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Abstract. The aim of this article to propose some generalization of Meir-Keeler fixed point

theorem with the help of an α-admissible mapping. Further we prove the existence of solution of

an infinite system of integral equations by using this generalized fixed point theorem involving

measure of noncompactness in Banach space and illustrate the results with the help of an

example. Finally, apply an iterative algorithm we find an approximate solution of an infinite

system of integral equations.
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1. Introduction

Integral equations of different types lead as an important branch of applied functional anal-

ysis and obtain numerous applications to describing miscellaneous real life problems. Fixed

point theory and measure of noncompactness are very useful tools to solve different types of

integral equations which help us to come across in different real life situations. Schauder and

Darbo’s fixed point theorems have important contribution to study for existence of solution of

different types of functional integral equations. Aghajani et al. [3] discussed the application of

generalized Darbo fixed theorem for existence of solution of systems of integral equations. The

existence of solutions of infinite systems of integral equations in two variables by utilizing mea-

sure of noncompactness and Darbo fixed point theorem studied by Arab et al. [7]. Banaś and

Olszowy [9] introduced the class of measure of noncompactness in Banach algebra to investigate

the existence of solution of nonlinear integral equations by using Darbo fixed point theorem (also

see [17]) and references therein. In [18], Mursaleen and Rizvi employed Meir-Keeler fixed point
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theorem for solving infinite systems of second order differential equations in sequence spaces c0

and `1 (see also [5, 10, 12, 23]).

Suppose E is a real Banach space with the norm ‖ . ‖ and B(a, b) is a closed ball in E centered

at a with radius b. If X is a nonempty subset of E then by X̄ and ConvX we denote the closure

and convex closure of X . Moreover, we denote ME , the family of all nonempty and bounded

subsets of E and NE its subfamily consisting of all relatively compact sets. Also we denote R
the set of real numbers and R+ = [0,∞) .

We recall the following definition of measure of noncompactness which was defined by Banaś

and Goebel [8].

Definition 1.1. A function µ : ME → R+ is called a measure of non-compactness in E if it

satisfies the following conditions:

(i) for all Y ∈ME , we have µ(Y) = 0 implies that Y is precompact.

(ii) the family ker µ = {Y ∈ ME : µ (Y) = 0} is nonempty and ker µ ⊂ NE .
(iii) Y ⊆ Z =⇒ µ (Y) ≤ µ (Z) .

(iv) µ
(
Ȳ
)

= µ (Y) .

(v) µ ( ConvY) = µ (Y) .

(vi) µ (λY + (1− λ)Z) ≤ λµ (Y) + (1− λ)µ (Z) for λ ∈ [0, 1] .

(vii) if Yn ∈ME , Yn = Ȳn, Yn+1 ⊂ Yn for n = 1, 2, 3, ... and lim
n→∞

µ (Yn) = 0 then
∞⋂
n=1
Yn 6= φ.

The family kerµ is said to be the kernel of measure µ. Observe that the intersection set Y∞
from (vii) is a member of the family kerµ. In fact, since µ(Y∞) ≤ µ(Yn) for any n, we infer that

µ(Y∞) = 0. This gives Y∞ ∈ kerµ.

For a bounded subset S of a metric space X , the Kuratowski measure of noncompactness of

S defined by Kuratowski [15] as follows:

α (S) = inf

{
δ > 0 : S =

n⋃
i=1

Si, diam (Si) ≤ δ for 1 ≤ i ≤ n, n ∈ N

}
,

where diam (Si) denotes the diameter of the set Si, that is

diam (Si) = sup {d(x, y) : x, y ∈ Si} .

The Hausdorff measure of noncompactness for a bounded set S is defined as

χ (S) = inf {ε > 0 : S has finite ε− net in X} .

Definition 1.2. [8] Let X be a nonempty subset of a Banach space E and T : X → X be a

continuous operator transforming bounded subset of X to bounded ones. We say that T satisfies

the Darbo condition with a constant k with respect to measure µ provided µ(T Y) ≤ kµ(Y) for

each Y ∈ME such that Y ⊂ X .

Now we recall the Shauder and Darbo fixed point theorems:
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Theorem 1.3. [2, Shauder] Let D be a nonempty, closed and convex subset of a Banach space

E . Then every compact, continuous map T : D → D has at least one fixed point.

Theorem 1.4. [11, Darbo] Let Z be a nonempty, bounded, closed and convex subset of a Banach

space E . Let T : Z → Z be a continuous mapping. Assume that there is a constant k ∈ [0, 1)

such that

µ(TM1) ≤ kµ(M1), M1 ⊆ Z.

Then T has a fixed point.

Definition 1.5. [6] Let E1 and E2 be two Banach spaces and let µ1 and µ2 be arbitrary measure

of noncompactness on E1 and E2, respectively. An operator f from E1 to E2 is called a (µ1, µ2)-

condensing operator if it is continuous and µ2 (f(D)) < µ1(D) for every set D ⊂ E1 with compact

closure.

Remark 1.6. If E1 = E2 and µ1 = µ2 = µ, then f is called a µ−condensing operator.

The contractive maps and the compact maps are condensing if we take as measure of non-

compactness of the diameter of a set and the indicator function of a family of non-relatively

compact sets, respectively (see [6]). In 1969, Meir and Keeler [16] proved the following very

interesting fixed point theorem, which is a generalization of the Banach contraction principle.

Definition 1.7. [16] Let (X , d) be a metric space. Then a mapping T on X is said to be a

Meir-Keeler contraction if for any ε > 0, there exists δ > 0 such that

ε ≤ d(x, y) < ε+ δ =⇒ d (T x, T y) < ε, ∀x, y ∈ X .

Theorem 1.8. [16] Let (X , d) be a complete metric space. If T : X → X is a Meir-Keeler

contraction, then T has a unique fixed point.

Definition 1.9. [4] Let C be a nonempty subset of a Banach space E and let µ be an arbi-

trary measure of noncompactness on E . We say that an operator T : C → C is a Meir-Keeler

condensing operator if for any ε > 0, there exists δ > 0 such that

ε ≤ µ (X ) < ε+ δ =⇒ µ (T (X )) < ε

for any bounded subset X of C.

Aghajani et al. [4], discussed the following result, which is very useful in our study (also see

[10]).

Theorem 1.10. [4] Let C be a nonempty, bounded, closed and convex subset of a Banach space

E and let µ be an arbitrary measure of noncompactness on E . If T : C → C is a continuous

and Meir-Keeler condensing operator, then T has at least one fixed point and the set of all fixed

points of T in C is compact.

Hazarika et al. [13] proved a generalized version of Theorem 1.10 as follows:



4 Das, Hazarika, Saikia, Mahato

Definition 1.11. [13] Let Θ be class of all functions θ : R+×R+ → R+ satisfying the following

conditions:

(i) max {u, v} ≤ θ(u, v) for u, v ≥ 0,

(ii) θ is continuous and nondecreasing,

(iii) θ(u+ l, v +m) ≤ θ(u, v) + θ(l,m) for u, v, l,m ≥ 0.

Definition 1.12. [13] Let Z be a nonempty subset of a Banach space E and µ be a measure of

noncompactness on E . We say that an operator T : Z → Z is a generalized Meir-Keeler type

operator if for any ε > 0, there exists a δ > 0 such that for any subset X of Z,

ε ≤ θ(µ(X ), ψ(µ(X ))) ≤ ε+ δ =⇒ θ(µ(T X ), ψ(µ(T X ))) < ε

where ψ ∈ Ψ = {ψ|ψ : R+ → R+ continuous and nondecreasing} and θ ∈ Θ.

Theorem 1.13. [13] Let Z be a nonempty, bounded, closed and convex subset of a Banach space

E and µ be an arbitrary measure of noncompactness on E . Let T : Z → Z be a continuous and

generalized Meir-Keeler type condensing operator, then T has a fixed point in Z.

In order to establish our fixed point theorem, we used the following concept, which was

introduced by Samet et al [22].

Definition 1.14. [22] Let T : Z → Z and α : Z × Z → R+. We say that T is α-admissible if

for every x, y ∈ Z
α(x, y) ≥ 1 =⇒ α (T x, T y) ≥ 1.

Example 1.15. [22] Let Z = [0,∞). Define T : Z → Z by T z = ln z for all z ∈ Z, and

α : Z × Z → R+ defined by

α(x, y) =

2, x ≥ y

0, x < y

Then T is α-admissible.

2. Generalized Meir-Keeler fixed point theorem

In this section we introduce a generalize version of Meir-Keeler fixed point theorem applying

α-admissible mapping.

Definition 2.1. T : Z → Z be an α-admissible mapping. We say that T is a generalized

α-Meir-Keeler type condensing operator for each ε > 0 there exists δ > 0 such that for all z ∈ Z,

ε ≤ θ(µ(Z), ψ(µ(Z))) ≤ ε+ δ =⇒ α(T z, T z)θ(µ(T Z), ψ(µ(T Z))) < ε

where ψ ∈ Ψ = {ψ|ψ : R+ → R+continuous and nondecreasing} and θ ∈ Θ.

Theorem 2.2. Let Z be a nonempty, bounded, closed and convex subset of a Banach space E
and µ be an arbitrary measure of noncompactness on E . Let T : Z → Z be a continuous and

generalized α-Meir-Keeler type condensing operator, then T has a fixed point in Z.
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Proof. Let Z0 = Z. Construct the sequences of sets {Zn} and elements {zn} as follows:

Zn+1 = Conv (T Zn) and zn+1 = T zn with α(z0, z0) ≥ 1 and zn ∈ Zn for all n ≥ 0. Now,

T Z0 = T Z ⊆ Z = Z0,

Z1 = Conv (T Z0) ⊆ Z = Z0,

Z2 = Conv (T Z1) ⊆ Conv (T Z0) = Z1

and so on.

Therefore we obtain Z0 ⊇ Z1 ⊇ Z2 ⊇ . . . ⊇ Zn ⊇ Zn+1 ⊇ . . . and T Zn+1 ⊆ T Zn ⊆
Conv (T Zn) = Zn+1. Thus T Zn ⊆ Zn for all n ≥ 0.

If there exists a natural number N such that µ(ZN ) = 0 then ZN is compact. By Schauder’s

fixed point theorem we conclude that T has a fixed point.

So we assume that µ(Zn) > 0 for some n ≥ 0.

Define εn = θ (µ(Zn), ψ (µ(Zn))) .

For α (z0, z0) ≥ 1 =⇒ α (T z0, T z0) ≥ 1 =⇒ α (z1, z1) ≥ 1.

Proceeding in a similar manner we obtain, α (zn, zn) ≥ 1 for all n ≥ 0 and

εn = θ (µ(Zn), ψ (µ(Zn))) ≥ θ (µ(Zn+1), ψ (µ(Zn+1))) = εn+1.

Therefore εn is a positive non increasing sequence and there exists b ≥ 0 such that εn → b as

n→∞.
If b > 0 then there exists m ∈ N such that n > m gives b ≤ εn ≤ b + δ(b), where δ(b) > 0.

Therefore by Definition 2.1 we get

α(T zn, T zn)εn+1 < b =⇒ α(zn+1, zn+1)εn+1 < b.

Since α(zn+1, zn+1) ≥ 1 therefore εn+1 < b which is a contradiction. Thus we conclude b = 0.

Since the sequence (Zn) is nested in view of axiom (vii), we conclude that Z∞ =
∞⋂
n=1
Zn is

nonempty, closed and convex subset of Z. Moreover, Z∞ ∈ kerµ. So Z∞ is compact Z∞ and

invariant under T . Thus Schauder’s theorem implies that T has a fixed point in Z∞ ⊆ Z. This

completes the proof. �

Corollary 2.3. If we take α(x, y) = 1 then generalized α-Meir-Keeler condensing operator

becomes generalized Meir-Keeler condensing operator.

Theorem 2.4. Let Z be a nonempty, bounded, closed and convex subset of a Banach space E
and µ be an arbitrary measure of noncompactness on E . Let T : Z → Z be a continuous and

generalized Meir-Keeler type condensing operator, then T has a fixed point in Z.

Proof. The result follows by taking α(x, y) = 1 for every x, y ∈ Z in Theorem 2.2. �

Theorem 2.5. Let Z be a nonempty, bounded, closed and convex subset of a Banach space E
and µ be an arbitrary measure of noncompactness on E . Let T : Z → Z be a continuous operator

satisfying

(i) T is α-admissible mapping on Z,
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(ii) for each ε > 0 such that δ > 0 such that for all z ∈ Z we have

ε ≤ µ(T Z) + ψ (µ(T Z)) < ε+ δ =⇒ α(T z, T z) (µ(Z) + ψ (µ(Z))) < ε,

(iii) ψ ∈ Ψ,

then T has at least one fixed point in Z.

Proof. The result follows by taking θ(l,m) = l +m in Theorem 2.2. �

Theorem 2.6. Let Z be a nonempty, bounded, closed and convex subset of a Banach space E
and µ be an arbitrary measure of noncompactness on E .Let T : Z → Z be a continuous operator

satisfying

(i) T is α- admissible mapping on Z.
(ii) for each ε > 0 such that δ > 0 such that for all z ∈ Z we have

ε ≤ µ(Z) < ε+ δ =⇒ α(T z, T z)µ(T Z) < ε,

then T has at least one fixed point in Z.

Proof. The result follows by taking ψ ≡ 0 in Theorem 2.5. �

3. Application of generalized Meir-Keeler fixed point theorem

The Hausdorff measure of noncompactness χ in the Banach space (c0, ‖ . ‖c0) defined by

Banaś and Goebel [8] as follows:

χc0

(
D̂
)

= lim
n→∞

[
sup
z∈D̂

(
max
k≥n
| zk |

)]
, (3.1)

where z = (zi)
∞
i=1 ∈ c0 and D̂ ∈Mc0 .

Let us denote by C(I, c0) the space of all continuous functions on I = [0, T ] with values in

c0. Then C(I, c0) is also a Banach space with norm ‖ z(t) ‖C(I,c0)= sup {‖ z(t) ‖c0 : t ∈ I} , where

z(t) = (zi(t))
∞
i=1 ∈ C(I, c0).

For any non-empty bounded subset Z of C(I, c0) and t ∈ I, let Z(t) = {z(t) : z ∈ Z} . Now,

using (3.1), we conclude that the Housdorff measure of noncompactness for Z ⊂ C(I, c0) can be

defined by

χC(I,c0)(Z) = sup {χc0(Z(t)) : t ∈ I} .

In this part we study the solvability of the following infinite system of integral equations

zn(t) = Pn

(
t, z(t),

∫ t

0
Qn(t, s, z(s))ds

)
, t ∈ [0, 1] = I. (3.2)

where z(t) = (zn(t))∞n=1 and zn(t) ∈ C(I, c0) for all n ∈ N.

We consider the following assumptions
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(1) The functions Pn : I×C(I, c0)×R→ R is continuous withKn = sup
{∣∣Pn(t, z0(t), 0)

∣∣ : t ∈ I
}
,

where z0(t) =
(
z0n(t)

)∞
n=1

and z0n(t) = 0 for all t ∈ I, n ∈ N such that (Kn)∞n=1 converges

to zero. Also,

|Pn(t, z(t), l)− Pn(t, z̄(t),m)| ≤ Cn(t) |zn(t)− z̄n(t)|+Dn(t) |l −m| ,

where Cn, Dn : I → R+ are continuous functions for all n ∈ N and z̄(t) = (z̄n(t))∞n=1 ∈
C(I, c0).

(2) Qn : I × I ×C(I, c0)→ R is continuous functions for all n ∈ N and there exists Gn such

that

Gn = sup

{
Dn(t)

∣∣∣∣∫ t

0
Qn(t, s, z(s))ds

∣∣∣∣ : t ∈ I
}

and (Gn) converges to zero.

(3) Define an operator T on I × C(I, c0) to C(I, c0) as follows

(t, z(t))→ (T z)(t), where (T z)(t) = ((Tnz) (t))∞n=1 =
(
Pn

(
t, z(t),

∫ t
0 Qn(t, s, z(s))ds

))∞
n=1

.

(4) Let supnGn = G, supnKn = K, sup {Cn(t) : n ∈ N, t ∈ I} = C, sup {Dn(t) : n ∈ N, t ∈ I} =

D and 0 < C < 1.

Theorem 3.1. Under the hypothesis (1)-(4), the infinite system of equations (3.2) has at least

one solution in C(I, c0).

Proof. By using (3.2) and assumption (1)− (4), for arbitrary fixed t ∈ I, we get

‖ z(t) ‖c0

= sup
n≥1

∣∣∣∣Pn(t, z(t), ∫ t

0
Qn(t, s, z(s))ds

)∣∣∣∣
≤ sup

n≥1

∣∣∣∣Pn(t, z(t), ∫ t

0
Qn(t, s, z(s))ds

)
− Pn

(
t, z0(t), 0

)∣∣∣∣+ sup
n≥1

∣∣Pn (t, z0(t), 0)∣∣
≤ sup

n≥1

{
Cn(t) |zn(t)|+Dn(t)

∣∣∣∣∫ t

0
Qn(t, s, z(s))ds

∣∣∣∣}+K

≤ C ‖ z(t) ‖c0 +G+K

i.e.

(1− C) ‖ z(t) ‖c0≤ G+K

‖ z(t) ‖c0≤
G+K

1− C
= r (say).

Therefore ‖ z(t) ‖C(I,c0)≤ r. Let B =
{
z ∈ C(I, c0) :‖ z ‖C(I,c0)≤ r

}
. By assumption (3), the

operator T satisfies the condition that (T z)(t) ∈ C(I, c0).

Therefore for any arbitrary t ∈ I,

‖ (T z)(t) ‖c0≤ r

=⇒ sup
t∈I
‖ (T z)(t) ‖c0≤ r

=⇒ ‖ (T z) ‖C(I,c0)≤ r
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i.e. T is a self mapping on B.

Now, we prove that T is continuous on B. Let ε > 0 be arbitrary and ‖ z − z̄ ‖C(I,c0)<
ε
2C

for z, z̄ ∈ B. Thus for arbitrary t ∈ I we have

‖ (T z)(t)− (T z̄)(t) ‖c0

= sup
n≥1

∣∣∣∣Pn(t, z(t), ∫ t

0
Qn(t, s, z(s))ds

)
− Pn

(
t, z̄(t),

∫ t

0
Qn(t, s, z̄(s))ds

)∣∣∣∣
≤ sup

n≥1

{
Cn(t) |zn(t)− z̄n(t)|+Dn(t)

∣∣∣∣∫ t

0
Qn(t, s, z(s))ds−

∫ t

0
Qn(t, s, z̄(s))ds

∣∣∣∣}
≤ C ‖ z(t)− z̄(t) ‖c0 + sup

n≥1

{
Dn(t)

∫ t

0
|Qn(t, s, z(s))−Qn(t, s, z̄(s))| ds

}
<
ε

2
+D sup

n≥1

{∫ t

0
|Qn(t, s, z(s))−Qn(t, s, z̄(s))| ds

}
.

As Qn is continuous for all n ∈ N and I×I×B is compact, therefore Qn is uniformly convergent.

Therefore

|Qn(t, s, z(s))−Qn(t, s, z̄(s))| < ε

2(TD + 1)
, for ‖ z − z̄ ‖C(I,c0)<

ε

2C
.

Hence we have

‖ (T z)(t)− (T z̄)(t) ‖c0<
ε

2
+D

∫ t

0

ε

2(TD + 1)
< ε

i.e. ‖ (T z)(t)− (T z̄)(t) ‖C(I,c0)< ε.

Thus, T is continuous on B.

We have for any t ∈ I,

χc0(T (B))

= lim
n→∞

sup
z(t)∈B

sup
k≥n

∣∣∣∣Pn(t, z(t),∫ t

0
Qn(t, s, z(s))ds

)∣∣∣∣
≤ lim

n→∞
sup
z(t)∈B

sup
k≥n
{Cn(t) |zn(t)|+Gn +Kn}

≤ Cχc0(B).

Therefore

sup
t∈I

χc0(T (B)) ≤ C sup
t∈I

χc0(B)

gives

χC(I,c0)(T (B)) ≤ CχC(I,c0)(B).

Observe that χC(I,c0)(T (B)) ≤ CχC(I,c0)(B) < ε gives χC(I,c0)(B) < ε
C .

Considering δ = ε(1−C)
C , we get ε ≤ χC(I,c0)(B) < ε + δ. Therefore T satisfies all the conditions

of Theorem 2.6 for α(x, y) = 1 for all x, y which implies that T has at least one fixed point on

B. Therefore the system (3.2) has at least a solution in B ⊂ C(I, c0). �
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Example 3.2. Consider the following system of equations

zn(t) =
tzn(t)

(1 + t)n4
+

1

n7

∫ t

0

cos(zn(s))

5 + sin

(
n∑
j=1

zj(s)

)ds (3.3)

for t ∈ [0, 1] = I, n ∈ N.
Here we have

Pn(t, z(t), yn(z(t))) =
tzn(t)

(1 + t)n4
+
yn(z(t))

n7
,

yn(z(t)) =

∫ t

0
Qn (t, s, z(s)) ds,

Qn (t, s, z(s)) =
cos(zn(s))

5 + sin

(
n∑
j=1

zj(s)

) .
If z(t) ∈ C(I, c0) then (Pn(t, z(t), yn(z(t))))∞n=1 ∈ C(I, c0). Again, if z̄(t) = (z̄i(t))

∞
n=1 ∈ C(I, c0)

then we have

|Pn(t, z(t), l)− Pn(t, z̄(t),m)|

=

∣∣∣∣ tzn(t)

(1 + t)n4
+

l

n7
− tz̄n(t)

(1 + t)n4
− m

n7

∣∣∣∣
≤ t

(1 + t)n4
|zn(t)− z̄n(t)|+ 1

n7
|l −m| .

Here Cn(t) = t
(1+t)n4 and Dn(t) = 1

n7 are both continuous functions for all n ∈ N. Also, Kn = 0,

therefore (Kn) converges to zero and 0 < C < 1.

Again,

Gn = sup
t∈I


1

n7

∣∣∣∣∣∣∣∣∣∣
∫ t

0

cos(zn(s))

5 + sin

(
n∑
j=1

zj(s)

)ds
∣∣∣∣∣∣∣∣∣∣

 =
1

n7
.

Therefore (Gn) converges to zero and D = 1, G = 1. It is obvious that Pn and Qn are continuous

functions. So all assumptions from (1) − (4) are satisfied. Hence by Theorem 3.1 we conclude

that equation (3.3) has a solution in C(I, c0).

3.1. Homotopy perturbation and adomain decomposition method to solve (3.3). In

[1, 21] authors solved nonlinear problems by using Adomian decomposition method. We use

homotopy perturbation method to transform a nonlinear problem to a simple problem and

apply Adomian polynomials to avoid nonlinearity. We also construct an iteration algorithm to

find the solution of infinite system of nonlinear integral equations. In general case we consider

the following nonlinear problem with boundary conditions

A(xn)− h(t) = 0, t ∈ Ω (3.4)
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with

B
(
xn,

∂xn
∂r

)
= 0, r ∈ Γ, (3.5)

where A is a general differential operator, B is a boundary operator and h is a known analytic

function. As in [14, 19, 20], we define the following homotopy perturbation operator by q

embedding parameter

H(wn, q) = (1− q)(L(wn)− L(w0)) + q(A(wn)− h(t)) = 0, n ∈ N, q ∈ [0, 1], (3.6)

where L is a linear operator and

zn(t) ' wn(t) = w0,n(t) + qw1,n(t) + p2w2,n(t) + p3w3,n(t) + . . . (3.7)

also w0(t) is an initial approximation of solution that is defined by the initial condition of (3.3).

By variation of q from 0 to 1, we obtain wn(t) = w0(t) to A(wn) − h(t) = 0. So we obtain the

solution of (3.4) for q = 1 and zn(t) ' lim
q→1

wn(t).

Consider the following infinite system of integral equations,

zn(t)− f(t, n)

∫ t

0

cos(zn(s))

5 + sin
(∑n

j=1 zj(s)
)ds = 0, (3.8)

where f(t, n) = t+1
(1+t)n4−t .

1
n3 and n ∈ N. We take L and A operators for (3.8) as follows

L(zn) = zn(t), A(zn) = zn(t)− f(t, n)

∫ t

0

cos(zn(s))

5 + sin
(∑n

j=1 zj(s)
)ds. (3.9)

Applying (3.7) and (3.9) in (3.6) we get

(1− q)(wn(t)− w0(t)) + q

wn(t)− f(t, n)

∫ t

0

cos(wn(s))

5 + sin

(
n∑
j=1

wj(s)

)ds
 = 0

and

( ∞∑
i=0

qiwi,n(t)− w0(t)

)
+ q

w0(t)− f(t, n)

∫ t

0

cos

( ∞∑
i=0

qiwi,n(s)

)
5 + sin

(
n∑
j=1

∞∑
i=0

qiwi,j(s)

)ds
 = 0.

Applying Adomian polynomials to approximate the above integrand we obtain

(
w0,n(t) + qw1,n(t) + q2w2,n(t) + . . .− w0(t)

)
+ q

(
w0(t)− f(t, n)

∫ t

0

∞∑
i=0

qiAi,n(s)ds

)
= 0,

(3.10)
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where the Adomian polynomials are given by

Ak,n(s) =
1

k!

 dk

dqk


cos

( ∞∑
i=0

qiwi,n(s)

)
5 + sin

(
n∑
j=1

∞∑
i=0

qiwi,j(s)

)


q=0

. (3.11)

Rearranging (3.10) in terms of powers of q we obtain

q0 : (w0,n(t)− w0(t)),

q1 : (w1,n(t) + w0(t)− f(t, n)

∫ t

0
A0,n(s)ds),

qj : (wj,n(t)− f(t, n)

∫ t

0
Aj−1,n(s)ds)

where j = 2, 3, . . . and n ∈ N. By (3.10) we observe that the coefficients of different powers of q

are equal to zero. Consequently we obtain the following algorithm to obtain numerical solution

of (3.3).

Algorithm:

w0,n(t) = w0(t),

w1,n(t) = −w0(t) + f(t, n)

∫ t

0
A0,n(s)ds,

wj,n(t) = f(t, n)

∫ t

0
Aj−1,n(s)ds.

where j = 2, 3, . . . and n ∈ N. By (3.8), we obtain zn(0) = 0 and by (3.7) we obtain w0,n(0) =

w1,n(0) = w2,n(0) = . . . = 0. Therefore we choose w0,n(t) = w0(t) = 0 in algorithm and we have

w0,n(t) = 0

wj,n(t) =
t+ 1

(1 + t)n4 − t
.

1

n3

∫ t

0
Aj−1,n(s)ds,

(3.12)

where j = 1, 3, . . . and n ∈ N.
Since w0,n(t) = 0 for all n ∈ N, then A0,n(s) = 1

5 . Therefore, by (3.12) the first three terms of

the series (3.7) for n = 1, 10, 100 are given by,

n = 1, w0,1(t) = 0, w1,1(t) = (1 + t)

∫ t

0
A0,n(s)ds =

t(1 + t)

5
,

n = 10, w0,10(t) = 0, w1,10(t) =
1 + t

(1 + t)104 − t
.

1

103

∫ t

0
A0,10(s)ds =

(1 + t)t

5× 103(104 + 9999t)
,

n = 100, w0,100(t) = 0, w1,100(t) =
1 + t

(1 + t)108 − t
.

1

106

∫ t

0
A0,100(s)ds =

(1 + t)t

5× 106(108 + 99999999t)
.

The approximate solution of equation (3.3)is given by

zn(t) = w0,n(t) + w1,n(t) for all n ∈ N.
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To show the convergence of the sequence (zn(t))∞n=1 some terms of this sequence n = 1, 10, 100

are drawn in the following figures:

Figure 1

Figure 2
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Figure 3

From figures (1− 3) we observe that for 0 ≤ t ≤ 1 as the value of n increases then the values

of zn(t) decreases. Also we observe that z1(t) ≤ 0.4, z10(t) ≤ 2× 10−8, z100(t) ≤ 2× 10−15 for

0 ≤ t ≤ 1. Thus we conclude that zn(t)→ 0 as n→∞ for 0 ≤ t ≤ 1.
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[9] J. Banaś, L. Olszowy, On a class of Measure of Noncompactness in Banach Algebras and Their Application

to Nonlinear Integral Equations, J. Anal. Appl. 28(2009) 1–24.

[10] M. Belhadj, A. B. Amar, M. Boumaiza, Some fixed point theorems for Meir-Keeler condensing operators and

application to a system of integral equations, Bull. Belg. Math. Soc. Simon Stevin 26(2)(2019) 223–239.

[11] G. Darbo, Punti uniti in trasformazioni a codominio non compatto (Italian), Rend. Sem. Mat. Univ. Padova

24(1955) 84–92.

[12] X. Guo, G. Zhang, H. Li, Fixed point theorems for Meir-Keeler condensing nonself-mappings with an appli-

cation, Fixed Point Theory & Appl. 2018, 20:33 pp 1–12.



14 Das, Hazarika, Saikia, Mahato

[13] B. Hazarika, H.M. Srivastava, R. Arab, M. Rebbani, Existence of solution for infinite system of nonlinear

integral equations via measure of noncompactness and homotopy perturbation method to solve it, J. Comput.

Appl. Math. 343(2018) 341–352

[14] J. H. He, A new approach to non-linear partial differential equations, Comm. Non-Linear Sci. Numer. Simu-

lation 2(4)(1997) 230–235.

[15] K. Kuratowski, Sur les espaces complets, Fund. Math. 15(1930) 301–309.

[16] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28(1969) 326–329.

[17] L.N. Mishra, M. Sen, R.N. Mohapatra, On Existence Theorems for Some Generalized Nonlinear Functional-

Integral Equations with Applications, Filomat 31(7)(2017) 2081–2091.

[18] M. Mursaleen, Syed M. H. Rizvi, Solvability of infinite systems of second order differential equations in c0

and `1 by Meir-Keeler condensing operators, Proc. Amer. Math. Soc. 144(10)(2016) 4279–4289.

[19] M. Rabbani, New Homotopy Perturbation Method to Solve Non-Linear Problems, J. Math. Comput. Sci.

7(2013) 272–275.

[20] M. Rabbani, Modified homotopy method to solve non-linear integral equations, Int. J. Nonlinear Anal. Appl.

6(2)(2015) 133–136.

[21] M. Rabbani, B. Zarali, Solution of Fredholm integro-differential equations system by modified decomposition

method, J. Math. Comput. Sci. 5(4)(2012) 258–264.

[22] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal.

75(4)(2012) 2154–2165.

[23] H. M. Srivastava, A. Das, B. Hazarika, S. A. Mohiuddine, Existence of Solutions of Infinite Systems of

Differential Equations of General Order with Boundary Conditions in the Spaces c0 and `1 via the Measure

of Noncompactness, Math. Methods & Appl. Sci. 41(10)(2018) 3558–3569.


