
Recursive updating of linear convolutionRimantas PupeikisInstitute of Data Science and Digital Technologiesof Faculty of Mathematics and Informatics of Vilnius University,Akademijos 4, LT-2600, Vilnius, Lithuaniaemail:rimantas.pupeikis@mif.vu.ltJanuary 16, 2020Abstract. It is assumed that linear time-invariant (LTI) system inputsignal samples are updated by a sensor in real time. It is urgent for everynew input sample or for small part of new samples to update an ordinaryconvolution as well. The idea is that well-known convolution sum algorithm,used to calculate output signal, should not be recalculated from the beginingwith every new input sample. It is necessary just to modify the algorithm,when the new input sample renew the set of previous samples. The recursivealgorithm is worked out for such a purpose. Example of recursive computa-tion of the convolution is presented.Keywords: linear convolution; signal; online procedure; discrete-time.1 IntroductionThe eÆcient computation of convolution is still an open problem [1]. Inreal-time applications [2], where each time a new input sample appear, isnon-e�ective to recalculate a linear convolution, repeating the whole proce-1



dure from the begining. It is necessary here to meet the requirements forthe fast manipulation with increasing real data in time [3]. This problemcould be solved by working out the original online procedure which does notrequire to process the whole set of data each time [4]. Therefore, it is neededto modify convolution algorithm in order to recalculate only some productsrecursively. To the best of the author's knowledge, based on the view ofthe recent scienti�c production there exists, any creation except this one, inwhich the convolution sum could be updated, reacting to the new observa-tion samples coming in.The text begins with an introduction. In Section II the statement of theproblem is presented. Section III considers the adaptation of the linear con-volution to the presence of new data. Section IV includes example, resultsand discussion. Section V presents conclusion.2 Problem statementSuppose that x(n) � x(nTs) is an N point input signal of a LTI causal systemrunning from 0 to N�1, and h(n) � h(nTs) is an M point kernel (impulseresponse) running from 0 to M�1, where Ts is a sampling period. The outputy(n) � y(nTs) of the system is an N+M�1 point signal running from 0 toN+M�2, given by the linear convolution of the form [1]y(n) = M�1Xj=0 h(j)x(n� j) = M�1Xj=0 x(j)h(n� j): (1)For simplicity in (1) and elsewhere else it is assumed that Ts=1.As it is noted in [1], the convolution is important because it relates thethree signals of interest: the input signal x(n), the output signal y(n), and2



the impulse response h(n). This equation allows each sample in the outputsignal y(n) to be calculated independently of all other samples in the outputsignal. It is typical o�ine y(n) calculation procedure, �rstly, until timemoment ti+1 a scope of measurement samples h(0); h(1); :::; h(M�1), as wellas x(0); x(1); :::; x(N � 1) is obtained and, secondly, all these samples areprocessed at the same time [2]. Thus, in a convolution scheme we consider adiscrete-time �nite duration real-valued signal x(n) of lengthN (i.e., x(n) = 0for n < 0 and n � N) that is processed by LTI system having impulseresponse h(n) of length M in order to obtain the signal y(n) of length N +M � 1. If the input to a causal linear time-invariant system is a causalsequence (i.e., if x(n) = 0 for n < 0], the limits on the convolution sumformula are further restricted. In this case the two equivalent forms of theconvolution formula are valid [1]. To summarize, the process of computingthe convolution between x(n) and h(n) involves the following four steps [2]. 1.Folding. Fold h(n) about n = 0 to obtain h(�n); 2. Shifting. Shift h(�n)by d to the right (left) if d is positive (negative) integer, to obtain h(d� n);3. Multiplication. Multiply x(n) by h(d�n) to obtain the product sequencex(n)h(d� n); 4. Summation. Sum all the values of the product sequence toobtain the value of the output at time n = d.Assume that at any moment ti the network of sensors is evaluated the setof output samples y(n) by a batch processing of available samples of signalx(n) and h(n). At a time moment ti+1 a new sample x(N) enters processor'sinput, extending the length of previous sequence x(n).The objective of the paper is to update the linear convolution onlineby appearing new sample x(N), as well as samples x(N + 1), ..., x(K � 1),3



x(K), observed at sequential time moments ti+1; ti+2; :::; ti+k�1; ti+k, withoutrepeating the whole calculations from the begining.3 Convolution recursionsIt is not eÆcient to recalculate samples y(n) anew using the ordinary con-volution algorithm (1), if only one new signal sample x(N) or even a smallportion of new samples x(N), x(N + 1), ... , x(N +m) emerges extendingthe length of previous set of x(n). For simplicity, we assume that initiallyM=N . At time moment ti there appears the sample x(N). We will updatesamples y(N; ti�1), y(N +1; ti�1), � � � , y(N +M �2; ti�1), y(N +M �1; ti�1)and calculate a new sample y(N +M; ti) by the adaptive algorithm. In sucha case, terms are as follows:y(0; ti) � y(0; ti�1), y(1; ti) � y(1; ti�1), � � � , y(N � 1; ti) � y(N � 1; ti�1), asy(N; ti) = y(N; ti�1) + h(0)x(N),y(N + 1; ti) = y(N + 1; ti�1) + h(1)x(N),...y(N +M � 1; ti) = y(N +M � 1; ti�1) + h(M � 2)x(N)y(N +M; ti) = h(M � 1)x(N)Then, at a time moment ti+1 there appeares x(N +1) and expressions obtainthe following form:y(0; ti+1) � y(0; ti), y(1; ti+1) � y(1; ti), � � � , y(N; ti+1) � y(N; ti);as y(N + 1; ti+1) = y(N + 1; ti) + h(0)x(N + 1),4



y(N + 2; ti+1) = y(N + 2; ti) + h(1)x(N + 1),...y(N +M; ti+1) = y(N +M; ti) + h(M � 2)x(N + 1);y(N +M + 1; ti+1) = h(M � 1)x(N + 1).At last, at a time moment ti+k there appeares a sample x(K). Values ofsignal y(n) are determined as follows:y(0; ti+k) � y(0; ti+k�1); y(1; ti+k) � y(1; ti+k�1); � � � ;y(K � 1; ti+k) � y(K � 1; ti+k�1); (2)while values y(K; ti+k); y(K+1; ti+k); � � �y(K+M �2; ti+k) are recalculated:y(K; ti+k) = y(K; ti+k�1) + h(0)x(K); � � �y(K + 1; ti+k) = y(K + 1; ti+k�1) + h(1)x(K);y(K +M � 2; ti+k) = y(K +M � 2; ti+k�1) + h(M � 2)x(K); (3)recursively.The last y(n) value is:y(K +M � 1; ti+k) = h(M � 1)x(K): (4)The main feature of this procedure is adaptation of y(n) to the new informa-tion in current x(n) observation at every sampling interval Ts. The numberof operations for speedy y(n)new calculation could be essentially reduced be-cause the procedure does not require to repeat operations for y(n)new samplevalues that start from 0 and �nish at N � 1, where N is a time-varying in-teger. Remaining meanings of updated y(n)new are determined recursively,5



adding ordinary corrections to the respective sample values of the previousy(n).For stopping of recursive calculations it is important to work out an eÆcientstopping rule. The calculations can be �nished, when the inequalitiesy(n) = M�2Xj=0 fy(K + j; ti+k)� y(K + j; ti+k�1)g2 � �1; (5)fy(K +M � 1; ti+1)g2 � �2 (6)are satis�ed for some time period. Here �1 and �2 are thresholds to be chosenbeforehand.It is needed to terminate calculations, when desired accuracy of signal y(n),in respect of �1 and �2 is achieved. The time for redundant calculations willbe consumed, on the contrary.4 Example: calculations, results and discus-sionThe LTI system's discrete-time input samples are:x(n)= fx(0); x(1); x(2); x(3); x(4); x(5); x(6); x(7)g= f24, 8, 12, 16, 20, 6, 10, 14g.By inspection, the input sequence is running from 0 to 7 samples. The kernelh(n)= fh(0); h(1); h(2); h(3); h(4); h(5); h(6); h(7)g= f1, -.85, .85, -.7, .7, -.25, .25, -1g.The number of kernel samples M=N , initially. Signals x(n) and h(n) areshown in Fig.1a and 1b, respectively. The third signaly(n) =fy(0); y(1); y(2); y(3); y(4); y(5); y(6); y(7); y(8); y(9);6



y(10); y(11); y(12); y(13); y(14)g = f 24, -12.4, 25.6, -4.2, 27.8, -6.2, 23.1, -17.2, -2.6, -3.9, -15.3, -11.2, -7, -6.5, -14gis determined by Matlab convolving given h(n) and x(n) by (1). Its length isM +N -1. The signal y(n) is represented in Fig.2a. Arithmetical operationsneeded to calculate signal y(n) contain 72 multiplications and 56 additions.The new x(n) value x(8)=22 appeares. Then, input samples are (see Fig.1c):
0 2 4 6 8

0

5

10

15

20

25

a

0 2 4 6 8
−1

−0.5

0

0.5

1

b

0 2 4 6 8
0

5

10

15

20

25

c

0 2 4 6 8 10
0

5

10

15

20

25

d

Figure 1: Signals: sequences x(n) (a), h(n) (b), x(n) with x(8)=22 (c), andx(n) with x(9)=23(d). Sample's number (axis X), sample's value (axis Y)x(n) = f24; 8; 12; 16; 20; 6; 10; 14; 22g: (7)The length of h(n) is the same (see Fig.1b). After recalculation of y(n) wehave: y(n)new1=f24, -12.4, 25.6, -4.2, 27.8, -6.2, 23.1, -17.2, 19.4, -22.6, 3.4, -26.6, 8.4, -12, -8.5, -22g. The updated signal y(n)new1 is represented in Fig.2b.On close inspection, we notice that there exist here important equalities:y(0)new1=y(0), y(1)new1=y(1), y(2)new1=y(2), y(3)new1=y(3), y(4)new1=y(4),y(5)new1=y(5), y(6)new1=y(6), y(7)new1=y(7). Therefore, it is not needed to7



calculate y(n)new1 sample values for n less or equal than N � 1. Remainingterms are calculated recursively:y(8)new1 =y(8) + x(8) � h(0) =-2.6+22�1=19.4;y(9)new1 =y(9) + x(8) � h(1) =-3.9+22�(�0:85)=-22.6;y(10)new1 =y(10) + x(8) � h(2) =-15.3+22�0:85=3.4;y(11)new1 =y(11) + x(8) � h(3) =-11.2+22�(�0:7)=-26.6;y(12)new1 =y(12) + x(8) � h(4) =-7+22�0:7=8.4;y(13)new1 =y(13) + x(8) � h(5) =-6.5+22�(�0:25)=-12;y(14)new1 =y(14) + x(8) � h(6) =-14+22�0:25=-8.5;y(15)new1 =x(8) � h(7) = 22�(�1)=-22;In such a case, recursive updating of signal y(n) required 8 multiplicationsand 7 additions, i.e. 15 elementary arithmetical operations, in total. Then,after appearing x(n) sample x(9)=23 insert its value in the signal (see Fig.1d)x(n) = f24; 8; 12; 16; 20; 6; 10; 14; 22; 23g: (8)Now, instead of doing redundant calculations, equate current terms of signaly(n)new2 and previous ones y(n)new1 as follows:y(k)new2 = y(k)new18 k 2 0; 8: (9)Remaining y(n) values are calculated recursively, too, as followsy(9)new2 =y(9)new1 + x(9) � h(0) =-22.6+23�1=0.4;y(10)new2 =y(10)new1 + x(9) � h(1) =3.4+23�(�0:85)=-16.15;8



y(11)new2 =y(11)new1 + x(9) � h(2) =-26.6+23�0:85=-7.05;y(12)new2 =y(12)new1 + x(9) � h(3) =8.4+23�(�0:7)=-7.7;y(13)new2 =y(13)new1 + x(9) � h(4) =-12+23�0:7=4.1;y(14)new2 =y(14)new1 + x(9) � h(5) =-8.5+23�(�0:25)=-14.25;y(15)new2 =y(15)new1 + x(9) � h(6) =-22+23�0:25=-16.25;y(16)new2 =x(9) � h(7) = 23�(�1)=-23;We obtain: y(n)new2: f24, -12.4, 25.6, -4.2, 27.8, -6.2, 23.1, -17.2, 19.4,0.4, -16.15, -7.05, -7.7, 4.1, -14.25, -16.25, -23g (see Fig.2c).Signal y(n) is again updated recursively using the same number, i.e. 15 arith-metical operations. We obtain 158 operations for y(n)new2, in total.Suppose now, that all signal x(n) values, including x(8) and x(9) are stored
0 5 10 15 20

−20

−10

0

10

20

30

a

0 5 10 15
−30

−20

−10

0

10

20

30

b

0 5 10 15 20
−30

−20

−10

0

10

20

30

c

0 5 10 15 20
−30

−20

−10

0

10

20

30

d

Figure 2: Results: y(n) (a), y(n)new1 (b), y(n)new2 (c), and y(n)new3 forx(n)new3=24 (d)in the procesor's memory. Afterwards, the batch data processing, as usually,is used by ordinary o�ine convolution formula (1). In such a case, signalx(n)= f24, 8, 12, 16, 20, 6, 10, 14, 22, 23g, while h(n)= f1, -.85, .85, -.7, .7,9



-.25, .25, -1g. Signal ŷ(n) was calculated by Matlab programm. Its valuescoincide with respective values of signal y(n)new2.However, to calculate signal y(n)new2 o�ine is needed to use 100 multipli-cations and 81 additions. Thus, the number of operations can be decreasedif the recursive procedure to determine y(n) by means of online convolu-tion is applied. Samples (Fig.1a,1b) represent initial input x(n) (Fig.1a)and kernel h(n) (Fig.1b), respectively, used in (1) to determine sequencey(n) (Fig.2a). Samples, shown in (Fig.1c) and (Fig. 1d) correspond todiscrete-time sequences x(n) (7) and (8). Samples (Fig.2), varying valuesof which corespond to the distinct signals x(n) (see Fig.1), respectively, aredetermined by ordinary convolution (1). Then, they were checked by re-cursive procedure (2) { (4). Results, obtained twofold, are coincident. Thediscrete-time curve (Fig.2d) correspond to signal y(n) calculated for inputx(n) = f24; 8; 12; 16; 20; 6; 10; 14; 22; 23; 24g.Recursive convolution procedure (2) { (4) is proposed to update the ordinaryconvolution (1), when at each sampling period Ts the new input signal's x(n)sample emerges in the given realization x(n). Recursive procedure borrowsthe calculation results of the ordinary one but only for the �rst current re-cursion, continuing previous calculations (1) by equations (2) { (4). In eachcurrent recursion only M multiplications and M-1 adds are needed. The pref-erence of the recursive procedure against the ordinary one consists as wellas in the avoiding repeating calculations: each recursion starts not from thevery begining as it could be using ordinary convolution (1), but by immediateprocessing current x(n) sample. 10



5 ConclusionThe recursive convolution technique could be e�ective in real-time applica-tions for very large N and relatively small kernel h(n). It could be furtheraccelerated by resolving the available procedure (2) { (4) into elementaryrecursive subprocedures, working in parallel. In addition, the e�ective on-line stopping rule (5), (6) allows to stop calculations, avoiding redundantmathematical operations.R. Pupeikis (The DMSTI MIF VU, Vilnius, LT )E-mail: rimantas.pupeikis@mif.vu.ltReferences[1] Smith,S. Digital signal processing: a practical guide for engineers andscientists, 2013, Elsevier Science.[2] Proakis, J.G. and Manolakis D.G. Digital signal processing: principles,algorithms and applications, 1999, Prentice Hall, London.[3] K. Pavel and D. Svoboda, "Algorithms for eÆcient computation of convo-lution", Chapter 8 of the book: Design and Architectures for Digital SignalProcessing, edited by G. Ruiz and J.A. Michell, 2013. doi: 10.5772/51942.[4] Pupeikis, R.: Revised linear convolution. Lietuvos matematikosrinkinys, Proc. of the Lith.math.society, ser.A, 60, 2019, p.33 { 38,doi:10.15388/LMR.A.2019 14961
11


