References
  1. Biot M. Thermoelasticity and Irreversible Thermodynamics. J. Appl. Phys . 1956; 27: 240–253.
  2. Lord H., Shulman Y. A Generalized Dynamical Theory of Thermoelasticity. J. Mech. Phys. Solids 1967; 15: 299.
  3. Green AE., Lindsay KA. Thermoelasticity. J. Elasticity 1972; 2: 1–7.
  4. Green A.E., Naghdi PM. A Re-examination of the Basic Postulates of Thermomechanics. Proc. Roy. Soc. Lond . A 1991; 432: 171-194.
  5. Green AE., Naghdi PM. Thermoelasticity without Energy Dissipation.J. Elasticity 1993; 31: 189-208.
  6. Tzou DY. Thermal shock phenomena under high rate response in solids.Annual Rev. Heat Transf . 1992;4(4).
  7. Tzou DY. A unified field approach for heat conduction from macro-to micro-scales. J. Heat Transf . 1995; 117(1): 8-16.
  8. Tzou DY. The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf . 1995; 38(17): 3231-3240.
  9. Chandrasekharaiah DS. Hyperbolic thermoelasticity, A review of recent literature. Appl. Mech. Rev . 1998; 51(12): 705-729.
  10. Bagley RL, Torvik PJ. A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol . 1983; 27: 201–210.
  11. Koeller RC. Applications of fractional calculus to the theory of viscoelasticity. Trans. ASME-J. Appl. Mech . 1984; 51: 299–307.
  12. Rossikhin YA., Shitikova MV. Applications of fractional calculus to dynamic problems of linear and nonlinear heredity mechanics of solids.Appl. Mech. Rev . 1997; 50: 15–67.
  13. Podlubny I. Fractional Differential Equations . Academic Press, New York ; 1999.
  14. Miller KS., Ross B. An Introduction to the fractional integrals and derivatives theory and applications . Wiley, New York; 1993.
  15. Povstenko YZ. Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stresses. Mech. Res. Commun . 2010; 37: 436–440.
  16. Sherief HH, El-Sayed AMA., Abd El-Latief AM. Fractional order theory of thermoelasticity. Int. J. Solids Struct . 2010; 47: 269–273.
  17. Ezzat MA. Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Phys. B 2010; 405: 4188–4194.
  18. Ezzat MA. Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer. Phys. B 2011; 406: 30–35.
  19. Jumarie G. Derivation and solutions of some fractional Black-Scholes equations in coarsegrained space and time. Application to Merton’s optimal portfolio. Comput. Math. Appl. 2010; 59:1142–1164.
  20. El-Karamany AS., Ezzat MA. Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity. J. Therm. Stress . 2011; 34: 264–284.
  21. Ahmed E Abouelregal. Modified fractional thermoelasticity model with multi-relaxation times of higher order: application to spherical cavity exposed to a harmonic varying heat. Waves in Random and Complex Media 2019: DOI: 10.1080/17455030.2019.1628320.
  22. Ahmed E Abouelregal. On Green and Naghdi Thermoelasticity Model without Energy Dissipation with Higher Order Time Differential and Phase-Lags. J. Appl. Comput. Mech. 2019: DOI: 10.22055/JACM.2019.29960.164
  23. Ahmed E Abouelregal. Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags. Materials Research Express 2019: DOI: 10.1088/2053-1591/ab447f.
  24. Li X. A generalized theory of thermoelasticity for an anisotropic medium. Int. J. of Eng. Sci . 1992; 30(5): 571-577.
  25. Kaur I, Lata P. Rayleigh wave propagation in transversely isotropic magneto-thermoelastic medium with three-phase-lag heat transfer and diffusion. Int. J. of Mech. and Mat. Eng . 2019; 14(1): 1-11.
  26. Honig G., Hirdes U. A method for the numerical inversion of the Laplace transform. J. Comput Appl Math . 1984; 10: 13–132.
  27. Othman MIA., Abouelregal AE. Magnetothermoelstic analysis for an infinite solid cylinder with variable thermal conductivity due to harmonically varying heat. Microsystem Technologies 2017; 23(12): 5635–5644.