References
Auld JR, Agrawal AA, Relyea RA, 2010. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proceedings of the Royal Society B-Biological Sciences 277:503-511. doi: 10.1098/rspb.2009.1355.
Bailey NW, Zuk M, 2009. Field crickets change mating preferences using remembered social information. Biology Letters 5:449-451. doi: 10.1098/rsbl.2009.0112.
Bateman AJ, 1948. Intrasexual selection in Drosophila melanogaster . Heredity 2:277-277.
Bissoondath CJ, Wiklund C, 1996. Male butterfly investment in successive ejaculates in relation to mating system. Behavioral Ecology and Sociobiology 39:285-292. doi: 10.1007/s002650050291.
Bonduriansky R, 2001. The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biological Reviews 76:305-339. doi: 10.1017/s1464793101005693.
Bretman A, Fricke C, Chapman T, 2009. Plastic responses of maleDrosophila melanogaster to the level of sperm competition increase male reproductive fitness. Proceedings of the Royal Society B-Biological Sciences 276:1705-1711. doi: 10.1098/rspb.2008.1878.
Bretman A, Fricke C, Hetherington P, Stone R, Chapman T, 2010. Exposure to rivals and plastic responses to sperm competition in Drosophila melanogaster . Behavioral Ecology 21:317-321. doi: 10.1093/beheco/arp189.
Bretman A, Gage MJG, Chapman T, 2011a. Quick-change artists: male plastic behavioural responses to rivals. Trends in Ecology & Evolution 26:467-473. doi: 10.1016/j.tree.2011.05.002.
Bretman A, Rouse J, Westmancoat JD, Chapman T, 2017. The role of species-specific sensory cues in male responses to mating rivals in Drosophila melanogaster fruitflies. Ecol Evol 7:9247-9256. doi: 10.1002/ece3.3455.
Bretman A, Westmancoat JD, Chapman T, 2013a. Male control of mating duration following exposure to rivals in fruitflies. J Insect Physiol 59:824-827. doi: 10.1016/j.jinsphys.2013.05.011.
Bretman A, Westmancoat JD, Gage MJG, Chapman T, 2011b. Males use multiple, redundant cues to detect mating rivals. Current Biology 21:617-622. doi: 10.1016/j.cub.2011.03.008.
Bretman A, Westmancoat JD, Gage MJG, Chapman T, 2012. Individual plastic responses by males to rivals reveal mismatches between behaviour and fitness outcomes. Proceedings of the Royal Society B-Biological Sciences 279:2868-2876. doi: 10.1098/rspb.2012.0235.
Bretman A, Westmancoat JD, Gage MJG, Chapman T, 2013b. Costs and benefits of lifetime exposure to mating rivals in male Drosophila melanogaster . Evolution 67:2413-2422. doi: 10.1111/evo.12125.
Bro-Jorgensen J, 2010. Dynamics of multiple signalling systems: animal communication in a world in flux. Trends in Ecology & Evolution 25:292-300. doi: 10.1016/j.tree.2009.11.003.
Chapman T, Bangham J, Vinti G, Seifried B, Lung O, Wolfner MF, Smith HK, Partridge L, 2003. The sex peptide of Drosophila melanogaster:Female post-mating responses analyzed by using RNA interference. Proc Natl Acad Sci U S A 100:9923-9928. doi: 10.1073/pnas.1631635100.
Chapman T, Davies SJ, 2004. Functions and analysis of the seminal fluid proteins of male Drosophila melanogaster fruit flies. Peptides 25:1477-1490. doi: 10.1016/j.peptides.2003.10.023.
Choi JI, Lee HK, Kim HS, Park SY, Lee TY, Yoon KH, Lee JI, 2018. Odor-dependent temporal dynamics in Caenorhabitis elegansadaptation and aversive learning behavior. PeerJ 6:17. doi: 10.7717/peerj.4956.
Costa M, Mateus RP, Moura MO, Machado LPD, 2010. Adult sex ratio effects on male survivorship of Drosophila melanogaster Meigen (Diptera, Drosophilidae). Revista Brasileira De Entomologia 54:446-449. doi: 10.1590/s0085-56262010000300015.
DeWitt TJ, Sih A, Wilson DS, 1998. Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution 13:77-81.
Dewsbury DA, 1982. Ejaculate cost and male choice. American Naturalist 119:601-610. doi: 10.1086/283938.
Dore AA, McDowall L, Rouse J, Bretman A, Gage MJG, Chapman T, 2018. The role of complex cues in social and reproductive plasticity. Behavioral Ecology and Sociobiology 72:15. doi: 10.1007/s00265-018-2539-x.
Droge-Young EM, Manier MK, Lupold S, Belote JM, Pitnick S, 2012. Covariance among premating, post-copulatory and viability fitness components in Drosophila melanogaster and their influence on paternity measurement. J Evol Biol 25:1555-1563. doi: 10.1111/j.1420-9101.2012.02540.x.
Dukas R, 2008. Evolutionary biology of insect learning. Annual Review of Entomology 53:145-160. doi: 10.1146/annurev.ento.53.103106.093343.
Ehrman L, 1966. Mating success and genotype frequency inDrosophila . Animal Behaviour 14:332-&. doi: 10.1016/s0003-3472(66)80093-3.
Friberg U, 2006. Male perception of female mating status: its effect on copulation duration, sperm defence and female fitness. Animal Behaviour 72:1259-1268. doi: 10.1016/j.anbehav.2006.03.021.
Gage MJG, 1995. Continuous variation in reproductive strategy as an adaptive response to population-density in the moth plodia-interpunctella. Proceedings of the Royal Society B-Biological Sciences 261:25-30. doi: 10.1098/rspb.1995.0112.
Gaskin T, Futerman P, Chapman T, 2002. Increased density and male-male interactions reduce male longevity in the medfly, Ceratitis capitata . Animal Behaviour 63:121-129. doi: 10.1006/anbe.2001.1896.
Greenspan RJ, 2012. Biological indeterminacy. Science and Engineering Ethics 18:447-452. doi: 10.1007/s11948-012-9379-2.
Hopkins BR, Sepil I, Thezenas ML, Craig JF, Miller T, Charles PD, Fischer R, Kessler BM, Bretman A, Pizzari T, Wigby S, 2019. Divergent allocation of sperm and the seminal proteome along a competition gradient in Drosophila melanogaster . Proc Natl Acad Sci U S A 116:17925-17933. doi: 10.1073/pnas.1906149116.
Hothorn T, Bretz F, Westfall P, 2008. Simultaneous inference in general parametric models. Biom J 50:346-363. doi: 10.1002/bimj.200810425.
Hughes L, Chang BSW, Wagner D, Pierce NE, 2000. Effects of mating history on ejaculate size, fecundity, longevity, and copulation duration in the ant-tended lycaenid butterfly, Jalmenus evagoras . Behavioral Ecology and Sociobiology 47:119-128. doi: 10.1007/s002650050002.
Johnstone RA, 1996. Multiple displays in animal communication: ’backup signals’ and ’multiple messages’. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 351:329-338. doi: 10.1098/rstb.1996.0026.
Kasumovic MM, Bruce MJ, Andrade MCB, Herberstein ME, 2008. Spatial and temporal demographic variation drives within-season fluctuations in sexual selection. Evolution 62:2316-2325. doi: 10.1111/j.1558-5646.2008.00446.x.
Kokko H, Rankin DJ, 2006. Lonely hearts or sex in the city? Density-dependent effects in mating systems. Philosophical Transactions of the Royal Society B: Biological Sciences 361:319-334.
Leech T, Sait SM, Bretman A, 2017. Sex-specific effects of social isolation on ageing in Drosophila melanogaster . J Insect Physiol 102:12-17. doi: 10.1016/j.jinsphys.2017.08.008.
Lewis SM, Iannini J, 1995. Fitness consequences of differences in male mating-behavior in relation to female reproductive status in flour beetles. Animal Behaviour 50:1157-1160. doi: 10.1016/0003-3472(95)80031-x.
Marie-Orleach L, Sanz AM, Bailey NW, Ritchie MG, 2020. Does the response of D. melanogaster males to intrasexual competitors influence sexual isolation? Behavioral Ecology.
Nandy B, Dasgupta P, Halder S, Verma T, 2016. Plasticity in aggression and the correlated changes in the cost of reproduction in maleDrosophila melanogaster . Animal Behaviour 114:3-9. doi: 10.1016/j.anbehav.2016.01.019.
Overton J, 1967. The fine structure of developing bristles in wild type and mutant Drosophila melanogaster . Journal of Morphology 122:367-379. doi: doi:10.1002/jmor.1051220406.
Parker GA, 1982. Why are there so many tiny sperm - sperm competition and the maintenance of 2 sexes. Journal of Theoretical Biology 96:281-294. doi: 10.1016/0022-5193(82)90225-9.
R Core Team, 2016. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rodriguez RL, Rebar D, Fowler-Finn KD, 2013. The evolution and evolutionary consequences of social plasticity in mate preferences. Animal Behaviour 85:1041-1047. doi: 10.1016/j.anbehav.2013.01.006.
Rouse J, Bretman A, 2016. Exposure time to rivals and sensory cues affect how quickly males respond to changes in sperm competition threat. Animal Behaviour 122:1-8. doi: 10.1016/j.anbehav.2016.09.011.
Rouse J, Watkinson K, Bretman A, 2018. Flexible memory controls sperm competition responses in male Drosophila melanogaster . Proceedings of the Royal Society B: Biological Sciences 285:20180619. doi: doi:10.1098/rspb.2018.0619.
Wedell N, Gage MJG, Parker GA, 2002. Sperm competition, male prudence and sperm-limited females. Trends in Ecology & Evolution 17:313-320. doi: 10.1016/s0169-5347(02)02533-8.
Wigby S, Sirlot LK, Linklater JR, Buehner N, Calboli FCF, Bretman A, Chapman T, 2009a. Drosophila melanogaster males modify seminal fluid protein transfer in response to social cues and artificial selection on accessory gland size. Current Biology 19:751-757.
Wigby S, Sirot LK, Linklater JR, Buehner N, Calboli FCF, Bretman A, Wolfner MF, Chapman T, 2009b. Seminal fluid protein allocation and male reproductive success. Current Biology 19:751-757. doi: 10.1016/j.cub.2009.03.036.
Figure 1 – The a) mating duration and b) mating latency of males either exposed to a rival male with the auditory cue removed (+no sound), all cues intact (+all), or housed alone without rival exposure (-all). Boxplots show interquartile range and median with raw data points also plotted. Orange dots indicate means; letters indicate significant pairwise differences.
Figure 2 – a) The number of offspring fathered in 24 h following a single mating, and b) the proportion of offspring produced by a female in the 24 h following a second mating that were fathered by the first male (P1). Focal males were either exposed to a rival male with the auditory cue removed (+no sound), all cues intact (+all), or housed alone without rival exposure (-all). Boxplots as in Figure 1.