REFERENCES
1. Shen, Y. and S.S. Hansen, Effect of the Ti/N ratio on the hardenability and mechanical properties of a quenched-and-tempered C-Mn-B steel. Metallurgical and Materials Transactions A, 28(10): p. 2027-2035, 1997.
2. Mintz, B., Influence of nitrogen on hot ductility of steels and its relationship to problem of transverse cracking. Ironmaking & Steelmaking, 27(5): p. 343-347, 2000.
3. Yan, B., et al., The Effect of Precipitate Evolution on Austenite Grain Growth in RAFM Steel. Materials (Basel, Switzerland), 10(9): p. 1017, 2017.
4. Cuddy, L.J. and J.C. Raley, Austenite grain coarsening in microalloyed steels. Metallurgical Transactions A, 14(10): p. 1989-1995, 1983.
5. Malinochka, Y.N., T.M. Titova, and P.L. Litvinenko, Effect of titanium additives and nitrogen on austenite grain growth. Metal Science and Heat Treatment, 28(5): p. 342-347, 1986.
6. Nagata, M., J. Speer, and D. Matlock, Titanium nitride precipitation behavior in thin-slab cast high-strength low-alloy steels. Metallurgical and Materials Transactions A, 33(10): p. 3099-3110, 2002.
7. Shanmugam, S., et al., Microstructure and high strength–toughness combination of a new 700MPa Nb-microalloyed pipeline steel. Materials Science and Engineering: A, 478(1-2): p. 26-37, 2008.
8. Banerjee, K., M. Perez, and M. Militzer, Non-Isothermal Austenite Grain Growth Kinetics in the HAZ of a Microalloyed X-80 Linepipe Steel. Solid State Phenomena, 172-174: p. 809-814, 2011.
9. Zhu, Z.X., et al., Role of Ti and N in line pipe steel welds.Science and Technology of Welding and Joining, 18(1): p. 1-10, 2013.
10. Lancaster, J.F., Metallurgy of Welding . 6th edition ed.: Woodhead Publishing, 1999.
11. Ari Saastamoinen, et al., Effect of titanium and nitrogen content on the microstructure, hardenability and mechanical properties of direct quenched and tempered ultra-high strength structural steel , in International Conference on Thermomechanical Processing . 26-28 Oct. 2016, Milan, Italy, 2016.
12. J.O., A., et al., Thermo-Calc and DICTRA, Computational tools for materials science. Calphad, 26(273-312), 2002.
13. Thermo-Calc version R users’ guide , in Foundation of Computational Thermodynamics . Thermo-Calc Software AB: Stockholm, Sweden, 2006.
14. Lippard, H.E., et al., Microsgregation behavior during solidification and homogenization of AerMet100 steel. Metallurgical and Materials Transactions B, 29B(2): p. 205-210, 1998.
15. Diederichs, R., et al., Modelling of Manganese Sulphide Formation during Solidification, Part II: Correlation of Solidification and MnS Formation. Steel research international, 77(4): p. 256-264, 2006.
16. Turpin, T., J. Dulcy, and M. Gantois, Carbon Diffusion and Phase Transformations during Gas Carburizing of High-Alloyed Stainless Steels: Experimental Study and Theoretical Modeling. Metallurgical and Materials Transactions A, 36A(10): p. 2751-2760, 2005.
17. Oono, N., H. Nitta, and Y. Iijima, Diffusion of niobium in alpha-iron. Materials Transactions, 44(10): p. 2078-2083, 2003.
18. Shapovalov, V.P. and A.N. Kurasov, Diffusion of titanium in iron. Metal Science and Heat Treatment, 17(9): p. 803-805, 1975.
19. Loberg, B., et al., The Role of Alloy Composition on the Stability of Nitrides in Ti-Microalloyed Steels during Weld Thermal Cycles. Metallurgical Transactions A, 15(1): p. 33-41, 1984.
20. Baker, T.N., Microalloyed steels. Ironmaking & Steelmaking, 43(4): p. 264-307, 2016.
21. Misra, R.D.K., et al., Microstructural evolution in a new 770MPa hot rolled Nb–Ti microalloyed steel. Materials Science & Engineering A, 394(1-2): p. 339-352, 2005.