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Summary

We present a numerical method for simulating 2D flow through a channel with
deformable walls. The fluid is assumed to be incompressible and viscous. We con-
sider the highly viscous regime, where fluid dynamics are described by the Stokes
equations, and the less viscous regime described by the Navier-Stokes equations. The
model is formulated as an immersed boundary problem, with the channel defined
by compliant walls that are immersed in a larger computational fluid domain. The
channel traverses through the computational domain, and the walls do not form a
closed region. When the walls deviate from their equilibrium position, they exert
singular forces on the underlying fluid. We compute the numerical solution to the
model equations using the immersed interface method, which preserves sharp jumps
in the solution and its derivatives. The immersed interface method typically requires
a closed immersed interface, a condition that is not met by the present configuration.
Thus, a contribution of the present work is the extension of the immersed interface
method to immersed boundary problems with open interfaces. Numerical results
indicate that this new method converges with second-order accuracy in both space
and time, and can sharply capture discontinuities in the fluid solution.
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1 INTRODUCTION

A detailed and accurate description of fluid flow through a channel with compliant or actively moving walls is of interest in
many biological applications, including pumping via peristalsis in a valveless heart1, food mixing in the intestine2, and blood
flow through a vessel3,4 or renal tubules5,6,7,8. A natural way to model flow along a compliant channel is to frame it as an
immersed boundary problem9,10. Immersed boundary problems are typically a subset of fluid-structure interaction problems
in which a thin structure or physical boundary is present in the fluid11. The immersed boundary method transfers the singular
boundary forces onto the underlying fluid using approximate (smooth) Dirac delta functions typically with(ℎ) support. Because
the delta function is smoothed, this approach does not capture the jump discontinuity in the solution (e.g., pressure) at the
immersed boundary, but rather approximates the solution as a continuous function with a large gradient. In general, the immersed
boundary method computes approximations with first-order spatial accuracy. Most immersed boundary problems are formulated
for Navier–Stokes flows, although it is applicable to Stokes flows as well.
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If better accuracy is desired, especially near the immersed boundary, one may use the immersed interface method developed
by LeVeque and Li12,13. The immersed interface method captures the jumps in the solution and its derivatives sharply, and
generates approximations with second-order accuracy. The key idea in the immersed interface method is the incorporation of
known jumps in the solution or its derivatives into the finite difference schemes. The immersed interfacemethod has been applied
to a variety of applications to compute the coupled motion of a viscous fluid and a thin closed interface with second-order
accuracy14,15,16,17,18. However, the immersed interface method requires that the immersed interfaces be closed. Thus, to simulate
flow through a channel, one typically approximates the channel as a closed, elongated interface with capped ends9,17,19,20,21,22,
immersed in a larger computational domain. The flow is then driven by a pair of fluid source and sink located at the opposing
ends of the channel. A major downside of this setup is the unrealistic flow near the source and sink. As a remedy, a longer
channel is modeled, and only the flow sufficiently far from the source and sink is considered.
The goal of this study is to develop a modified version of the immersed interface method that can be applied directly to an open

channel without the representation of (unrealistic) fluid source and sink. To achieve that goal, we derive the jump conditions for
the open interface and apply the method to the Stokes equations as well as the Navier-Stokes equations. Numerical examples
indicate that the method captures the sharp jumps in the solutions, and achieves second-order accuracy in both time and space.

2 PROBLEM FORMULATION

2.1 Computational domain and immersed interface
We formulate a model that simulates fluid flow through an open channel with compliant walls, extending from one side of a
rectangular computational domain to the opposite side. The model is formulated in 2D rectangular coordinates. To define the
model, consider a rectangular fluid and computational domain given by Ψ = [0, L] × [−H,H]. Let Γ represent the compliant
walls of the channel immersed in Ψ. Specifically, Γ is an interface immersed in the fluid formed by two distinct smooth curves
X = G1(s) for s ∈ [0, L1] such that L1 is the resting length of the curve G1 which intersects )Ψ at (0, a1) and (L, b1) and
X = G2(s) for s ∈ [0, L2] such that L2 is the resting length of G2 which intersects )Ψ at (0, a2) and (L, b2), as shown in Figure
1. We are interested in tracking flow through the channel (i.e., betweenG1 andG2), driven by a pressure gradient between x = 0
and x = L. Let n be the unit vector normal to Γ oriented towards )Ψ away from the channel.

FIGURE 1 The open immersed interface, Γ, spans the 2D computational domain, Ψ = [0, L] × [−H,H]. The interface Γ
consists of two separate curves given by G1 and G2 that intersect the x = 0 and x = L on )Ψ at (x, y) = (0, a1), (x, y) = (0, b1),
and (x, y) = (0, a2), (x, y) = (0, b2) respectively. The unit normal, defined to be n, is oriented towards )Ψ.
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2.2 Boundary conditions
To properly state the problem, appropriate boundary conditions must be imposed on fluid velocity and pressure. Bi-periodic
boundary conditions are assumed for fluid velocity, which implies that the volume of the fluid in the channel remains constant
in time. To drive flow, we prescribe a pressure gradient inside the channel. For simplicity, we assume that a1 = b1 and a2 = b2.
Thus, the width of the inlet and outlet is the same. We require there to be a constant difference in pressure, denoted Pdif f , at the
inlet and outlet of the channel

p(0, y) = p(L, y) +

{

Pdif f a1 ≤ y ≤ a2
0 else

(1)

The derivatives of pressure on the x = 0 and x = L boundaries are required to be equal
)p
)x

|

|

|

|(x=0,y)
=
)p
)x

|

|

|

|(x=L,y)
. (2)

We will refer to this setup as “inhomogeneous periodic boundary conditions.” Not only does this setup generate a pressure
gradient along the channel, but it also forces the pressure gradient to be periodic in x, which is consistent with the periodic
boundary conditions imposed for velocity. Periodic boundary conditions are imposed for pressure at the y = ±H boundaries.

2.3 Fluid structure interactions
The Navier-Stokes equations are given by

�
()u
)t
+ u ⋅ ∇u

)

= �Δu − ∇p + F (3)

∇ ⋅ u = 0 (4)

where u = (u, v), where u and v denote fluid velocity components in the x and y directions, respectively; p is the pressure; � is
viscosity; and F is the interfacial force, which is singularly supported along Γ (see below). We consider also the zero Reynolds
number regimes given by the Stokes momentum equation:

�Δu − ∇p + F = 0 (5)

and the continuity equation (Eq. 4).
The force exerted by the interface Γ can be written as

F(x, t) = ∫
Γ

f (�)�(x − X(�))d�, (6)

where X denotes the position of the interface, � = �(s, t) is the material coordinate(s) that parameterize the interface curve at
time t, f (�) is the force strength at the point X(�), and � is the Dirac delta function.
The force strength f (�) from Eq. 6 has two major components, an elastic force fE and a tether force fT :

f (�) = fE(�) + fT (�). (7)

Since the interface is elastic, any deviation from its resting configuration generates a restorative force. The elastic force can
be modeled using Hooke’s law

fE(s, t) =
)
)s
(T (s, t)�(s, t)) (8)

where the unit tangent vector to Γ is given by
�(s, t) =

)X∕)s
|)X∕)s|

. (9)

The tension T (s, t) in Eq. 8 is given by

T (s, t) = aE

(

|

|

|

|

)X
)s

|

|

|

|

− 1
)

. (10)

where aE controls the stiffness of the interface.
The second force component fT arises from the displacement of the tethers from their equilibrium positions or anchor points.

The interface control knots are tethered to anchor points in the fluid domain by a spring with resting length 0. Suppose the
interface X is anchored to X̄. Let aT be the spring force constant. Then the tether force is given by

fT = aT (X̄ − X). (11)
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Thus, if the interface knots move away from their anchor points, restorative forces are generated. Interface movement can either
be restricted by using stationary anchor points, or be induced by moving the position of the anchor points.
The interface is deformable and moves at the same speed as the local fluid. The no-slip condition

dX
dt

= u(X). (12)

describes this motion.

2.4 Jump conditions
The derivation of the jump conditions normally requires that the interface be a closed curve. Here we extend the derivation to
an open channel. Details are explained in the Appendix. Briefly, we extend Γ to a fictitious closed and piecewise smooth curve
Γc by taking the union of Γ, the line joining the points {(0, a1), (0, a2)}, and the line joining the points {(L, b1), (L, b2)}. The
rest of the derivation is similar to the closed curve case. The jump conditions given in Eqs. 13-16 are the same for the Stokes
equations and for the Navier-Stokes equations. This follows due to the no-slip condition assumed for the interfacial motion,
which generates a continuous velocity field and material derivative across the interface23.

[p] = f ⋅ n (13)

[pn] =
)
)s
(f ⋅ �) (14)

[u] = 0 (15)
�[un] = −(f ⋅ �)�. (16)

Below we refer to this extended immersed interface method as simply the immersed interface method.

3 NUMERICAL METHODS

3.1 Stokes problem
To solve the Stokes equations with a singular force (Eqs. 4 and 5), we compute the fluid velocity and pressure on a fixed Eulerian
grid:

Ωℎ =
{

xi,j =
(

jℎ, iℎ − H
2

)

|

|

|

|

i ∈ 1,… , Ny and j ∈ 1,… , Nx

}

,

where ℎ is the grid spacing andNx =
L
ℎ
+1 andNy =

H
ℎ
+1 are the number of grid points in the x and y directions respectively.

A moving Lagrangian frame of reference is used to track the location of the interface Γ. The interface position at time tn = nΔt
is tracked byNb boundary markers Xn = {Xni }

Nb
i=1 that are connected by a cubic spline

24.
The Stokes solution is computed by applying the immersed interface method to solve a series of three Poisson equations: one

obtained by taking the divergence of Eq. 5 to yield
Δp = ∇ ⋅ F, (17)

the other two being the two velocity components of Eq. 4. Specifically, Eqs. 4 and 17 are discretized using second-order finite
difference, with jump conditions Eqs. 13–16 incorporated into the finite difference stencil as correction terms. For details see
Refs.12,14.

3.2 Navier-Stokes problem
A large number of correction terms are involved in the application of the immersed interface method directly to the Navier-
Stokes equations. As an alternative, we adopt the velocity decomposition approach25. This approach leverages the fact that, for
a given singular interfacial force, the jumps in the solutions are identical for both the Stokes equations and the Navier-Stokes
equations (see Eqs. 13–16)12,13.
To apply the velocity decomposition approach, we split the Navier-Stokes equations into two parts: a singular part that satisfies

the Stokes equations including the singular force (denoted by us and ps), and a regular part (ur and pr):

u = us + ur, p = ps + pr (18)
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Taking the difference between Eqs. 3 and 5, we arrive at that the regular part, ur and pr, satisfies

�
(

)ur
)t

+ u ⋅ ∇ur
)

= �Δur − ∇pr + Fb (19)

where Fb is a body force

Fb = −�
(

)us
)t

+ u ⋅ ∇us
)

. (20)

Note that the full velocity u is used in the transport of ur and in Fb. Then substituting Eq. 18 into Eq. 4 yields

∇ ⋅ ur = 0 (21)

To advance the full solution from tn to tn+1, the Stokes part (un+1s , pn+1s ) is first computed, following the procedures described
in Sect. 3.1. This allows us to update Fn+1b by integrating along the fluid trajectory backward in time (more below). Then the
regular solution (un+1r ,pn+1r ) is computed. Equations 19 and 21 are essentially the Navier-Stokes equations with a body force and
are solved using the projection method. That is, we first compute the intermediate solution u∗,n+1r using Eq. 19 alone and then
project u∗,n+1r onto the divergence free space to yield un+1r and pn+1r .
To compute u∗,n+1r , we first rewrite Eq. 19 in terms of the material derivative as follows

�
Dur
Dt

= −∇pr + �∇2ur + Fb. (22)

Note that ur and its material derivatives are smooth along the fluid trajectories. This motivates us to use the semi-Lagrangian
time-discretization method. The semi-Lagrangian method computes the solution at fixed Eulerian grid points x by integrating
the solution backward in time along the trajectories of fluid particles that pass through those grid points at tn+1. In our case,
the semi-Lagrangian discretization is applied to the material derivative Dur∕Dt. To proceed, we first compute the upstream
positions of the particle, xn at tn and xn−1 at tn−1, which can be done by integrating

dx(t)
dt

= u(x(t), t), x(tn+1) = x0, (23)

backwards in time. Once xn and xn−1 are found, we compute ur at these locations and times. It is unlikely that the upstream
positions coincide with grid points. Therefore these upstream velocity values ũnr = ur(xn, tn) and ũn−1r = ur(xn−1, tn−1) are
approximated using spatial interpolation. The material derivative is then approximated using the second-order backwards
difference formula,

�

(

3u∗,n+1r − 4ũnr + ũ
n−1
r

2Δt

)

+ ∇pnr = �Δu
∗,n+1
r + Fn+1b . (24)

The intermediate solution u∗,n+1r is then projected, P (u∗,n+1r ) = un+1r , into the subspace of divergence-free vector fields so that
∇ ⋅ un+1r = 0. Specifically, we solve

Δ�n+1 = 1
Δt
∇ ⋅ u∗,n+1r . (25)

and update un+1r and pn+1r by
un+1r = u∗,n+1r − Δt∇�n+1 (26)

∇pn+1r = ∇pnr +
3
2
∇�n+1 − �Δt∇3�n+1. (27)

The full solution is given by Eq. 18. Details for the velocity decomposition method can be found in Ref.25.

3.3 Boundary condition and solution decomposition
In the velocity decomposition method, boundary conditions must be imposed for both the Stokes and regular parts such that the
boundary conditions for the full solution are still satisfied. Recall that bi-periodic boundary conditions are prescribed for the full
velocity solution. This is achieved by imposing bi-periodic boundary conditions for both us and ur as well as the intermediate
solution u∗r .
The full pressure solution must satisfy the inhomogeneous periodic boundary conditions given by Eqs. 1–2. This is achieved

by imposing the inhomogeneous periodic conditions on ps along x and periodic boundary conditions along y, and by imposing
the regular bi-periodic boundary conditions on pr. Bi-periodic boundary conditions are assumed for the auxillary variable �.
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4 NUMERICAL RESULTS

4.1 Stokes Results
We first conduct a grid refinement study on the Stokes problem to test the spatial convergence of the method in the zero Reynolds
number regime. In this test, the interface is initially displaced and allowed to return to its resting position as a channel with a
constant width. The computational domain is taken to be Ω = [0cm, 4.25cm] × [−1.625cm, 1.625cm]. The interface is tethered
to its resting position as a channel with constant width R = 1.42 centered at y = 0. The interface is initially displaced in the y
direction according to the function

Y (x) = .2e−
(

x− L
2

)2

+ 0.5R. (28)
The pressure drop along the channel (in x) is taken to be Pdif f = 2.544 gm/(s2cm). Model parameters for this simulation are
presented in Table 1.

TABLE 1 Parameters used for the spatial convergence study for 2D Stokes flow in rectangular coordinates.

Parameter Symbol Value

Viscosity � .1 gm/(cm⋅s)
Density � .1 gm/cm3

Domain length L 4.25 cm
Domain height H 3.25 cm

Resting channel width R 0.7 cm
Interface control points Nb 100

Simulation length T 120 ms
Time steps Nt 60

Time step size Δt 2e − 3 ms
Tether force constant atether 5 gm/s2
Elastic force constant aelastic 1 gm/s2
Pressure difference Pdif f 2.544 gm/(s2cm)

A spatial grid refinement study was conducted at t = 0. Computed solutions were compared to anNx = 1089 byNy = 1666
high resolution numerical solution. Results in Table 2 indicate that second-order spatial convergence was achieved for pressure
and both components of velocity. Furthermore, the jump discontinuity in p and in the normal derivative of u are captured
robustly. Solution profiles are not shown for these results, because the sharp-interface feature of the method is also captured and
illustrated in the Navier-Stokes example below.

TABLE 2 Spatial convergence results for the Stokes problem. The interface is initially displaced from its resting position and
allowed to relax. These results shown are computed at t = 0.

Grid size p u v
Nx Ny || ⋅ ||∞ Order || ⋅ ||∞ Order || ⋅ ||∞ Order
35 27 1.793 5.476 2.723
69 53 0.560 1.68 1.703 1.68 0.764 1.83
137 105 0.144 1.96 0.357 2.26 0.187 2.03
273 209 0.033 2.12 0.074 2.27 0.046 2.03
545 417 0.007 2.20 0.015 2.28 0.009 2.38
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4.2 Navier-Stokes Equations
For the second example, we solve the Navier-Stokes equations to assess the spatial and temporal accuracy in the non-zero
Reynolds number regime.
Spatial convergence and steady-state profile. We start with a fluid that is at rest throughout the domain and a channel with

uniform widthW = 10.1. The axial pressure gradient is then gradually increased during the first 0.125s and then held constant
according to the function:

Pdif f (t) =

{ 3�L
R2
sin( �

2
t
1∕8
) t < 1∕8

3�L
R2

t ≥ 1∕8.
(29)

where R = W ∕2 The channel boundaries are tethered to its initial and resting position, i.e., a channel with a width ofW . Table
3 shows the remainder of the parameters.

TABLE 3 Parameters used for the spatial convergence study of the Navier-Stokes problem.

Parameter Symbol Value

Viscosity � 0.0175 gm/(cm⋅s)
Density � 1.055 gm/cm3

Domain length L 32 �m
Domain height H 16 �m

Resting channel width W 10.1 �m
Simulation interval T 1 s
Number of time steps Nt 2560

Time step size Δt 4e-4 s
Tether force constant aTether 1e-4 gm/s2
Elastic force constant aElastic 1e-4 gm/s2

Max pressure difference Pdif f 6.6e-5 gm/(s2�m)

At steady state, pressure gradient and velocity are described by 2D Poiseuille flow, i.e.,

u = −
dp
dx

1
2�
(R2 − y2), v = −

dp
dy

= 0. (30)

It follows that pressure decreases linearly along the channel and u has a parabolic profile given by

p =

{

c − 3�ūx
R2

|y| ≤ R
0 R ≤ |y|

, u =

{

3ū(R2−y2)
2R2

|y| ≤ R
0 R ≤ |y|

, v = 0.

In Figure 2, left panel, a solid line shows the expected Poiseuille velocity profile given the parameters of the simulation. The
computed u-component of the velocity profile on the slice where x = 16�m at t = 1s is denoted by the + symbol. The computed
u exhibits an approximate parabolic profile.
The computed p is shown in Figure 2, right panel. Note, interface segments are located at approximately y = ±5.05�m.

It can be seen that p decreases approximately linearly decreasing along the channel. Outside of the channel, the pressure is
approximately zero. There is a sharp discontinuity in pressure across the interface.
To test the spatial convergence of the method, the solution was computed at various spatial resolutions. The solutions are

compared with high-resolution solutions computed on a 1025 × 513 grid at time t = 0.1s when the solution is still transitioning
from its initial solution to its steady-state solution. The number of interface control points for each segment of the interface is
Nb =

Nx+1
2

. Convergence results indicate that the method is approximately second-order accurate in space; see Table 4.
Temporal convergence. The above configuration is not ideal for assessing temporal convergence in part because the interface

position undergoes little deformation. Thus, we consider a different configuration in which the channel walls move. Specifically,
the wall tether anchors are displaced in time, causing the walls to actively deform. The y-position of the tethers at position x at
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FIGURE 2 Left: Velocity profile (+) of computed solution at a cross-section compared with expected velocity profile of 2D
Poiseuille flow. Right:Computed pressure in the computational domain. Pressure is linearly decreasing inside of the channel and
approximately constant outside the channel with sharp discontinuities that occur across the interface located near y = ±5.05�m.

TABLE 4 Spatial convergence results for Navier-Stokes flow compared to a high resolution 1025 × 513 solution taken at time
t = .1s.

Grid size p u v
Nx Ny || ⋅ ||∞ Order || ⋅ ||∞ Order || ⋅ ||∞ Order

1.0e-04 ×
65 33 0.134 2.47 1.4744
129 65 0.021 2.70 0.447 2.46 0.235 2.64
257 129 0.009 1.16 0.193 1.21 0.096 1.30
513 257 0.002 2.28 0.032 2.58 0.014 2.75

time t for the upper and lower interface, denoted Ytoptether(x, t) and Ybottom,tether(x, t), respectively, are given by

Ytop,tether(x, t) = R
(

1 − .1 sin
( �t
4T

)

sin
(2�x
L

))

(31)

Ybottom,tether(x, t) = −R
(

1 + .1 sin
( �t
4T

)

sin
(2�x
L

))

. (32)

The fluid solutions are computed in the domain with a length of 61�m and width 21�m. The remainder of the parameter
values for this simulation are given in Table 5. The temporal accuracy of the method is assessed by refining the time step and
comparing the solutions at time t = 12.5�s to a high-resolution solution computed after 64 time steps of size Δt = 1.8e − 7
when the solution is changing at a sufficiently high rate. Convergence results, given in Table 6, indicate that this method can
achieve second-order accuracy in time.

5 DISCUSSION

We have presented a numerical method for simulating viscous fluid flow through an open channel with deformable walls. The
model is formulated as an immersed boundary problem, with the channel spanning from one end of the computational domain to
the other. We apply the method to the Stokes equations and the Navier Stokes equations. The Stokes equations are solved using
a method that is an extension of the immersed interface method, which originally requires the immersed interface to be closed.
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TABLE 5 Parameters used for the temporal convergence study of the Navier-Stokes problem.

Parameter Symbol Value

Viscosity � .0175 gm/(cm⋅s)
Density � 1.055 gm/cm3

Domain length L 61 �m
Domain height H 21 �m
X-grid points Nx 489
Y-grid points Ny 169

Spatial grid size ℎ .012 �m
Initial channel radius R 5.05 �m
Vessel control points Nb 100
Simulation length T 12.5 �s

Tether force constant aT etℎer 1e-4 gm/s2
Elastic force constant aElastic 1e-4 gm/s2
Pressure difference Pdiff 6.6e-5 gm/(s2�m)

TABLE 6 Temporal convergence results for the Navier-Stokes problem.

Time Step px py u v
Nt Δt || ⋅ ||∞ Order || ⋅ ||∞ Order || ⋅ ||∞ Order || ⋅ ||∞ Order

1.0e-06 × 1.0e-06 × 1.0e-06 ×
4 3.13 0.50 0.87 2.86 142.94
8 1.56 0.17 1.54 0.29 1.58 0.70 2.03 31.51 2.18
16 0.78 0.05 1.88 0.08 1.87 0.16 2.14 6.84 2.20
32 0.39 0.01 2.24 0.02 2.18 0.03 2.34 1.30 2.39

This method gives second-order accurate values by incorporating known jumps for the solution and its derivatives into a finite
difference method. The Navier-Stokes equations are solved using the velocity decomposition approach, which decomposes the
velocity into a “Stokes” part and a “regular” part. The first part is determined by the Stokes equations and the singular interfacial
force. The regular part of the velocity is given by the Navier–Stokes equations with a body force resulting from the Stokes part.
The regular velocity is obtained using a time-stepping method that combines the semi-Lagrangian method with the backward
difference formula. Numerical examples are presented to demonstrate that, for both the Stokes and Navier-Stokes models, the
method converges with second-order spatial and temporal accuracy.
The development of the present method is motivated by our interest in simulating biological problems with flows through

biological tubes26,27 or microfluidic devices28. The present model is formulated for 2D. Hence, the flow that it describes may
differ significantly from flow through a tube. In future studies, the immersed interface method may be extended to compute fluid
flows through a 3D open tube.
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APPENDIX

A DERIVATION OF JUMP CONDITIONS

The derivation of the jump conditions normally requires that the interface be a closed curve. Therefore, we extend Γ to a fictitious
closed and piecewise smooth curve Γc by taking the union of Γ, the line joining the points {(0, a1), (0, a2)}, and the line joining
the points {(L, b1), (L, b2)}. See Fig. A1. Note that the jump conditions will be the same for the Stokes equations and for the
Navier-Stokes equations.

FIGURE A1 The extended computational domain, Ψ� = [−�, L + �] × [−�,H + �] contains the fictitious closed immersed
interface, Γc .

We first derive jump conditions for p. Let �(x) be an arbitrary twice continuously differentiable test function defined on the
extended domain Ψ� = [−�, L + �] × [−�,H + �] (see Figure A1). Extend F to Γc by defining

F = ∫
Γc

f (s)�(X(s) − x)ds (A1)

where f is a piecewise smooth extension to Γc . Integrating the product of the divergence of the boundary force F and � over the
extended fluid domain Ψ� ,

∫ ∫
Ψ�

(∇ ⋅ F)�dA = ∫ ∫
Ψ�

⎛

⎜

⎜

⎝

∇ ⋅ ∫
Γc

f (s)�(X(s) − x)ds
⎞

⎟

⎟

⎠

�dA (A2)

= ∫
Γc

∫ ∫
Ψ�

(

f1(s)
d
dx
�(X(s) − x) + f2(s)

d
dy
�(X(s) − x)

)

�dsdA

= −∫
Γc

(

f1(s)
d
dx
�(X(s)) + f2(s)

d
dy
�(X(s))

)

ds. (A3)

The last line can be obtained via integration by parts and noting that � is zero away from Γc . This calculation holds on any subset
of Ψ� which contains Γc . In particular, it holds in the belt domain Ω� = {x ∈ Ψ�|miny∈Γc ||x − y|| < �}, which encloses the
interface Γc . Let Γ+� and Γ−� denote the inner and outer boundary of Ω� , respectively, as shown in Figure A2.
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FIGURE A2 The belt domain, Ω� , is the area between the outer curve Γ+� and the inner curve Γ−� that contains Γc .

By taking the divergence of the Stokes equation 5, one obtains a Poisson equation for pressure: Δp = ∇ ⋅ F. Combining this
Poisson equation with Eq. A3, one obtains

∫ ∫
Ω�

(Δp)�(x, y)dA = ∫ ∫
Ω�

(∇ ⋅ F)�(x, y)dA

= −∫
Γc

(

f1(s)
d
dx
�(X(s), Y (s)) + f2(s)

d
dy
�(X(s), Y (s))

)

ds. (A4)

For any vector function G(x, y) = [G1(x, y), G2(x, y)]T , the Divergence Theorem states

∫ ∫
Ω

∇ ⋅ (�(x, y)G(x, y))dA = ∫
)Ω

(�(x, y)G(x, y)) ⋅ nds. (A5)

Since ∇ ⋅ (�(x, y)G(x, y)) = �(x, y)∇ ⋅G(x, y) + ∇�(x, y)G(x, y), we can rewrite the divergence theorem as

∫ ∫
Ω

�(x, y)∇ ⋅G(x, y)dA = ∫
)Ω

(�(x, y)G(x, y)) ⋅ nds − ∫ ∫
Ω

∇�(x, y)G(x, y)dA. (A6)

Applying the divergence theorem twice to the Poisson’s equation for pressure yields

∫ ∫
Ω�

(Δp)�dxdy = ∫
Γ+�

�p+n ds − ∫
Γ−�

�p−n ds − ∫ ∫
Ω�

∇�∇pdA

= ∫
Γ+�

�p+n ds − ∫
Γ−�

�p−n ds − ∫
Γ+�

�np
+ds + ∫

Γ−�

�np
−ds + ∫ ∫

Ω�

pΔ�dA. (A7)

The superscripts + and − indicate the values taken from the outside and inside of the interface Γc , respectively. Notice � is twice
continuously differentiable and p is bounded and only discontinuous along the interface. So as � approaches zero, we have

∫ ∫
Ω�

pΔ�dA ←→ 0. (A8)

and

∫ ∫
Ω�

(Δp)�dxdy ←→ ∫
Γc

�[pn]ds − ∫
Γc

�n[p]ds. (A9)
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We can express )�
)x

and )�
)y

in terms of the normal and tangential derivatives along the interface

�n =∇� ⋅ n = )�
)x

cos � +
)�
)y
sin � (A10)

�s =∇� ⋅ � = )�
)x

sin � +
)�
)y
cos �. (A11)

where � is the angle between the outward normal and the x-axis, n = (cos �, sin �), and � = (− sin �, cos �). Solving this linear
equation for )�

)x
and )�

)y
yields

)�
)x

= �n cos � − �s sin � (A12)
)�
)y

= �n sin � + �s cos �. (A13)

Then

∫
Γc

(

f1
)�
)x

+ f2
)�
)y

)

ds = ∫
Γc

f1(�n cos � − �s sin �) + f2(�n sin � + �s cos �)ds

= ∫
Γc

(f1 cos � + f2 sin �)�nds + ∫
Γc

)
)s
(f2 cos � − f1 sin �)�ds. (A14)

For any twice continuously differentiable test function �,

∫
Γc

(f1 cos � + f2 sin �)�nds + ∫
Γc

)
)s
(−f1 sin � + f2 cos �)�ds = ∫

Γc

�[pn]ds − ∫
Γc

�n[p]ds. (A15)

We can conclude that
[p] = f1 cos � + f2 sin � (A16)

and
[pn] =

)
)s
(−f1 sin � + f2 cos �). (A17)

Next, we derive the jump conditions for the u component of velocity. The derivation for v is similar. The velocity is continuous,
so we only need to derive the jump conditions for the normal derivative, un. We start by multiplying the u component of Eq. 5
by test function � and integrating.

∫ ∫
Ω�

��Δu − �
dp
dx
dA = −∫ ∫

Ω�

�∫
Γc

f1(s)�(X(s) − x)dsdA (A18)

∫ ∫
Ω�

��ΔudA − ∫ ∫
Ω�

�
dp
dx
dA = −∫

Γc
∫ ∫
Ω�

�f1(s)�(X(s) − x)dAds (A19)

∫ ∫
Ω�

��ΔudA − ∫ ∫
Ω�

�
dp
dx
dA = −∫

Γc

�f1(s)ds (A20)

The last line follows from integration by parts. Applying the divergence theorem we get

∫ ∫
Ω�

��ΔudA = ∫
Γ+�

��+∇u+ ⋅ nds + ∫
Γ−�

��−∇u− ⋅ (−n)ds − ∫ ∫
Ω�

�(∇�∇u)dA (A21)

= ∫
Γ+�

�+�u+n ds − ∫
Γ−�

�−�u−n ds − ∫ ∫
Ω�

�(∇�∇u)dA (A22)

←→ ∫
Γ

�[�un]ds − 0 as � → 0. (A23)

The right most integral in Eq. A22 approaches zeros because � is continuously differentiable and un is bounded and only
discontinuous at the interface. Note that
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∫ ∫
Ω�

�
dp
dx
dA = ∫ ∫

Ω�

�∇ ⋅
[ p
0
]

dA (A24)

= ∫
Γ+�

�([p+, 0]T ⋅ n)ds − ∫
Γ−�

�([p−, 0]T ⋅ n)ds − ∫ ∫
Ω�

∇� ⋅
[ p
0
]

dA (A25)

←→ ∫
Γc

�[p] cos �ds + 0 as � → 0. (A26)

This follows because � is continuously differentiable and p is only discontinuous on the interface. Since � is arbitrary, we must
have

[�un] = [p] cos � − f1 (A27)
= cos �(f1 cos � + f2 sin �) − f1 (A28)
= sin �(−f1 sin � + f2 cos �). (A29)

Similarly, for v we can get

[�vn] = [p] sin � − f2 (A30)
= cos �(f1 sin � − f2 cos �). (A31)

This completes the derivation.
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