References
Annett, R., Habibi, H.R., Hontela, A., 2014. Impact of glyphosate and
glyphosate-based herbicides on the freshwater environment. J. Appl.
Toxicol. 34, 458–479. https://doi.org/10.1002/jat.2997
Araújo, M. da-Silva, Gil, L.H.S., e-Silva, A. de-Almeida, 2012. Larval
food quantity affects development time, survival and adult biological
traits that influence the vectorial capacity of Anopheles
darlingi under laboratory conditions. Malar. J. 11, 261.
https://doi.org/10.1186/1475-2875-11-261
Avigliano, L., Fassiano, A.V., Medesani, D.A., Ríos de Molina, M.C.,
Rodríguez, E.M., 2014. Effects of glyphosate on growth rate, metabolic
rate and energy reserves of early juvenile crayfish, Cherax
quadricarinatus M. Bull. Environ. Contam. Toxicol. 92, 631–635.
https://doi.org/10.1007/s00128-014-1240-7
Baglan, H., Lazzari, C.R., Guerrieri, F.J., 2018a. Glyphosate impairs
learning in mosquito larvae (Aedes aegypti ) at field-realistic
doses. J. Exp. Biol. jeb.187518. https://doi.org/10.1242/jeb.187518
Bai, S.H., Ogbourne, S.M., 2016. Glyphosate: environmental
contamination, toxicity and potential risks to human health via food
contamination. Environ. Sci. Pollut. Res. 23, 18988–19001.
https://doi.org/10.1007/s11356-016-7425-3
Bara, J.J., Montgomery, A., Muturi, E.J., 2014. Sublethal effects of
atrazine and glyphosate on life history traits of Aedes aegyptiand Aedes albopictus (Diptera: Culicidae ). Parasitol. Res.
113, 2879–2886. https://doi.org/10.1007/s00436-014-3949-y
Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear
mixed-effects models using lme4. J. Stat. Softw. 067.
Beketov, M.A., Liess, M., 2007. Predation risk perception and food
scarcity induce alterations of life-cycle traits of the mosquitoCulex pipiens . Ecol. Entomol. 32, 405–410.
https://doi.org/10.1111/j.1365-2311.2007.00889.x
Benbrook, C.M., 2016. Trends in glyphosate herbicide use in the United
States and globally. Environ. Sci. Eur.
https://doi.org/10.1186/s12302-016-0070-0
Billker, O., Lindo, V., Panico, M., Etienne, A.E., Paxton, T., Dell, A.,
Rogers, M., Sinden, R.E., Morris, H.R., 1998. Identification of
xanthurenic acid as the putative inducer of malaria development in the
mosquito. Nature 392, 289–292. https://doi.org/10.1038/32667
Bolker, B.M., 2008. Ecological Models and Data in R. Princeton
University Press.
Christensen, B.M., Li, J., Chen, C.-C., Nappi, A.J., 2005. Melanization
immune responses in mosquito vectors. Trends Parasitol. 21, 192–199.
https://doi.org/10.1016/j.pt.2005.02.007
Coors, A., Meester, L.D., 2008. Synergistic, antagonistic and additive
effects of multiple stressors: predation threat, parasitism and
pesticide exposure in Daphnia magna . J. Appl. Ecol. 45,
1820–1828. https://doi.org/10.1111/j.1365-2664.2008.01566.x
Crain, C.M., Kroeker, K., Halpern, B.S., 2008. Interactive and
cumulative effects of multiple human stressors in marine systems. Ecol.
Lett. 11, 1304–1315. https://doi.org/10.1111/j.1461-0248.2008.01253.x
Crawley, M.J., 2012. The R Book. John Wiley & Sons.
Cuhra, M., Traavik, T., Bøhn, T., 2013. Clone- and age-dependent
toxicity of a glyphosate commercial formulation and its active
ingredient in Daphnia magna . Ecotoxicology 22, 251–262.
https://doi.org/10.1007/s10646-012-1021-1
Daam, M.A., Moutinho, M.F., Espíndola, E.L.G., Schiesari, L., 2019.
Lethal toxicity of the herbicides acetochlor, ametryn, glyphosate and
metribuzin to tropical frog larvae. Ecotoxicology 28, 707–715.
https://doi.org/10.1007/s10646-019-02067-5
de Melo Tarouco, F., de Godoi, F.G.A., Velasques, R.R., da Silveira
Guerreiro, A., Geihs, M.A., da Rosa, C.E., 2017. Effects of the
herbicide Roundup on the polychaeta Laeonereis acuta :
Cholinesterases and oxidative stress. Ecotoxicol. Environ. Saf. 135,
259–266. https://doi.org/10.1016/j.ecoenv.2016.10.014
Dutra, B.K., Fernandes, F.A., Failace, D.M., Oliveira, G.T., 2011.
Effect of roundup® (glyphosate formulation) in the energy metabolism and
reproductive traits of Hyalella castroi (Crustacea,
Amphipoda, Dogielinotidae ). Ecotoxicology 20, 255–263.
https://doi.org/10.1007/s10646-010-0577-x
Fernandes, K.M., Gonzaga, W.G., Pascini, T.V., Miranda, F.R., Tomé,
H.V.V., Serrão, J.E., Martins, G.F., 2015. Imidacloprid impairs the
post-embryonic development of the midgut in the yellow fever mosquitoStegomyia aegypti (=Aedes aegypti ). Med. Vet. Entomol. 29,
245–254. https://doi.org/10.1111/mve.12122
Giesy, J.P., Dobson, S., Solomon, K.R., 2000. Ecotoxicological risk
assessment for Roundup® herbicide, in: Ware, G.W. (Ed.), Reviews of
Environmental Contamination and Toxicology. Springer New York, New York,
NY, pp. 35–120. https://doi.org/10.1007/978-1-4612-1156-3_2
Gill, J.P.K., Sethi, N., Mohan, A., Datta, S., Girdhar, M., 2018.
Glyphosate toxicity for animals. Environ. Chem. Lett. 16, 401–426.
https://doi.org/10.1007/s10311-017-0689-0
Gregorc, A., Ellis, J.D., 2011. Cell death localization in situ in
laboratory reared honey bee (Apis mellifera L. ) larvae treated
with pesticides. Pestic. Biochem. Physiol. 99, 200–207.
https://doi.org/10.1016/j.pestbp.2010.12.005
Hansen, L.R., Roslev, P., 2016. Behavioral responses of juvenileDaphnia magna after exposure to glyphosate and glyphosate-copper
complexes. Aquat. Toxicol. Amst. Neth. 179, 36–43.
https://doi.org/10.1016/j.aquatox.2016.08.010
Hong, Y., Yang, X., Huang, Y., Yan, G., Cheng, Y., 2018. Assessment of
the oxidative and genotoxic effects of the glyphosate-based herbicide
roundup on the freshwater shrimp, Macrobrachium nipponensis .
Chemosphere 210, 896–906.
https://doi.org/10.1016/j.chemosphere.2018.07.069
Hong, Y., Yang, X., Yan, G., Huang, Y., Zuo, F., Shen, Y., Ding, Y.,
Cheng, Y., 2017. Effects of glyphosate on immune responses and haemocyte
DNA damage of Chinese mitten crab, Eriocheir sinensis . Fish
Shellfish Immunol. 71, 19–27. https://doi.org/10.1016/j.fsi.2017.09.062
Janssens, L., Stoks, R., 2017. Stronger effects of Roundup than its
active ingredient glyphosate in damselfly larvae. Aquat. Toxicol. 193,
210–216. https://doi.org/10.1016/j.aquatox.2017.10.028
Kibuthu, T.W., Njenga, S.M., Mbugua, A.K., Muturi, E.J., 2016.
Agricultural chemicals: life changer for mosquito vectors in
agricultural landscapes? Parasit. Vectors 9, 500.
https://doi.org/10.1186/s13071-016-1788-7
Langiano, V. do C., Martinez, C.B.R., 2008. Toxicity and effects of a
glyphosate-based herbicide on the Neotropical fish Prochilodus
lineatus . Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 147,
222–231. https://doi.org/10.1016/j.cbpc.2007.09.009
Lavazec, C., Bourgouin, C., 2008. Mosquito-based transmission blocking
vaccines for interrupting Plasmodium development. Microbes
Infect. 10, 845–849. https://doi.org/10.1016/j.micinf.2008.05.004
Mann, R.M., Bidwell, J.R., 1999. The Toxicity of glyphosate and several
glyphosate formulations to four species of southwestern Australian
frogs. Arch. Environ. Contam. Toxicol. 36, 193–199.
https://doi.org/10.1007/s002449900460
Matozzo, V., Zampieri, C., Munari, M., Marin, M.G., 2019. Glyphosate
affects haemocyte parameters in the clam Ruditapes philippinarum .
Mar. Environ. Res. 146, 66–70.
https://doi.org/10.1016/j.marenvres.2019.03.008
Mesnage, R., Defarge, N., Spiroux de Vendômois, J., Séralini, G.-E.,
2014. Major pesticides are more toxic to human cells than their declared
active principles. BioMed Res. Int. https://doi.org/10.1155/2014/179691
Modesto, K.A., Martinez, C.B.R., 2010. Roundup® causes oxidative stress
in liver and inhibits acetylcholinesterase in muscle and brain of the
fish Prochilodus lineatus . Chemosphere 78, 294–299.
https://doi.org/10.1016/j.chemosphere.2009.10.047
Mohamed, A.H., 2011. Sublethal toxicity of Roundup to immunological and
molecular aspects of Biomphalaria alexandrina toSchistosoma mansoni infection. Ecotoxicol. Environ. Saf. 74,
754–760. https://doi.org/10.1016/j.ecoenv.2010.10.037
Monte, T.C. de C., Chometon, T.Q., Bertho, A.L., de Moura, V.S., de
Vasconcellos, M.C., Garcia, J., Ferraz-Nogueira, R., Maldonado Júnior,
A., Faro, M.J., 2019. Changes in hemocytes of Biomphalaria
glabrata infected with Echinostoma paraensei and exposed to
glyphosate-based herbicide. J. Invertebr. Pathol. 160, 67–75.
https://doi.org/10.1016/j.jip.2018.11.007
Morris, A., Murrell, E.G., Klein, T., Noden, B.H., 2016. Effect of two
commercial herbicides on life history traits of a human disease vector,Aedes aegypti , in the laboratory setting. Ecotoxicology 25,
863–870. https://doi.org/10.1007/s10646-016-1643-9
Morrissey, C.A., Mineau, P., Devries, J.H., Sanchez-Bayo, F., Liess, M.,
Cavallaro, M.C., Liber, K., 2015. Neonicotinoid contamination of global
surface waters and associated risk to aquatic invertebrates: A review.
Environ. Int. 74, 291–303. https://doi.org/10.1016/j.envint.2014.10.024
Motta, E.V.S., Raymann, K., Moran, N.A., 2018. Glyphosate perturbs the
gut microbiota of honey bees. Proc. Natl. Acad. Sci. 115, 10305–10310.
https://doi.org/10.1073/pnas.1803880115
Muturi, E.J., Kim, C.-H., Alto, B.W., Berenbaum, M.R., Schuler, M.A.,
2011. Larval environmental stress alters Aedes aegypti competence
for Sindbis virus. Trop. Med. Int. Health 16, 955–964.
https://doi.org/10.1111/j.1365-3156.2011.02796.x
Muturi, E.J., Nyakeriga, A., Blackshear, M., 2012. Temperature-Mediated
Differential Expression of immune and stress-related genes inAedes aegypti larvae. J. Am. Mosq. Control Assoc. 28, 79–83.
https://doi.org/10.2987/11-6194R.1
Nagy, K., Duca, R.C., Lovas, S., Creta, M., Scheepers, P.T.J., Godderis,
L., Ádám, B., 2019. Systematic review of comparative studies assessing
the toxicity of pesticide active ingredients and their product
formulations. Environ. Res. 108926.
https://doi.org/10.1016/j.envres.2019.108926
Nguyen, M.-H., Nguyen, T.-H.-N., Hwang, I.-C., Bui, C.-B., Park, H.-J.,
2016. Effects of the physical state of nanocarriers on their penetration
into the root and upward transportation to the stem of soybean plants
using confocal laser scanning microscopy. Crop Prot. 87, 25–30.
https://doi.org/10.1016/j.cropro.2016.04.012
Pala, A., 2019. The effect of a glyphosate-based herbicide on
acetylcholinesterase (AChE) activity, oxidative stress, and antioxidant
status in freshwater amphipod: Gammarus pulex(Crustacean ). Environ. Sci. Pollut. Res. 26, 36869–36877.
https://doi.org/10.1007/s11356-019-06804-5
Peruzzo, P.J., Porta, A.A., Ronco, A.E., 2008. Levels of glyphosate in
surface waters, sediments and soils associated with direct sowing
soybean cultivation in north pampasic region of Argentina. Environ.
Pollut. 156, 61–66. https://doi.org/10.1016/j.envpol.2008.01.015
Pigeault, R., Vézilier, J., Cornet, S., Zélé, F., Nicot, A., Perret, P.,
Gandon, S., Rivero, A., 2015. Avian malaria: a new lease of life for an
old experimental model to study the evolutionary ecology ofPlasmodium . Phil Trans R Soc B 370, 20140300.
https://doi.org/10.1098/rstb.2014.0300
Riaz, M.A., Poupardin, R., Reynaud, S., Strode, C., Ranson, H., David,
J.-P., 2009. Impact of glyphosate and benzo[a]pyrene on the
tolerance of mosquito larvae to chemical insecticides. Role of
detoxification genes in response to xenobiotics. Aquat. Toxicol. 93,
61–69. https://doi.org/10.1016/j.aquatox.2009.03.005
Shapiro, L.L.M., Murdock, C.C., Jacobs, G.R., Thomas, R.J., Thomas,
M.B., 2016. Larval food quantity affects the capacity of adult
mosquitoes to transmit human malaria. Proc R Soc B 283, 20160298.
https://doi.org/10.1098/rspb.2016.0298
Struger, J., Thompson, D., Staznik, B., Martin, P., McDaniel, T.,
Marvin, C., 2008. Occurrence of glyphosate in surface waters of southern
ontario. Bull. Environ. Contam. Toxicol. 80, 378–384.
https://doi.org/10.1007/s00128-008-9373-1
Takken, W., Smallegange, R.C., Vigneau, A.J., Johnston, V., Brown, M.,
Mordue-Luntz, A.J., Billingsley, P.F., 2013. Larval nutrition
differentially affects adult fitness and Plasmodium development
in the malaria vectors Anopheles gambiae and Anopheles
stephensi . Parasit. Vectors 6, 345.
https://doi.org/10.1186/1756-3305-6-345
Tripet, F., Aboagye-Antwi, F., Hurd, H., 2008. Ecological immunology of
mosquito–malaria interactions. Trends Parasitol. 24, 219–227.
https://doi.org/10.1016/j.pt.2008.02.008
Valkiunas, G., 2004. Avian Malaria Parasites and other Haemosporidia.
CRC Press.
Van Bruggen, A.H.C., He, M.M., Shin, K., Mai, V., Jeong, K.C., Finckh,
M.R., Morris, J.G., 2018. Environmental and health effects of the
herbicide glyphosate. Sci. Total Environ. 616–617, 255–268.
https://doi.org/10.1016/j.scitotenv.2017.10.309
Van Handel, E., Day, J.F., 1989. Correlation between wing length and
protein content of mosquitoes. J. Am. Mosq. Control Assoc. 5, 180–182.
Vantaux, A., Lefèvre, T., Cohuet, A., Dabiré, K.R., Roche, B., Roux, O.,
2016. Larval nutritional stress affects vector life history traits and
human malaria transmission. Sci. Rep. 6.
https://doi.org/10.1038/srep36778
Vézilier, J., Nicot, A., Gandon, S., Rivero, A., 2010. Insecticide
resistance and malaria transmission: Infection rate and oocyst burden inCulex pipiens mosquitoes infected with Plasmodium
relictum . Malar. J. https://doi.org/10.1186/1475-2875-9-379
Yassine, H., Kamareddine, L., Osta, M.A., 2012. The mosquito
melanization response is implicated in defense against the
entomopathogenic fungus Beauveria bassiana . PLOS Pathog. 8,
e1003029. https://doi.org/10.1371/journal.ppat.1003029
Zhang, J., Huang, F.S., Xu, W.Y., Song, P., Duan, J.H., Yang, S., Qiu,
Z.W., 2008. Plasmodium yoelii : Correlation of up-regulated
prophenoloxidase and phenoloxidases with melanization induced by the
antimalarial, nitroquine. Exp. Parasitol. 118, 308–314.
https://doi.org/10.1016/j.exppara.2007.08.017