 2007;313(2):612-629.
56. Lamb H. Hydrodynamics . Cambridge university press; 1993.
57. Sevik M, Park SH. The Splitting of Drops and Bubbles by Turbulent Fluid Flow. J Fluids Eng . 1973;95(1):53-60.
58. Zhou H, Yang J, Jing S, Lan W, Zheng Q, Li S. Influence of Dispersed-Phase Viscosity on Droplet Breakup in a Continuous Pump-Mixer.Ind Eng Chem Res . November 2019.
59. Desnoyer C, Masbernat O, Gourdon C. Experimental study of drop size distributions at high phase ratio in liquid–liquid dispersions.Chem Eng Sci . 2003;58(7):1353-1363.
60. Singh KK, Mahajani SM, Shenoy KT, Ghosh SK. Representative drop sizes and drop size distributions in A/O dispersions in continuous flow stirred tank. Hydrometallurgy . 2008;90(2):121-136.
61. Maaß S, Metz F, Rehm T, Kraume M. Prediction of drop sizes for liquid–liquid systems in stirred slim reactors—Part I: Single stage impellers. Chem Eng J . 2010;162(2):792-801.
62. Razzaghi K, Shahraki F. On the effect of phase fraction on drop size distribution of liquid–liquid dispersions in agitated vessels.Chem Eng Res Des . 2010;88(7):803-808.
63. Maaß S, Paul N, Kraume M. Influence of the dispersed phase fraction on experimental and predicted drop size distributions in breakage dominated stirred systems. Chem Eng Sci . 2012;76:140-153.
64. Abidin MIIZ, Raman AAA, Nor MIM. Mean drop size correlations and population balance models for liquid—liquid dispersion. AIChE J . 2015;61(4):1129-1145.
65. Parvizi S, Alamdari EK, Hashemabadi SH, Kavousi M, Sattari A. Investigating Factors Affecting on the Efficiency of Dynamic Mixers.Miner Process Extr Metall Rev . 2016;37(5):342-368.
66. Calabrese RV, Wang CY, Bryner NP. Drop breakup in turbulent stirred-tank contactors. Part III: Correlations for mean size and drop size distribution. AIChE J . 1986;32(4):677-681.
67. Wang CY, Calabrese RV. Drop breakup in turbulent stirred-tank contactors. Part II: Relative influence of viscosity and interfacial tension. AIChE J . 1986;32(4):667-676.
68. Sprow FB. Distribution of drop sizes produced in turbulent liquid—liquid dispersion. Chem Eng Sci . 1967;22(3):435-442.