References
Auld JR, Agrawal AA, Relyea RA, 2010. Re-evaluating the costs and limits
of adaptive phenotypic plasticity. Proceedings of the Royal Society
B-Biological Sciences 277:503-511. doi: 10.1098/rspb.2009.1355.
Bailey NW, Zuk M, 2009. Field crickets change mating preferences using
remembered social information. Biology Letters 5:449-451. doi:
10.1098/rsbl.2009.0112.
Bateman AJ, 1948. Intrasexual selection in Drosophila
melanogaster . Heredity 2:277-277.
Bissoondath CJ, Wiklund C, 1996. Male butterfly investment in successive
ejaculates in relation to mating system. Behavioral Ecology and
Sociobiology 39:285-292. doi: 10.1007/s002650050291.
Bonduriansky R, 2001. The evolution of male mate choice in insects: a
synthesis of ideas and evidence. Biological Reviews 76:305-339. doi:
10.1017/s1464793101005693.
Bretman A, Fricke C, Chapman T, 2009. Plastic responses of maleDrosophila melanogaster to the level of sperm competition
increase male reproductive fitness. Proceedings of the Royal Society
B-Biological Sciences 276:1705-1711. doi: 10.1098/rspb.2008.1878.
Bretman A, Fricke C, Hetherington P, Stone R, Chapman T, 2010. Exposure
to rivals and plastic responses to sperm competition in Drosophila
melanogaster . Behavioral Ecology 21:317-321. doi:
10.1093/beheco/arp189.
Bretman A, Gage MJG, Chapman T, 2011a. Quick-change artists: male
plastic behavioural responses to rivals. Trends in Ecology & Evolution
26:467-473. doi: 10.1016/j.tree.2011.05.002.
Bretman A, Rouse J, Westmancoat JD, Chapman T, 2017. The role of
species-specific sensory cues in male responses to mating rivals in
Drosophila melanogaster fruitflies. Ecol Evol 7:9247-9256. doi:
10.1002/ece3.3455.
Bretman A, Westmancoat JD, Chapman T, 2013a. Male control of mating
duration following exposure to rivals in fruitflies. J Insect Physiol
59:824-827. doi: 10.1016/j.jinsphys.2013.05.011.
Bretman A, Westmancoat JD, Gage MJG, Chapman T, 2011b. Males use
multiple, redundant cues to detect mating rivals. Current Biology
21:617-622. doi: 10.1016/j.cub.2011.03.008.
Bretman A, Westmancoat JD, Gage MJG, Chapman T, 2012. Individual plastic
responses by males to rivals reveal mismatches between behaviour and
fitness outcomes. Proceedings of the Royal Society B-Biological Sciences
279:2868-2876. doi: 10.1098/rspb.2012.0235.
Bretman A, Westmancoat JD, Gage MJG, Chapman T, 2013b. Costs and
benefits of lifetime exposure to mating rivals in male Drosophila
melanogaster . Evolution 67:2413-2422. doi: 10.1111/evo.12125.
Bro-Jorgensen J, 2010. Dynamics of multiple signalling systems: animal
communication in a world in flux. Trends in Ecology & Evolution
25:292-300. doi: 10.1016/j.tree.2009.11.003.
Chapman T, Bangham J, Vinti G, Seifried B, Lung O, Wolfner MF, Smith HK,
Partridge L, 2003. The sex peptide of Drosophila melanogaster:Female post-mating responses analyzed by using RNA interference. Proc
Natl Acad Sci U S A 100:9923-9928. doi: 10.1073/pnas.1631635100.
Chapman T, Davies SJ, 2004. Functions and analysis of the seminal fluid
proteins of male Drosophila melanogaster fruit flies. Peptides
25:1477-1490. doi: 10.1016/j.peptides.2003.10.023.
Choi JI, Lee HK, Kim HS, Park SY, Lee TY, Yoon KH, Lee JI, 2018.
Odor-dependent temporal dynamics in Caenorhabitis elegansadaptation and aversive learning behavior. PeerJ 6:17. doi:
10.7717/peerj.4956.
Costa M, Mateus RP, Moura MO, Machado LPD, 2010. Adult sex ratio effects
on male survivorship of Drosophila melanogaster Meigen (Diptera,
Drosophilidae). Revista Brasileira De Entomologia 54:446-449. doi:
10.1590/s0085-56262010000300015.
DeWitt TJ, Sih A, Wilson DS, 1998. Costs and limits of phenotypic
plasticity. Trends in Ecology & Evolution 13:77-81.
Dewsbury DA, 1982. Ejaculate cost and male choice. American Naturalist
119:601-610. doi: 10.1086/283938.
Dore AA, McDowall L, Rouse J, Bretman A, Gage MJG, Chapman T, 2018. The
role of complex cues in social and reproductive plasticity. Behavioral
Ecology and Sociobiology 72:15. doi: 10.1007/s00265-018-2539-x.
Droge-Young EM, Manier MK, Lupold S, Belote JM, Pitnick S, 2012.
Covariance among premating, post-copulatory and viability fitness
components in Drosophila melanogaster and their influence on
paternity measurement. J Evol Biol 25:1555-1563. doi:
10.1111/j.1420-9101.2012.02540.x.
Dukas R, 2008. Evolutionary biology of insect learning. Annual Review of
Entomology 53:145-160. doi: 10.1146/annurev.ento.53.103106.093343.
Ehrman L, 1966. Mating success and genotype frequency inDrosophila . Animal Behaviour 14:332-&. doi:
10.1016/s0003-3472(66)80093-3.
Friberg U, 2006. Male perception of female mating status: its effect on
copulation duration, sperm defence and female fitness. Animal Behaviour
72:1259-1268. doi: 10.1016/j.anbehav.2006.03.021.
Gage MJG, 1995. Continuous variation in reproductive strategy as an
adaptive response to population-density in the moth
plodia-interpunctella. Proceedings of the Royal Society B-Biological
Sciences 261:25-30. doi: 10.1098/rspb.1995.0112.
Gaskin T, Futerman P, Chapman T, 2002. Increased density and male-male
interactions reduce male longevity in the medfly, Ceratitis
capitata . Animal Behaviour 63:121-129. doi: 10.1006/anbe.2001.1896.
Greenspan RJ, 2012. Biological indeterminacy. Science and Engineering
Ethics 18:447-452. doi: 10.1007/s11948-012-9379-2.
Hopkins BR, Sepil I, Thezenas ML, Craig JF, Miller T, Charles PD,
Fischer R, Kessler BM, Bretman A, Pizzari T, Wigby S, 2019. Divergent
allocation of sperm and the seminal proteome along a competition
gradient in Drosophila melanogaster . Proc Natl Acad Sci U S A
116:17925-17933. doi: 10.1073/pnas.1906149116.
Hothorn T, Bretz F, Westfall P, 2008. Simultaneous inference in general
parametric models. Biom J 50:346-363. doi: 10.1002/bimj.200810425.
Hughes L, Chang BSW, Wagner D, Pierce NE, 2000. Effects of mating
history on ejaculate size, fecundity, longevity, and copulation duration
in the ant-tended lycaenid butterfly, Jalmenus evagoras .
Behavioral Ecology and Sociobiology 47:119-128. doi:
10.1007/s002650050002.
Johnstone RA, 1996. Multiple displays in animal communication: ’backup
signals’ and ’multiple messages’. Philosophical Transactions of the
Royal Society of London Series B-Biological Sciences 351:329-338. doi:
10.1098/rstb.1996.0026.
Kasumovic MM, Bruce MJ, Andrade MCB, Herberstein ME, 2008. Spatial and
temporal demographic variation drives within-season fluctuations in
sexual selection. Evolution 62:2316-2325. doi:
10.1111/j.1558-5646.2008.00446.x.
Kokko H, Rankin DJ, 2006. Lonely hearts or sex in the city?
Density-dependent effects in mating systems. Philosophical Transactions
of the Royal Society B: Biological Sciences 361:319-334.
Leech T, Sait SM, Bretman A, 2017. Sex-specific effects of social
isolation on ageing in Drosophila melanogaster . J Insect Physiol
102:12-17. doi: 10.1016/j.jinsphys.2017.08.008.
Lewis SM, Iannini J, 1995. Fitness consequences of differences in male
mating-behavior in relation to female reproductive status in flour
beetles. Animal Behaviour 50:1157-1160. doi:
10.1016/0003-3472(95)80031-x.
Marie-Orleach L, Sanz AM, Bailey NW, Ritchie MG, 2020. Does the response
of D. melanogaster males to intrasexual competitors influence
sexual isolation? Behavioral Ecology.
Nandy B, Dasgupta P, Halder S, Verma T, 2016. Plasticity in aggression
and the correlated changes in the cost of reproduction in maleDrosophila melanogaster . Animal Behaviour 114:3-9. doi:
10.1016/j.anbehav.2016.01.019.
Overton J, 1967. The fine structure of developing bristles in wild type
and mutant Drosophila melanogaster . Journal of Morphology
122:367-379. doi: doi:10.1002/jmor.1051220406.
Parker GA, 1982. Why are there so many tiny sperm - sperm competition
and the maintenance of 2 sexes. Journal of Theoretical Biology
96:281-294. doi: 10.1016/0022-5193(82)90225-9.
R Core Team, 2016. R: A language and environment for statistical
computing. Vienna, Austria: R Foundation for Statistical Computing.
Rodriguez RL, Rebar D, Fowler-Finn KD, 2013. The evolution and
evolutionary consequences of social plasticity in mate preferences.
Animal Behaviour 85:1041-1047. doi: 10.1016/j.anbehav.2013.01.006.
Rouse J, Bretman A, 2016. Exposure time to rivals and sensory cues
affect how quickly males respond to changes in sperm competition threat.
Animal Behaviour 122:1-8. doi: 10.1016/j.anbehav.2016.09.011.
Rouse J, Watkinson K, Bretman A, 2018. Flexible memory controls sperm
competition responses in male Drosophila melanogaster .
Proceedings of the Royal Society B: Biological Sciences 285:20180619.
doi: doi:10.1098/rspb.2018.0619.
Wedell N, Gage MJG, Parker GA, 2002. Sperm competition, male prudence
and sperm-limited females. Trends in Ecology & Evolution 17:313-320.
doi: 10.1016/s0169-5347(02)02533-8.
Wigby S, Sirlot LK, Linklater JR, Buehner N, Calboli FCF, Bretman A,
Chapman T, 2009a. Drosophila melanogaster males modify seminal
fluid protein transfer in response to social cues and artificial
selection on accessory gland size. Current Biology 19:751-757.
Wigby S, Sirot LK, Linklater JR, Buehner N, Calboli FCF, Bretman A,
Wolfner MF, Chapman T, 2009b. Seminal fluid protein allocation and male
reproductive success. Current Biology 19:751-757. doi:
10.1016/j.cub.2009.03.036.
Figure 1 – The a) mating duration and b) mating latency of
males either exposed to a rival male with the auditory cue removed (+no
sound), all cues intact (+all), or housed alone without rival exposure
(-all). Boxplots show interquartile range and median with raw data
points also plotted. Orange dots indicate means; letters indicate
significant pairwise differences.
Figure 2 – a) The number of offspring fathered in 24 h
following a single mating, and b) the proportion of offspring produced
by a female in the 24 h following a second mating that were fathered by
the first male (P1). Focal males were either exposed to a rival male
with the auditory cue removed (+no sound), all cues intact (+all), or
housed alone without rival exposure (-all). Boxplots as in Figure 1.