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Abstract
An SIS epidemic reaction-diffusion model with saturated incidence rate and spontaneous
infection is considered. We establish the existence of endemic equilibrium by using a fixed point
theorem. We mainly investigate the effects of diffusion and saturation on asymptotic profiles
of the endemic equilibrium. Our analysis shows that the spontaneous infection can enhance

persistence of infectious disease.
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1 Introduction

Understanding the development and extension of the diffusive susceptible-infected-susceptible (SIS)
model is an important topic in the spatial transmission of a disease. Some important questions such
as distinct dispersal rate may have different impacts on disease dynamics have been investigated
and answered. One may refer to [2, 3, 10, 13, 33, 34].

To study the effect of spatial heterogeneity and the individual movement on the disease dynamics,
Allen et al. in [1] considered the following SIS epidemic reaction-diffusion system:

oS - ST _

22 deAS = — i I Q

g} dgAS B(x;§+l+*y(x), x e, t>0,

gt—déAI: B(x)§+f —y(x)1, reQ, t>0, (1.1)
ﬁza%:o, zedN, t>0,

S(z,0) = So(z) > 0,1(z,0) = Ip(z) >,#0, €.
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Here, S and I stand for the density of susceptible and infected population at location z and time
t respectively; the habitat 2 is a bounded domain of RV (N > 1) with smooth boundary 952, and
the Neumann boundary conditions mean that no individual flux across the boundary; the positive
constants dg and dj represent the motility of susceptible and infected individuals respectively; the
positive Holder continuous functions f(x) and «y(x) denote the rates of disease transmission and
recovery at location x, respectively; the infection mechanism SI/(S+1) is called standard incidence
rate.

The main results of [1] concerned the existence, uniqueness and asymptotic profiles of the en-
demic equilibrium (the positive solution of the corresponding steady state system to (1.1)) as the
diffusion rate dg of the susceptible individuals approaches to zero. The global stability of the endem-
ic equilibrium and asymptotic behavior of the endemic equilibrium were studied in [36, 37, 39]. In
[40], Peng and Zhao considered the diffusive SIS model with spatially heterogeneous and temporally
periodic disease transmission and recovery rates. For the SIS epidemic model with mass action (i.e.
the infection mechanism term is 3SI), the dynamics and asymptotic behaviors of steady states of
the SIS epidemic model have been analyzed in [12, 45, 46]. In [44], Wang et al. investigated the SIS
epidemic model with saturation (the infection mechanism term is SI/(1+mlI), the positive constant
m is saturated incidence rate). In recent works [5-8, 23|, there is growing interest in investigating
SIS epidemic reaction-diffusion model in advective heterogeneous environments. The main purpose
is to analyze how the diffusion and advection jointly affect the disease dynamics. One of the main
features of above models is that the total number of susceptible and infected population is con-
served. For the SIS epidemic reaction-diffusion model with vary total population, there have been
many studies on the effect of vary total population on disease persistence, see [11, 16, 24, 26-29, 41].
These research show that the vary total population can enhance disease persistence.

In all above models, the spread of infectious diseases will be only occurred by direct contract
between the infected and susceptible population. In [21, 22], the authors adapted the classic disease
model to include the possibility for spontaneous (or “automatic”) social infection (such as emotions,
behaviors or ideas et al.). In this model, the disease infection is affected by both spontaneous
infection and infected transmission. In the recent paper [43], Tong and Lei considered a diffusive
SIS epidemic model with spontaneous infection, and investigated the effect of the spontaneous
infection and spatial heterogeneity.

With these considerations, we are motivated to study SIS epidemic reaction-diffusion system
subject to the saturated incidence rate and spontaneous infection in spatially heterogeneous envi-
ronment:

(05 _ ST B )
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S(x,0) = So(z) > 0,1(x,0) = Ip(z) >,#0, v eq.

Here the spontaneous infection rate n depends on spatial location z, is positive and Holder contin-
uous function on Q. It is clear that ST/(1 +ml) is a Lipschitz continuous function of S and I in
the open first quadrant. Hence, while we defining it to be zero while either S = 0 or I = 0, it can
be extended to entire first quadrant. Throughout the paper, it is assumed that initially, there is a



positive number of infected individuals, i.e. [ Io(x)dz > 0. Tt is noticed that the total number of
population of model (1.2) is conserved for all time ¢ > 0 in the sense that

/ [S(a,t) + I(a,t)] do = / [So(x) + Io()] dz = N, Vi >0, (1.3)
Q Q

where the initial data Sy and Iy are assumed to be nonnegative continuous functions on €.
We are mainly interested in non-negative equilibrium solutions of (1.2), that is, the non-negative
solutions of the following system:

SI
—dsAS = —f(x)7 g V(@) —n(2)S, z€Q,
_ _ _ 1.4
angIa[ B@) T Y@ 4n(@)s,  zel, (1.4)
il i 0, x € 0f.

Here, S(x) and I(z) denote the density of susceptible and infected individuals, respectively, at z € (2.
By the strong maximum principle, it is clear that only solutions (S(z), I(z)) satisfying S(z) > 0
and I(z) > 0 on Q for all z € Q. An endemic equilibrium (EE) of (1.2) is a componentwise positive
solution (S(z),I(x)) of (1.4).

The aim of the current paper is to investigate the effect of population movement, saturated
incidence rate, environmental heterogeneity and spontaneous infection on the persistence and ex-
tinction of disease. The main focus on the asymptotic behavior of the endemic equilibrium when
the small or large dispersal rate of susceptible or infected hosts and the large saturation. Our results
show that the spontaneous infection can enhance persistence of infectious disease.

The rest of this paper is organized as follows. In Section 2, we derive the existence of endemic
equilibrium by using a fixed point theorem. In Section 3, we analyze the asymptotic profiles of EE
as the diffusion coefficient dg or d; goes to zero or infinity and the saturated coefficient m tends
infinity. Section 4 is devoted to a brief discussion of the obtained results.

2 Existence of EE

In this section, we consider the existence of endemic equilibrium (i.e. positive solution of (1.4)).
From now on, we use EE to represent the endemic equilibrium. In the rest of the paper, for notational
convenience, we denote
F* =max F(x), Fy,=minF(x),
€ z€Q
for F = 8,7,7.

To achieve the aim, we first consider the uniform boundedness for solutions to (1.2). Actually,
it follows from the conservation law (1.3) that any solution (S(z,t),I(z,t)) satisfies L' bound
uniformly for all ¢ € [0, 00). Furthermore, applying [15, Lemma 2.1] (see also [40, Lemma 3.1]), one
can obtain the uniform bounds of |[S(-,t)|ec(q) and [[I(:,t)|| e (q) for all £ > 0. Indeed, we are able
to state the following result.



Proposition 2.1. There exists a positive constant C' independent of the initial data (So, Iy) with
/ (S0 + o) dz = N, such that for the solution (S,I) of (1.2) satisfies
Q

1SC, )l zoe ) + (5 )l oo () < €, VE € [0, 00).

Next, we will establish the existence of EE of (1.2). The main technique in the following proof
is Hale-Lopes fixed point theorem [47, Lemma 1.3.6], which is a consequence of [18, Lemmas 2.6.5
and 2.6.6] or [19, Theorems 5 and 6].

Theorem 2.2. System (1.2) admits at least one EE.
Proof. We set
L
x={o= (o € CORD: [ (014 an =N},
0

and decompose the state space X:
Xo = {(go,f_o) € X: 50 ;7é0 and I_o §é0}, 0Xg = {(So,f_o) e X: SoEOOI‘ I_OEO}.

By the standard regularity theory for parabolic equations, for every initial value (Sy, Iy) € X, system
(1.2) generates a semiflow, denoted by ®(¢) : X — X:

®(t)(So, Io) = (S(x,t), I(x,t)), (So,Io) € X, t >0,

where (S(z,t),I(z,t)) € X is the unique solution of (1.2) with (S(x,0), I(z,0)) = (So, Ip). It is clear
that ®(¢)X C X for all ¢ > 0. By Proposition 2.1, we know that ® is point-dissipative and eventually
bounded in Xy. Again from Proposition 2.1, standard parabolic theory and embedding theorems
ensure that ®(t) : Xo +— Xq is continuous and compact for any ¢ > 0. Denote by w((So, Ip)) the
omega limit set of the orbit v+ ((So, In)) := {®(t)(So, lp) : t > 0}. We have the following claim.
Claim: w((go, fo)) NoXg = 0, V(So, I(]) e X.

We argue by contradiction. Suppose that w((Sp, Ip)) N 0Xo # (. Then, for any arbitrary
€ > 0, there exists some (Sz,I3) € X and Ty > 0 such that the unique solution ®(Sg,I}) =
(S*(z,t), I*(z,t)) satisfies

lim I(x,t) < € or hm Si(z,t) <e, Vre.
t—o00

If lim I§(x,t) < € for any € Q, then there exists T > 0 such that

t—o0
0<I*(z,t)<e, €, Vt>T. (2.1)

Hence when t > Ty, S*(x,t) satisfies

%i—dsAS<'y€—77*S x €N, t>1T,
@:O, x €00, t>To,
ov



then the comparison principle of parabolic equations yields that

S*(z,t) < S*e ™ 4+ (1 —e ™)y e/n,, x€Q, Vt>Th, (2.2)

where §* = sup,.q S(z,T). From (2 1) and (2.2), it can be concluded that there exists T3 > Th
such that S*(z,t) + I*(x,t) < (2+ = )e for (z,t) € Q x [T3,00). Choose € small enough such that

/ [S*(z,t) + I*(z,t)] de < N, Vit >Ts.
Q

This contradicts the conservation law (1.3). )
Similarly, if tlim S§(z,t) < € for any x € Q, then there exists Ty > 0 such that 0 < S*(z,t) < €
—00

for (x,t) € Q x [Ty, 0), and I*(x,t) satisfies
oI p*
T < (-
AT (S
ol
%

n*)e—fy*I_, xeQ, t>Ty,
=0, x €00, t>1Ty,

then I*(z,t) < I*e™ 7 4 (1 — e*'y*t)(%)e for (z,t) € Q x [Ty, 00), where I* = sup, g I(z, Ty).
By a similar argument, we can derive a contradiction to the conservation law (1.3).

The above claim implies that w((So, In)) C Xo. From the above arguments, we can deduce that
the semiflow ® has a compact attractor A of X and A C Xy. Thus ® has a fixed point in A by
the Hale-Lopes fixed point theorem [47, Lemma 1.3.6], and hence system (1.2) admits at least one
positive EE. [

3 Asymptotic profiles of EE

In this section, we discuss the asymptotic behavior of EE of (1.2), which is the positive solution to
the elliptic system (1.4). From (1.3) it easily follows that the conservation law

le@ﬁ+H@Mx:N. (3.1)

We start with the L'-lower estimate for positive solutions to (1.4), which turn out to be inde-
pendent of dg and dj.

Lemma 3.1. Let (S,I) be any positive solution of (1.4). For any dg,dr,m > 0, we have

/S(x)darz " mfy*.i\f , /I(m)dxz n*N*. (3.2)
Q Br+mn* + %) Jo e+

Proof. Integrating the S-equation of (1.4) over 2, we can get

[romse- f o

M+Am@&m (3.3)



which means that

7*/Idx277*/5dm.
9] Q

Due to the conservation law (3.1), it is clear that

N
/Idxz LA
Q s + 7y

Again from (3.3), one can get

W*AIdx§(§+n*)/§25dx.

Thus, it follows from the conservation law (3.1) that

/de > mN
Q B* +m(n* + i)

3.1 The case of dg — 0

In this subsection, we are concerned with the asymptotic profile of the EE as dg — 0. Our main
result reads as follows.

Theorem 3.2. Fiz dy,m > 0, and let dg — 0, then every positive solution (S,I) of (1.4), up to a
subsequence of dg, satisfies

(S(x),I(z)) = (®s(x),®r(x)) uniformly on Q,
where

Y(z)®r(1 + mdPy)
B(x)®r +n(z)(1 +m®;)’

bg(x) = U (z,®7(z)) :=

and @5 is a positive constant satisfies

y(2)®r(1 +mdPy) B
/Q[q>1+ ﬂ(fU)‘I)I-l-??(:U)(l—I—m(I)])} dr = N. (3.4)

Proof. In this proof, we always assume that C' is a positive constant independent of dg and may

vary from place to place. For the sake of clarity, we divide our proof into four steps.

Step 1. LP-norm bound of (5, ) for any p > 1. From the the conservation law (3.1), we know

that the L'-bounds of S and I. We next estimate the LP-norm bound of (S, I) for any p > 1.
Rewrite the I-equation of (1.4) as

—di AT + ()T = | ()
oI
o

1+m[+17(:1:)}5, x e Q,

07 x € 0fL.



It follows from (3.1) and the elliptic L'-estimate (see, e.g., [4, Corollary 12] or [35, Lemma 2.2])
that |||lyy1.q) < C forall 1 < g < N/(N —1) (or for all ¢ > 1 if N =1). The Sobolev embedding
theorem W14(Q) — LP'() [17] shows that ||I]|;p(q) < C for all 1 < p1 < Ng/(N — q). Since ¢
can be close to N/(N — 1), it is evident that

[l e < C forall 1 <p; < N3 (3.5)
Note that (3.5) holds for all 1 < p; < o0 if N < 2.
Multiplying the S-equation of (1.4) by S* for any k£ > 0 and integrating over €, we have
I
dgk/ SFHVS|2de = / y(z)IS* dx — / B(z)———S* 1 dz — / n(x)S* de.
Q Q O L+ml Q
It is clear that
77*/ Skl de < ’y*/ 15% dz. (3.6)
Q Q

Using Holder inequality for (3.6) with (3.5) and taking k; = 1/¢1 with ¢ = 1+ 1/(p1 — 1) =
p1/(p1 — 1) (note that 1/p; + 1/¢1 = 1), we conclude that

1 1
n*/Sk1+1dx§'y*/IS’f1dx§'y* </ Ipldx)pl </Sdm> e
Q Q Q Q

Thus we obtain
||S||Lk1+1(9) <C. (3.7)

By (3.6) and Holder inequality again, it can be concluded that

1 1
77*/ Skz—l—l dr < ’7*/ Iskg dzr < 7* </ P! dx) P1 (/ Sk2q1 d:v) a1 ,
Q Q Q Q

where kg = (k1 +1)/q1 = 1/q1 + 1/¢3. Taking (3.7) into account, we obtain

1 1
77*/ Skz—H dx < ’)’* </ JP1 dx) P1 (/ Skl-i-l dx) a1 < C,
Q Q Q

1] ka1 () < C.

which implies that

Repeating the above iteration and taking

k 1 + L + L + 71 1
—_ _ J— e — — pl -1,
T a @ ¢ @ —1
then we can conclude that
151 koo t1(02) = 1SNl zer () < C- (3.8)



By (3.8) and the elliptic LP-theory for I-equation, ||I|[y2.s1 gy < C. From the Sobolev embedding
theorem W?2PL(Q) < LP2(Q) for all 1 < py < Np1/(N — 2p1), and the fact of p; can be close to
N/(N —2), we deduce that

[ ||pp2() < C, forall 1 <py <

NN4(orfora111<p2<ooifN§4).

From the similar arguments to the LP'-estimate of .S, one can show
1Sl Lra ) < C.
By standard bootstrapping arguments, we can eventually obtain
15 zry < C, [l zpo) < C, forall 1 < p < oco. (3.9)

Step 2. Lower bounds of (5,1). Set S(z1) = min, g S(z), then it follows from the maximum
principle [32, Proposition 2.2] for the S-equation of (1.4) that

B(x1)S(x1)1(21)

V) @) = =20

+n(z1)S(21),

this gives

* *
min [ (z) < mmiﬁ S(z). (3.10)
z€N mM7Yx z€Q

Using a useful lemma from [17, Lemma 8.18] (see also [30, Lemma 2.2] or [38]) with ¢ = 1 for
I-equation, we conclude that

min I > C|[I||1(q)- (3.11)
z€eQ)
Thanks to (3.2) and (3.11), we have
min I (z) > C. (3.12)
€2
Hence, (3.10) and (3.12) yields
S(x)>C, I(x)>C, Vxel. (3.13)

Step 3. Convergence of I. By (3.9), the standard LP-theory (see, e.g., [17]) for I-equation shows
that
I llw2ry < C  forall p>1.

Taking p to be sufficiently large, we deduce from the Sobolev embedding theorem that
[llc1+eq) < C for some 0 < o < 1.

Thus, there exists a subsequence of dg — 0, denoted by d; := dg;, satisfying d; — 0 as ¢ — oo, and
a corresponding positive solution (S;, I;) := (Sg,, Ia,) of (1.4) with dg = d;, such that

I; - ®;  uniformly on Q, as i — oo, (3.14)



where ®; € C1(Q) and ®; > 0 on Q due to (3.12).
Step 4. Convergence of S. We consider the S-equation:

Sil;
ggiASi = —pB(z) 1+ ml, + (@)l —n(z)S;, z € Q,
L= 0, x € 0N.
Ov

In light of (3.14), for arbitrarily small e > 0, we have for sufficiently large i such that
0< ®r(z) —e < ILi(z) <Pr(x) +e forall x € Q.

Thus, for all large ¢, it is evident that

) )~ (@) < B D ) (@1 40 - (o))
_ [ (@, ®1) - Si]g(a, @)
B 1+m(®+e

where
V(@) (1 + €)[1 + m(P; + €)]

B(x)(®1 — €) +n(x)[1 +m(®s +¢)]’
9 (z, @1) = B(2)(®r — €) + n(z)[1 + m(®; + €)].

For given large i, resorting to the auxiliary problem

w (z, Pr) =

[uf (x,®5) — u] 9 (x, @)

—d;Au = , x €,

5 1+m(®r+¢) (3.15)
gu _ 0, x € 09,

v

one can assert that .S; is a subsolution of (3.15) and any sufficiently large positive constant C' satisfies
S; < C'is a supersolution of (3.15). Then, (3.15) admits at least a positive solution, denoted by u;,
which satisfies S; < u; < C on . By the maximum principle [32, Proposition 2.2], it is observed
that

min w (z, ®7(z)) < minwu,;(z) < ui(z) < maxu;(z) < maxw® (z, ®r(z)), VoeQ.
zeN e e e

Using the singular perturbation theory technique [31, Lemma 2.1] (see also [14, Lemma 2.4]), we
can deduce that any positive solution u; of (3.15) fulfills

u; — w (2, ®7(z)) uniformly on €, as i — oc.
Observe that S; < u; < C on €. Hence, we can assert that

limsup S;(z) < w® (x, ®;(x)) uniformly on €. (3.16)

1—00



Similarly, for all large 4, it follows that

~Bla) 2o ()~ n()Ss > —B(x)m (@) (B — ©) — n(@)S:
 [we (@, @1) = Sige(w, 1)
a 1+ m(P; —e) ’

where
V() (P — )[1 + m(P; — €)]

B(@)(®r +€) +n(@)[1 +m(Pr —€)]
ge(z, @) = B(x)(Pr + €) + n(x)[1 + m(Pr — €)].

We (l‘,‘l)]) =

Similarly, we can get
liminf S;(z) > we (2, ®7(z)) uniformly on €. (3.17)
1—00

Note that
V(z)Pr(1 +mPy)

lgnowe (1:7 (I)](ZE)) = l%w (:E7 q)l($)) = ,B(x)q)l + 7’](1‘)(1 + m<I>1) =U (LL‘, @[(l’)) ’
it then follows from (3.16) and (3.17) that
Si(x) = U (z,®7(z)) = ®g(z) uniformly on Q, as i — oo. (3.18)

Finally, we determine ®;. Substituting (3.14) and (3.18) into the right-hand side of the I-equation
in (1.4), we conclude that

Sili PPy
— I; i —_— - o s =0
B) o — @+ n(@)S: = Ba) 5~ (@) + () s
uniformly on €, as i — oco. Clearly, ®; fulfills
P
—d;AD; =0, x € Q; %[:0, z € 0.
v

Hence, ®; must be a positive constant due to (3.13). It follows from the conservation law (3.1) that

/(q>5+q>,)dx—N.
Q

Thus, it holds

V(z)®r(1 +m®) _
/Q o+ B(x)®r + n(x)(1 + m@zﬂ do =N

The proof is complete. ]

10



3.2 The case of df — 0

This subsection is devoted the investigation of the asymptotic behavior of the positive solutions of
(1.4) as df — 0. Our result can be stated as follows.

Theorem 3.3. Fiz dg,m > 0 and let di — 0, then every positive solution (S,I) of (1.4) satisfies
(up to a subsequence of df — 0)

(S(x), I(x)) = (Vg(x),¥(x)) uniformly on §,

where Wg(x) is a positive constant satisfies

/ [\/[(6 +mn)¥s — )"+ 4mynTs + [(8+mn)Ts — 1] fwl (3.19)
Q 2my
and V() satisfies

Vo) =V (o Ws(a)) = 5 { (8 + mn)¥s — ]+ \/[(8+mn)s — ] + 4m777‘1’s} |

Proof. The proof will be divided into three steps.

Step 1. A priori estimates of (S,I). In what follows, we always assume that C' is a positive
constant independent of small d; and may vary from line to line. By the similar analysis to step 1
in the proof of Theorem 3.2, we first consider the S-equation of (1.4). The elliptic L'-theory (see,
e.g., [4, Corollary 12] or [35, Lemma 2.2]) and Sobolev imbedding theorem yield that

N
[Slzri(o) < C forall 1 <py < N3 (or for all 1 <p; <ooif N <2).

Next, we establish the LP'-norm estimate of I. Multiplying the I-equation of (1.4) by I* for any
k > 0 and integrating over €2, we can conclude that

'y*/IkdeS (B—l-n*)/SIkda:.
Q m Q

Repeating the similar iteration in step 1 of the proof to Theorem 3.2, one have LPl-norm estimate
of I. By the bootstrap argument, we can obtain

[Slr) £ C Mllry £C; V1< p<oo. (3.20)

We next consider the lower bound of (S,I). Set I(x2) = min, g I(z), one can apply [32,
Proposition 2.2] again to the I-equation of (1.4) to assert that

B(x2)S(w2)(x2)
1+ m[(l’g)

Y(x2)I(72) > + n(w2)S(22),

which implies that

min I (z) > e min S(x). (3.21)

) V* ze

11



Making use of [17, Theorem 8.18] (see also [30, Lemma 2.2] or [38]) with ¢ = 1 for S-equation, we
conclude that
min S > C||S|p1(q)- (3.22)
€N

From (3.2), (3.21) and (3.22), we can deduce that
S(z)>C, I(x) >C, VYrel (3.23)

Step 2. Convergence of S. In view of (3.20), the elliptic LP-theory and Sobolev embedding
theorem guarantee that
[Sllcr+ay < C  for some a € (0, 1).

Therefore, there exists a subsequence of d; — 0, denoted by d; := d;; — 0, satisfying d; — 0 as
j — 00, and a corresponding positive solution (S;, I;) of (1.4) with d; = d; satisfies

S; — Wg on CH(Q), as j — oo, (3.24)

where ¥g € C1(Q) and ¥g > C > 0 due to (3.23).
Step 3. Convergence of I. Consider the equation satisfied by I;:

S;I;

—d;AL = B(z)—LL— —y(2)I; + n(z)Sj, x€Q,

PYe L+mi; (3.25)

—L =, x € 00

v
By (3.24), given any small € > 0, we have for sufficiently large j such that

0< ¥g(x) — €< Sj(z) < Vg(x) + € for all z € Q. (3.26)
Thus, it holds

S;1; I;(¥s+¢)
B(z) 1 +]Wjdj +1(x)S; —y(@)l; < 5($)]1_|_7ij = (@)L + n(z)(Vs +€)
L (2, 0s(@) = 1) |1 — HY (2, s(2))]

)

1+ij

where

H* (2, Us(x)) [(B() +mn(2))(Ts +€) —(x)]

" 2mA(x)
1
2my(z)

VI(B@) + mn(@) (s + ) — (@) + dmy(@)n(a)(Ts + ),

with HY(z, Ug(z)) <0 < H_IF’E(J:, Ug(x)) on Q. For all large j, we consider the following auxiliary
elliptic problem:

HY (2, Ug(x)) —v| |[v— HY (&, ¥g(z))
g O |

7T _ Q.
ey 0, r €D

, TEL, (3.27)

12



It is clear that I; is a subsolution of (3.27) and any sufficiently large positive constant C' satisfies
I; < C'is a supersolution of (3.27). Therefore, (3.27) admits at least one positive solution, denoted
by v;, which satisfies I; < v; < C on Q. Applying the maximum principle [1, Proposition 2.2] to
the system (3.27), one can see that

min H}_’e (z,¥g(x)) <minvj(z) < vj(r) < maxvj(zr) < max H_lf (x,Wg(z)) for all z € Q.

€ z€Q € €
From the similar singular perturbation theory technique [31, Lemma 2.1] (see also [14, Lemma 2.4]),
we obtain -

vj(x) = H}r’e (x,Vg(x)) uniformly on Q, as j — co.

Since I is a subsolution of (3.27), we have

limsup [(x) < H}F’E (2, ¥s(z)) uniformly on Q. (3.28)

Jj—00

Similarly, from (3.26), for all large j, we have

Bl T + )8, = 1@ > A A (a5 =) = 5(a)1,
2 (@, W) = L] [ 12 (0 ()]
- 1+ ml; ’
where
HE (0. ¥5(2)) =5 [(8(0) + mn(a) (05 — ) = 5(a)]
sy V [(8@) + (@) (¥ = ) = (@)]* + 4ma @n(a) (B — ).

with H> (z,Tg(x)) < 0 < H_%e (2, ¥s(x)) on Q. Similarly, for fixed large j, we consider the
following elliptic problem:
(2 (0, Ws(2) = v] v — H (2, Ws(x))]

—de’U =

5 1 +mv

v

== = Q.

ey 0, r €0
Observe that 0 and I; form a pair of sub-supersolution of (3.29), it can be concluded from the above
analysis that

» TEL, (3.29)

liminf I;(x) > Hi’e (z,¥g(z)) uniformly on Q. (3.30)

J—00

Notice that
. l,e 1 2e
lim H.* (2, Us(2)) = lim HY* (2, ¥s(2))

B 2m’1y(a:) [(B@)¥s +mn(2)) Vs —~(z)]
%17(95)\/[(5(90)‘1’3 +mn(z)) Vg — 7(95)]2 + dmry(2)n(z) Vg
=V (z,¥s(2)),
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it follows from (3.28) and (3.30) that
Ij(z) = V (2, ¥g(x)) = ¥7(x) uniformly on 2, asj— oo. (3.31)

By (3.24) and (3.31), it is clear that

SjIj \PS\IJI
- —n(2)S; I — —B(z)—L — p(2)¥ ;=0
B0 TP = n@)S; + 9@ = B S (@) s + ()
uniformly on €, as j — oco. Thus, we can obtain
ov
A AV =0, z€Q; —2 =0, x €.
ov
As a result, ¥g is a positive constant due to (3.23). It follows from the conservation law (3.1) that
(3.19) holds. This completes the proof. O

3.3 The case of dg — o0 or d; —

In this subsection, we discuss the asymptotic behavior of the EE when dg — oo or dif — oco. Our
main results read as follows.

Theorem 3.4. Fix d;,m > 0 and let dg — oo, then every positive solution (S,I) of (1.4) satisfies
(up to a subsequence of dg — o0)

(S,I) — (8%°,I®) wuniformly on €,

where S* is a positive constant and I°° > 0 on 2, and (S°°, I*°) solves
Shad At
—d;AI® = —_—
dr 5(33)1 ey
oI
— =0, x € 010, (3.32)

1%
/a(soo +1°)da = N.
Q

Proof. From the estimates of (S, I) in steps 1 and 2 in the proof of Theorem 3.2, it is clear that the
estimates (3.9) and (3.13) hold, and the positive constants C' are independent of dg > 1. Now, we
rewrite the S-equation of (1.4) as

—y(x)I® +n(x)S>® x € Q,

_ 1 [_B)SI
gAS_dS [ 1+m[—|—’y(m)[ n(x)S|, xze€qQ,
S
5= 0, x € 0N,

Then the elliptic LP-theory and Sobolev embedding theorem guarantee that there exists a subse-
quence of dg 1, labeled by d, with dj, — oo as k — oo, such that the corresponding positive solution
(Sk, It) of (1.4) for dg = dj, satisfies Sy, — S in C1(Q2) as k — oo. It is evident that S> solves

05

—AS® =00 e T
, T € 8L o

=0,z € 09Q2.
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Hence, S is a positive constant due to (3.13). As before, resorting to the I-equation of (1.4) and
passing to a further subsequence if necessary, we have

I, = I® inCYQ), ask— oo,

and I > 0 on Q due to (3.13). It follows from standard elliptic regularity theory that (5>, 1) €
C?(Q) x C?(Q), and (S, I*°) satisfies (3.32) due to (1.4) and (3.1). The proof is complete. O

By a modifying argument of the proof of Theorem 3.4, we can obtain the asymptotic profile of
EE as dj — oo.

Theorem 3.5. Fix dg,m > 0 and let d; — oo. Then every positive solution (S,I) of (1.4) satisfies
(up to a subsequence of di — o0)

(S, 1) = (Soo, o) uniformly on Q,
where I is a positive constant and S > 0 on Q, and (Soos Ino) solves

_ B(@)Sscls
0S50

” =0, x € 092,
ﬁ(Soo—l—Ioo)dm:N.
Q

3.4 The case of m — >

This subsection is devoted to investigating the asymptotic behavior of positive solutions of (1.4)
with dg,d; > 0 being fixed and m — oo.

Theorem 3.6. Fix dg,d; > 0 and let m — oo. Then every positive solution (S,I) of (1.4) satisfies
(S, 1) — (S, I), wuniformly on Q,
where (S, 1) solves the following system:

[ —dsAS =~(@) —n(x)5, e,
—dIAI_ —y(x) +n(x)S, =e,

05 _ol _ v eon, (3.33)

oy v
/(§+f)dx:N
Q

Proof. We first consider the estimates of S and I. Actually, again from the discussion in step 1 and
step 2 in the proof of Theorem 3.2, we can conclude that for all sufficiently large m,

ISIw2e@) < C, M llwza) < C,

and
I(z) > C, S(x) >C, Vzeq, (3.34)
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where the positive constants C' are independent of large m. Thus, the elliptic LP-theory and Sobolev
imbedding theorem guarantee that there exists a subsequence of m, labeled by m,,, with m, — oo
as n — oo, such that the corresponding positive solution (S, I,,) of (1.4) satisfies

S, — S, I, — I uniformly on Q, as n — oc.

Thanks to (3.34), we know S > 0 and I > 0 on Q. It is clear that (S, ) solves (3.33). The proof is
complete. ]

4 Discussion

In this paper, we have proposed an SIS epidemic reaction-diffusion model (1.2), which includes
saturated incidence rate ST/(1+4mlI) and spontaneous infection n. We are concerned with the exis-
tence of positive solutions to steady state system. Moreover, we also have analyzed the asymptotic
profiles of positive solutions if the migration rate of the susceptible or infected population is small
or large and the saturation rate is large. The main purpose of our present work is to investigate the
effect of spontaneous infection on the qualitative behavior of (1.2). Similar questions are addressed
for the model with the standard incidence rate SI/(S+I) in [43] and the model with the saturated
incidence rate without spontaneous infection (i.e. n =0 on Q) in [44].

For the reaction-diffusion SIS model (1.2) without spontaneous infection (n = 0 on Q), the
asymptotic profiles of the EE (when exist) were studied in [44]. When the diffusion rate of the
susceptible individual tends to zero, it was proved that the infected individuals vanish on the
entire habitat in the case (N < [,~/8dx). However, as the diffusion rate dg is small, our result
(Theorem 3.2) shows that infected individuals always exist and distribute evenly throughout the
habitat, and the susceptible distribute inhomogeneous on the entire habitat. For the model (1.2)
without spontaneous infection, when the saturated incidence rate tends to infinity, it shows that
the EE tends to the DFE, which means that the disease will be eliminated. In sharp contrast, for
our model (1.2), we see from Theorem 3.6 that the susceptible and infective stays inhomogeneously
on the whole habitat. Our study shows that the spontaneous infection can enhance persistence of
infectious disease and the disease will becomes more threatening and harder to control.
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