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Summary

The Dirichlet and Neumann boundary value problems (BVPs) for the linear second-
order scalar elliptic differential equation with variable coefficients in a bounded two-
dimensional domain are considered. The PDE right-hand side belongs to 𝐻−1(Ω)
or 𝐻̃−1(Ω), when neither classical nor canonical conormal derivatives of solutions
are well defined. Using the two-operator approach and appropriate parametrix (Levi
function) each problem is reduced to two different systems of two-operator boundary-
domain integral equations (BDIEs). Although the theory of BDIEs in 3D is well
developed, the BDIEs in 2D need a special consideration due to their different equiv-
alence properties. As a result, we need to set conditions on the domain or on the
associated Sobolev spaces to ensure the invertibility of corresponding parametrix-
based integral layer potentials and hence the unique solvability of BDIEs. The
equivalence of the two-operator BDIE systems to the original problems, BDIE sys-
tem solubility, solution uniquness/nonuniquness and invertibility BDIE system are
analyzed in the appropriate Sobolev (Bessel potential) spaces. It is shown that the
BDIE operators for the Neumann BVP are not invertible, and appropriate finite-
dimensional perturbations are constructed leading to invertibility of the perturbed
operators.
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1 INTRODUCTION

Partial differential equations (PDEs) with variable coefficients often arise in mathematical modelling of inhomogeneous media
(e.g. functionally graded materials or materials with damage induced inhomogeneity) in solid mechanics, electromagnetics,
thermal conductivity, fluid flows through porous media, and other areas of physics and engineering.

Generally, explicit fundamental solutions are not available if the PDE coefficients are not constant, preventing reduction of
boundary value problems (BVPs) for such PDEs to explicit boundary integral equations (BIEs), which could be effectively
solved numerically. Nevertheless, for a rather wide class of variable-coefficient PDEs it is possible to use instead an explicit
parametrix (Levi function) associated with the fundamental solution of the corresponding frozen-coefficient PDEs, and reduce
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BVPs for such PDEs to systems of boundary-domain integral equations (BDIEs) for further numerical solution of the latter,
see e.g.,1,2,3,4,5,6. However, this (one-operator) approach does not work when the fundamental solution of the frozen-coefficient
PDE is not known explicitly (as e.g. in the Lamé system of anisotropic elasticity). To overcome this difficulty, one can apply the
so-called two-operator approach, formulated in7 for a certain nonlinear problem, that employs a parametrix of another (second)
PDE, not related with the PDE in question, for reducing the BVP to a BDIE system. Since the second PDE is rather arbitrary,
one can always choose it in such a way, that its parametrix is known explicitly. The simplest choice for the second PDE is the
one with an explicit fundamental solution.

For a function from the Sobolev space 𝐻1(Ω), a classical conormal derivative in the sense of traces may not exist (see,
e.g.,8, Appendix A). However, when this function satisfies a second order PDE with a right-hand side from𝐻−1(Ω), the generalized
conormal derivative can be defined in the weak sense, associated with the first Green identity and an extension of the PDE
right-hand side to 𝐻̃−1(Ω) (see, e.g.,9, Lemma 4.3 and10, Definition 3.1). Since the extension is not unique, the conormal derivative
appears to be an operator that is not unique, which is also nonlinear in 𝑢 unless a linear relation between 𝑢 and the PDE right-
hand side extension is enforced. This creates some difficulties in formulating the BDIEs. These difficulties are addressed in8,11

presenting formulation and analysis of direct segregated BDIE systems equivalent to the Dirichlet and Neumann problems for
the divergent-type PDE with a variable scalar coefficient and a general right-hand side. This needed a non-trivial generalization
of the third Green identity and its conormal derivative for such functions, which extends the approach implemented in1,2,6,12,13for
the PDE right-hand from 𝐿2(Ω). In14, using the two-operator approach in settings different from that in15,16, a generalization of
the two-operator third Green identity and its conormal derivative is derived and the two-operator BDIEs for variable-coefficient
Dirichlet, Neumann and mixed BVPs are analyzed in 3D.

Nowadays, the theory of BDIEs in 3D is well developed, see1,2,3,7,12, but the BDIEs in 2D need a special consideration due
to their different equivalence properties. As a result, we need to set conditions on the domain or on the associated Sobolev
spaces to ensure the invertibility of corresponding parametrix-based integral layer potentials and hence the unique solvability
of BDIEs, see17,18,19,20,21,22,23. In this paper, we extend the results in23, and consider the Dirichlet and Neumann boundary value
problems for the linear second-order scalar elliptic differential equation with variable coefficient in a two-dimensional bounded
domain. The PDE right-hand side belongs to 𝐻−1(Ω) or 𝐻̃−1(Ω) when neither classical nor canonical conormal derivatives of
solutions are well defined. The two-operator approach and appropriate parametrix (Levi function) is used to reduce each problem
to two different systems of BDIEs. The properties of corresponding potential operators are investigated. The equivalence of the
original BVP and the obtained BDIEs is proved. The BDIE systems are analysed in appropriate Sobolev spaces. It is shown that
the BDIE operators for the Neumann BVP are not invertible, and appropriate finite-dimensional perturbations are constructed
leading to invertibility of the perturbed operators.

2 CONORMAL DERIVATIVES AND BOUNDARY VALUE PROBLEMS

Let Ω be a domain in ℝ2 bounded by a smooth curve 𝜕Ω. Consider the scalar elliptic differential equation, which for sufficiently
smooth function 𝑢 has the following strong form,

𝐴𝑢(𝑥) ∶= 𝐴(𝑥, 𝜕𝑥)𝑢(𝑥) ∶=
2
∑

𝑖=1

𝜕
𝜕𝑥𝑖

(

𝑎(𝑥)
𝜕𝑢(𝑥)
𝜕𝑥𝑖

)

= 𝑓 (𝑥), 𝑥 ∈ Ω, (1)

where 𝑢 is unknown function and 𝑓 is a given function in Ω. We assume that

𝑎 ∈ 𝐶∞(ℝ2) and 0 < 𝑎min ≤ 𝑎(𝑥) ≤ 𝑎max <∞, ∀ 𝑥 ∈ ℝ2.

In what follows (Ω) = 𝐶∞
0 (Ω), 𝐻𝑠(Ω) = 𝐻𝑠

2(Ω), 𝐻𝑠(𝜕Ω) = 𝐻𝑠
2(𝜕Ω) are the Bessel potential spaces, where 𝑠 ∈ ℝ is an

arbitrary real number (see, e.g.,9,24). We recall that 𝐻𝑠 coincides with the Sobolev-Slobodetski spaces 𝑊 𝑠
2 for any nonnegative

𝑠. We denote by 𝐻̃𝑠(Ω) the subspace of 𝐻𝑠(ℝ2),

𝐻̃𝑠(Ω) ∶= {𝑔 ∶ 𝑔 ∈ 𝐻𝑠(ℝ2), supp(𝑔) ⊂ Ω}

while 𝐻𝑠(Ω) denotes the space of restriction on Ω of distributions from 𝐻(ℝ2),

𝐻𝑠(Ω) = {𝑟
Ω
𝑔 ∶ 𝑔 ∈ 𝐻𝑠(ℝ2)}
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where 𝑟
Ω

denotes the restriction operator on Ω. We will also use the notation 𝑔|
Ω
∶= 𝑟

Ω
𝑔. We denote by 𝐻𝑠

𝜕Ω the following
subspace of 𝐻(ℝ2) (and 𝐻̃(Ω)),

𝐻𝑠
𝜕Ω ∶= {𝑔 ∶ 𝑔 ∈ 𝐻𝑠(ℝ2), supp(𝑔) ⊂ 𝜕Ω}. (2)

From the trace theorem (see, e.g.,9,24,25 for 𝑢 ∈ 𝐻1(Ω), it follows that 𝛾+𝑢 ∈ 𝐻
1
2 (𝜕Ω), where 𝛾+ = 𝛾+𝜕Ω is the trace operator

on 𝜕Ω from Ω. Let also 𝛾−1 ∶ 𝐻
1
2 (𝜕Ω) → 𝐻1(Ω) denote a (non-unique) continuous right inverse to the trace operator 𝛾+, i.e.,

𝛾+𝜕Ω𝛾
−1
𝜕Ω𝑤 = 𝛾+𝛾−1𝑤 = 𝑤 for any 𝑤 ∈ 𝐻

1
2 (𝜕Ω), and (𝛾−1)∗ ∶ 𝐻̃−1(Ω) → 𝐻− 1

2 (𝜕Ω) is continuous operator dual to 𝛾−1, i.e.,
⟨(𝛾−1)∗𝑓,𝑤⟩𝜕Ω ∶= ⟨𝑓, 𝛾−1𝑤⟩Ω for any 𝑓 ∈ 𝐻̃−1(Ω) and 𝑤 ∈ 𝐻

1
2 (𝜕Ω).

For 𝑢 ∈ 𝐻2(Ω), we denote by 𝑇 +
𝑎 the corresponding canonical (strong) conormal derivative operator on 𝜕Ω in the sense of

traces,

𝑇 +
𝑎 𝑢 ∶=

2
∑

𝑖=1
𝑎(𝑥)𝑛𝑖(𝑥)𝛾+

𝜕𝑢(𝑥)
𝜕𝑥𝑖

= 𝑎(𝑥)𝛾+
𝜕𝑢(𝑥)
𝜕𝑛(𝑥)

, (3)

where 𝑛(𝑥) is the outward to Ω unit normal vector at the point 𝑥 ∈ 𝜕Ω. However, the classical conormal derivative operator is
generally, not well defined if 𝑢 ∈ 𝐻1(Ω), see, e.g.,8, Appendix A.

For 𝑢 ∈ 𝐻1(Ω), the PDE 𝐴𝑢 in (1) is understood in the sense of distributions,

⟨𝐴𝑢, 𝑣⟩Ω ∶= −𝑎(𝑢, 𝑣), ∀𝑣 ∈ (Ω), (4)

where
𝑎(𝑢, 𝑣) ∶= ∫

Ω

𝑎(𝑥)∇𝑢(𝑥) ⋅ ∇𝑣(𝑥)𝑑𝑥

is a symmetric bilinear form and the duality brackets ⟨𝑔, ⋅⟩
Ω

denote the value of a linear functional (distribution) 𝑔, extending the
usual 𝐿2 inner product. Since the set (Ω) is dense in 𝐻̃1(Ω), the above formula defines a continuous operator 𝐴 ∶ 𝐻1(Ω) →
𝐻−1(Ω) = [𝐻̃1(Ω)]∗,

⟨𝐴𝑢, 𝑣⟩Ω ∶= −𝑎(𝑢, 𝑣), ∀𝑢 ∈ 𝐻1(Ω), ∀𝑣 ∈ 𝐻̃1(Ω). (5)
Let us consider also the operator, 𝐴̌ ∶ 𝐻1(Ω) → 𝐻̃−1(Ω) = [𝐻1(Ω)]∗,

⟨𝐴̌𝑢, 𝑣⟩Ω ∶= −𝑎(𝑢, 𝑣) = −∫
Ω

𝑎(𝑥)∇𝑢(𝑥) ⋅ ∇𝑣(𝑥)𝑑𝑥 = −∫
ℝ2

𝐸̊[𝑎∇𝑢](𝑥) ⋅ ∇𝑉 (𝑥)𝑑𝑥

= ⟨∇ ⋅ 𝐸̊[𝑎∇𝑢], 𝑉 ⟩ℝ2 = ⟨∇ ⋅ 𝐸̊[𝑎∇𝑢], 𝑣⟩Ω, ∀𝑢 ∈ 𝐻1(Ω), ∀𝑣 ∈ 𝐻1(Ω)

(6)

which is evidently continuous and can be written as

𝐴̌𝑢 = ∇ ⋅ 𝐸̊[𝑎∇𝑢]. (7)

Here 𝑉 ∈ 𝐻1(ℝ2) is such that 𝑟Ω𝑉 = 𝑣 and 𝐸̊ denotes the operator of extension of the functions, defined in Ω, by zero
outside Ω in ℝ2. For any 𝑢 ∈ 𝐻1(Ω), the functional 𝐴̌𝑢 belongs to 𝐻̃−1(Ω) and is the extension of the functional 𝐴𝑢 ∈ 𝐻−1(Ω),
which domain is thus extended from 𝐻̃1(Ω) to the domain 𝐻1(Ω) for 𝐴̌𝑢.

Inspired by the first Green identity for smooth functions, we can define the generalized conormal derivative (see, for
example,9, Lemma 4.3,10, Definition 3.1 and26, Lemma 2.2).

Definition 1. Let 𝑢 ∈ 𝐻1(Ω) and𝐴𝑢 = 𝑟Ω𝑓 in Ω for some 𝑓 ∈ 𝐻̃−1(Ω). Then the generalized co-normal derivative 𝑇 +
𝑎 (𝑓, 𝑢) ∈

𝐻− 1
2 (𝜕Ω) is defined as

⟨𝑇 +
𝑎 (𝑓, 𝑢), 𝑤⟩𝜕Ω ∶= ⟨𝑓, 𝛾−1𝑤⟩Ω+𝑎(𝑢, 𝛾−1𝑤) = ⟨𝑓−𝐴̌𝑢, 𝛾−1𝑤⟩Ω , ∀𝑤 ∈ 𝐻

1
2 (𝜕Ω), i.e., 𝑇 +(𝑓, 𝑢) ∶= (𝛾−1)∗(𝑓−𝐴̌𝑢). (8)

By9, Lemma 4.3 and10, Theorem 3.2, we have the estimate

‖𝑇 +
𝑎 (𝑓, 𝑢)‖𝐻− 1

2 (𝜕Ω)
≤ 𝐶1‖𝑢‖𝐻1(Ω) + 𝐶2‖𝑓‖𝐻̃−1(Ω), (9)

and for 𝑢 ∈ 𝐻1(Ω) such that 𝐴𝑢 = 𝑟Ω𝑓 in Ω for some 𝑓 ∈ 𝐻̃−1(Ω) the first Green identity holds in the following form:

⟨𝑇 +
𝑎 (𝑓, 𝑢), 𝛾

+𝑣⟩
𝜕Ω

∶= ⟨𝑓, 𝑣⟩Ω + 𝑎(𝑢, 𝑣) = ⟨𝑓 − 𝐴̌𝑢, 𝑣⟩Ω , ∀𝑣 ∈ 𝐻1(Ω). (10)

As follows from Definition 1, the generalised conormal derivative is nonlinear with respect to 𝑢 for a fixed 𝑓 , but linear with
respect to the couple (𝑓, 𝑢), i.e.,

𝛼1𝑇
+
𝑎 (𝑓1, 𝑢1) + 𝛼2𝑇

+
𝑎 (𝑓2, 𝑢2) = 𝑇 +

𝑎 (𝛼1𝑓1, 𝛼1𝑢1) + 𝑇
+
𝑎 (𝛼2𝑓2, 𝛼2𝑢2) = 𝑇 +

𝑎 (𝛼1𝑓1 + 𝛼2𝑓2, 𝛼1𝑢1 + 𝛼2𝑢2) (11)
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for any real numbers 𝛼1, 𝛼2.
Let us also define some subspaces of 𝐻𝑠(Ω), cf.10,13,27,28.

Definition 2. Let 𝑠 ∈ ℝ and 𝐴∗ ∶ 𝐻𝑠(Ω) → ∗(Ω) be a linear operator. For 𝑡 ≥ − 1
2

we introduce the space

𝐻𝑠,𝑡(Ω;𝐴∗) ∶= {𝑔 ∈ 𝐻𝑠(Ω) ∶ there exists 𝑓𝑔 ∈ 𝐻̃ 𝑡(Ω) such that 𝐴∗𝑔|Ω = 𝑓𝑔|Ω}

endowed with the norm
‖𝑔‖𝐻𝑠,𝑡(Ω;𝐴∗) ∶=

(

‖𝑔‖2𝐻𝑠(Ω) + ‖𝑓𝑔‖
2
𝐻̃ 𝑡(Ω)

)
1
2

and the inner product
(𝑔, ℎ)𝐻𝑠,𝑡(Ω;𝐴∗) = (𝑔, ℎ)𝐻𝑠(Ω) + (𝑓𝑔 , 𝑓ℎ)𝐻̃ 𝑡(Ω).

The distribution 𝑓𝑔 ∈ 𝐻̃ 𝑡(Ω), 𝑡 ≥ − 1
2
, in the above definition is an extension of the distribution 𝐴∗𝑔|Ω ∈ 𝐻 𝑡(Ω), and the

extension is unique (if it does exist) since any distribution from the space𝐻 𝑡(ℝ2) with support in 𝜕Ω is identically zero if 𝑡 ≥ − 1
2

(see, e.g.,9, Lemma 3.39 and10, Theorem 2.10). We denote this extension as an operator 𝐴̃∗, i.e., 𝐴̃∗𝑔 = 𝑓𝑔 . The uniqueness implies that
the norm ‖𝑔‖𝐻𝑠,𝑡(Ω;𝐴∗) is well defined.

We will mostly use the operators 𝐴,𝐵 or Δ as 𝐴∗ in the above definition. Note that since 𝐴𝑢 − 𝑎Δ𝑢 = ∇𝑎 ⋅ ∇𝑢 ∈ 𝐿2(Ω), for
𝑢 ∈ 𝐻1(Ω), we have 𝐻1,0(Ω;𝐴) = 𝐻1,0(Ω;Δ).

Definition 3. For 𝑢 ∈ 𝐻1,− 1
2 (Ω;𝐴), we define the canonical conormal derivative 𝑇 +

𝑎 𝑢 ∈ 𝐻− 1
2 (𝜕Ω) as

⟨𝑇 +
𝑎 𝑢,𝑤⟩𝜕Ω ∶= ⟨𝐴̃𝑢, 𝛾−1𝑤⟩Ω + 𝑎(𝑢, 𝛾−1𝑤) = ⟨𝐴̃𝑢 − 𝐴̌𝑢, 𝛾−1𝑤⟩Ω , ∀𝑤 ∈ 𝐻

1
2 (𝜕Ω), i. e., 𝑇 +

𝑎 𝑢 ∶= (𝛾−1)∗(𝐴̃𝑢 − 𝐴̌𝑢). (12)

The canonical conormal derivative 𝑇 +
𝑎 𝑢 is independent of (non-unique) choice of the operator 𝛾−1, the operator 𝑇 +

𝑎 ∶
𝐻1,− 1

2 (Ω;𝐴) → 𝐻− 1
2 (𝜕Ω) is continuous, and the first Green identity holds in the following form,

⟨𝑇 +
𝑎 𝑢, 𝛾

+𝑣⟩
𝜕Ω

∶= ⟨𝐴̃𝑢, 𝑣⟩Ω + 𝑎(𝑢, 𝑣) , ∀𝑣 ∈ 𝐻1(Ω). (13)

The operator 𝑇 +
𝑎 ∶ 𝐻1, 𝑡(Ω;𝐴) → 𝐻− 1

2 (𝜕Ω) in Definition 3 is continuous for 𝑡 ≥ − 1
2
. The canonical co-normal derivative

is defined by the function 𝑢 and the operator 𝐴 and does not depend separately on the right-hand side 𝑓 (i.e. its behavior on
the boundary), unlike the generalised co-normal derivative defined in (8), and the operator 𝑇 +

𝑎 is linear. Note that the canon-
ical co-normal derivative coincides with classical conormal derivative 𝑇 +

𝑎 𝑢 = 𝑎 𝜕𝑢
𝜕𝑛

if the latter does exist in the trace sense,
see10, Corollary 3.14 and Theorem 3.16.

Let 𝑢 ∈ 𝐻1,− 1
2 (Ω;𝐴). Then Definitions 1 and 3 imply that the generalised co-normal derivative for arbitrary extension

𝑓 ∈ 𝐻̃−1(Ω) of the distribution 𝐴𝑢 can be expressed as

⟨𝑇 +
𝑎 (𝑓, 𝑢), 𝑤⟩𝜕Ω ∶= ⟨𝑇 +

𝑎 𝑢,𝑤⟩𝜕Ω + ⟨𝑓 − 𝐴̌𝑢, 𝛾−1𝑤⟩Ω , ∀𝑤 ∈ 𝐻
1
2 (𝜕Ω). (14)

Let us consider the auxiliary linear elliptic partial differential operator 𝐵 defined by

𝐵𝑢(𝑥) ∶= 𝐵(𝑥, 𝜕𝑥)𝑢(𝑥) ∶=
2
∑

𝑖=1

𝜕
𝜕𝑥𝑖

(

𝑏(𝑥)
𝜕𝑢(𝑥)
𝜕𝑥𝑖

)

, (15)

where 𝑏 ∈ 𝐶∞(Ω), 𝑏(𝑥) > 0 for 𝑥 ∈ Ω.
Since for 𝑢 ∈ 𝐻1,0(Ω,Δ), 𝐴𝑢−𝐵𝑢 = (𝑎−𝑏)Δ𝑢+∇(𝑎−𝑏) ⋅∇𝑢 ∈ 𝐿2(Ω), we have,𝐻1,0(Ω;𝐴) = 𝐻1,0(Ω;𝐵). Let 𝑢 ∈ 𝐻1(Ω)

and 𝑣 ∈ 𝐻1,0(Ω;𝐵). Then we write the first Green identity for operator 𝐵 in the form

𝑏(𝑢, 𝑣) + ∫
Ω

𝑢(𝑥)𝐵𝑣(𝑥)𝑑𝑥 = ⟨𝑇 +
𝑏 𝑣, 𝛾

+𝑢⟩𝜕Ω (16)

where
𝑏(𝑢, 𝑣) = ∫

Ω

𝑏(𝑥)∇𝑢(𝑥) ⋅ ∇𝑣(𝑥)𝑑𝑥.

If, in addition, 𝐴𝑢 = 𝑓 in Ω, where 𝑓 ∈ 𝐻̃−1(Ω), then according to the definition of 𝑇 +
𝑎 (𝑓, 𝑢), in (8), the two-operator second

Green identity can be written as

⟨𝑓, 𝑣⟩Ω − ∫
Ω

𝑢(𝑥)𝐵𝑣(𝑥)𝑑𝑥 + ∫
Ω

[𝑎(𝑥) − 𝑏(𝑥)]∇𝑢(𝑥) ⋅ ∇𝑣(𝑥)𝑑𝑥 = ⟨𝑇 +
𝑎 (𝑓, 𝑢), 𝛾

+𝑣⟩𝜕Ω − ⟨𝑇 +
𝑏 𝑣, 𝛾

+𝑢⟩𝜕Ω. (17)
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Moreover, for 𝑢, 𝑣 ∈ 𝐻1,0(Ω;𝐴) = 𝐻1,0(Ω;𝐵) (17) becomes

∫
Ω

[𝑣(𝑥)𝐴𝑢(𝑥) − 𝑢(𝑥)𝐵𝑣(𝑥)]𝑑𝑥 + ∫
Ω

[𝑎(𝑥) − 𝑏(𝑥)]∇𝑢(𝑥) ⋅ ∇𝑣(𝑥)𝑑𝑥 = ⟨𝑇 +
𝑎 𝑢, 𝛾

+𝑣⟩𝜕Ω − ⟨𝑇 +
𝑏 𝑣, 𝛾

+𝑢⟩𝜕Ω. (18)

3 PARAMETRIX AND POTENTIAL TYPE OPERATORS

Definition 4. We will say, a function 𝑃𝑏(𝑥, 𝑦) of two variables 𝑥, 𝑦 ∈ Ω is a parametrix (Levi function) for the operator 𝐵(𝑥; 𝜕𝑥)
in ℝ2 if (see, e.g.,3,29,30,31,32)

𝐵(𝑥, 𝜕𝑥)𝑃𝑏(𝑥, 𝑦) = 𝛿(𝑥 − 𝑦) + 𝑅𝑏(𝑥, 𝑦), (19)
where 𝛿 is the Dirac-delta distribution, while 𝑅(𝑥, 𝑦) is a remainder possessing at most a weak singularity at 𝑥 = 𝑦.

For some positive constant 𝑟0, the parametrix and hence the corresponding remainder in 2D can be chosen as in3,

𝑃𝑏(𝑥, 𝑦) =
1

2𝜋𝑏(𝑦)
ln
(

|𝑥 − 𝑦|
𝑟0

)

, (20)

𝑅𝑏(𝑥, 𝑦) =
2
∑

𝑖=1

𝑥𝑖 − 𝑦𝑖
2𝜋𝑏(𝑦)|𝑥 − 𝑦|2

𝜕𝑏(𝑥)
𝜕𝑥𝑖

, 𝑥, 𝑦 ∈ ℝ2. (21)

The parametrix 𝑃𝑏(𝑥, 𝑦) in (20) is the fundamental solution to the operator 𝐵(𝑦, 𝜕𝑥) ∶= 𝑏(𝑦)Δ𝑥 with “frozen" coefficient 𝑏(𝑥) =
𝑏(𝑦), and

𝐵(𝑦, 𝜕𝑥)𝑃𝑏(𝑥, 𝑦) = 𝛿(𝑥 − 𝑦). (22)
Let 𝑏 ∈ 𝐶∞(ℝ2) and 𝑏(𝑥) > 0 a.e. in ℝ2. For some scalar function 𝑔 the parametrix-based Newtonian and the remainder

volume potential operators, corresponding to the parametrix (20) and the remainder (21) are given by

𝐏𝑏𝑔(𝑦) ∶= ∫
ℝ2

𝑃𝑏(𝑥, 𝑦)𝑔(𝑥)𝑑𝑥, 𝑦 ∈ ℝ2, (23)

𝑏𝑔(𝑦) ∶= ∫
Ω

𝑃𝑏(𝑥, 𝑦)𝑔(𝑥)𝑑𝑥, 𝑦 ∈ Ω, (24)

𝑏𝑔(𝑦) ∶= ∫
Ω

𝑅𝑏(𝑥, 𝑦)𝑔(𝑥)𝑑𝑥, 𝑦 ∈ Ω. (25)

For 𝑔 ∈ 𝐻𝑠(ℝ2), 𝑠 ∈ ℝ, (23) is understood as 𝐏𝑏𝑔 = 1
𝑏
𝐏Δ𝑔, where the Newtonian potential operator 𝐏Δ for Laplacian Δ is well

defined in terms of the Fourier transform (i.e., as pseudodifferential operator), on any space 𝐻𝑠(ℝ2). For 𝑔 ∈ 𝐻̃𝑠(Ω), and any
𝑠 ∈ ℝ, definitions in (24) and (25) can be understood as

𝑏𝑔 = 1
𝑏
𝑟Ω𝐏Δ𝑔, 𝑏𝑔 = 𝑎

𝑏
𝑟Ω𝐏𝑎𝑔, and 𝑏𝑔 = −1

𝑏
𝑟Ω∇ ⋅ 𝐏Δ(𝑔∇𝑏), (26)

while for 𝑔 ∈ 𝐻𝑠(Ω),− 1
2
< 𝑠 < 1

2
, as (26) with 𝑔 replaced by 𝐸𝑔, where 𝐸 ∶ 𝐻𝑠(Ω) → 𝐻̃𝑠(Ω),− 1

2
< 𝑠 < 1

2
, is the unique

extension operator related with the operator 𝐸̊ of extension by zero, cf.10, Theorem 16.
For 𝑦 ∉ 𝜕Ω, the single layer and the double layer surface potential operators, corresponding to the parametrix (20) are defined

as

𝑉𝑏𝑔(𝑦) ∶= −∫
𝜕Ω

𝑃𝑏(𝑥, 𝑦)𝑔(𝑥)𝑑𝑆𝑥, (27)

𝑊𝑏𝑔(𝑦) ∶= −∫
𝜕Ω

[𝑇𝑏(𝑥, 𝑛(𝑥), 𝜕𝑥)𝑃𝑏(𝑥, 𝑦)]𝑔(𝑥)𝑑𝑆𝑥, (28)

where 𝑔 is some scalar density function. The integrals are understood in the distributional sense if 𝑔 is not integrable, while 𝑉Δ
and𝑊Δ are the single layer and double layer potentials corresponding to the Laplacian Δ. The corresponding boundary integral
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(pseudodifferential) operators of direct surface values of the single and the double layer potentials,𝑏 and 𝑏 for 𝑦 ∈ 𝜕Ω, are

𝑏𝑔(𝑦) ∶= −∫
𝜕Ω

𝑃𝑏(𝑥, 𝑦)𝑔(𝑥)𝑑𝑆𝑥, (29)

𝑏𝑔(𝑦) ∶= −∫
𝜕Ω

𝑇𝑏(𝑥, 𝑛(𝑥), 𝜕𝑥)𝑃𝑏(𝑥, 𝑦)𝑔(𝑥)𝑑𝑆𝑥, (30)

where Δ and Δ are respectively the direct values of the single and double layer potentials corresponding to the Laplacian Δ.
We can also calculate at 𝑦 ∈ 𝜕Ω the co-normal derivatives, associated with the operator 𝐴, of the single layer potential and

of the double layer potential:

𝑇 ±
𝑎 𝑉𝑏𝑔(𝑦) =

𝑎(𝑦)
𝑏(𝑦)

𝑇 ±
𝑏 𝑉𝑏𝑔(𝑦), (31)

±
𝑎𝑏𝑔(𝑦) ∶= 𝑇 ±

𝑎 𝑊𝑏𝑔(𝑦) =
𝑎(𝑦)
𝑏(𝑦)

𝑇 ±
𝑏 𝑊𝑏𝑔(𝑦). (32)

The direct value operators associated with (31) are

 ′
𝑎𝑏𝑔(𝑦) ∶= −∫

𝜕Ω

[𝑇𝑎(𝑦, 𝑛(𝑦), 𝜕𝑦)𝑃𝑏(𝑥, 𝑦)]𝑔(𝑥)𝑑𝑆𝑥, (33)

 ′
𝑏𝑔(𝑦) ∶= −∫

𝜕Ω

[𝑇𝑏(𝑦, 𝑛(𝑦), 𝜕𝑦)𝑃𝑏(𝑥, 𝑦)]𝑔(𝑥)𝑑𝑆𝑥. (34)

From equations (23)-(34) we deduce representations of the parametrix-based surface potential boundary operators in terms of
their counterparts for 𝑏 = 1, that is, associated with the fundamental solution 𝑃Δ = 1

2𝜋
log

(

|𝑥−𝑦|
𝑟0

)

of the Laplace operator Δ.

𝐏𝑎𝑔 = 1
𝑎
𝐏Δ𝑔, 𝐏𝑏𝑔 = 1

𝑏
𝐏Δ𝑔, 𝑎𝑔 = 1

𝑎
Δ𝑔, 𝑏𝑔 = 1

𝑏
Δ𝑔. (35)

𝑎
𝑏
𝑉𝑎𝑔 = 𝑉𝑏𝑔 = 1

𝑏
𝑉Δ𝑔;

𝑎
𝑏
𝑊𝑎

(𝑏𝑔
𝑎

)

= 𝑊𝑏𝑔 = 1
𝑏
𝑊Δ

(

𝑏𝑔
)

, (36)

𝑎
𝑏
𝑎𝑔 = 𝑏𝑔 = 1

𝑏
Δ𝑔;

𝑎
𝑏
𝑎

(𝑏𝑔
𝑎

)

= 𝑏𝑔 = 1
𝑏
Δ

(

𝑏𝑔
)

, (37)

 ′
𝑎𝑏𝑔 = 𝑎

𝑏
 ′

𝑏𝑔 = 𝑎
𝑏

{

 ′
Δ𝑔 +

[

𝑏 𝜕
𝜕𝑛

(1
𝑏

)]

Δ𝑔
}

, (38)

±
𝑎𝑏𝑔 = 𝑎

𝑏
±
𝑏 𝑔 = 𝑎

𝑏

{

Δ(𝑏𝑔) +
[

𝑏 𝜕
𝜕𝑛

(1
𝑏

)]

𝛾±𝑊Δ(𝑏𝑔)
}

, (39)

̂𝑏𝑔 ∶ = 𝑇 +
Δ𝑊Δ(𝑏𝑔) = 𝑇 −

Δ𝑊Δ(𝑏𝑔) = ̂Δ(𝑏𝑔) on 𝜕Ω. (40)

It is taken into account that 𝑏 and its derivatives are continuous in ℝ2 and

Δ(𝑏𝑔) ∶= +
Δ(𝑏𝑔) = −

Δ(𝑏𝑔)

by the Liapunov-Tauber theorem. Hence,

Δ(𝑏𝑉𝑏𝑔) = 0, Δ(𝑏𝑊𝑏𝑔) = 0 in Ω, ∀𝑔 ∈ 𝐻𝑠(𝜕Ω) (∀𝑠 ∈ ℝ), (41)

Δ(𝑏𝑏𝑔) = 𝑔 in Ω, ∀𝑔 ∈ 𝐻̃𝑠(Ω) (∀𝑠 ∈ ℝ). (42)
The mapping properties of the operators (23)-(34) follow from relations (35)-(40) and are described in detail in15, Appendix A.
Particularly, we have the following jump relations:

Theorem 1. For 𝑔1 ∈ 𝐻− 1
2 (𝜕Ω), and 𝑔2 ∈ 𝐻

1
2 (𝜕Ω). Then there hold the following relations on 𝜕Ω,

𝛾±𝑉𝑏𝑔1 = 𝑏𝑔1, (43)

𝛾±𝑊𝑏𝑔2 = ∓1
2
𝑔2 +𝑏𝑔2, (44)

𝑇 ±
𝑎 𝑉𝑏𝑔1 = ±1

2
𝑎
𝑏
𝑔1 + ′

𝑎𝑏𝑔1. (45)
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4 THE TWO-OPERATOR THIRD GREEN IDENTITY AND INTEGRAL RELATIONS

Applying some limiting procedures (see, e.g.,29, S.3.8 and30), we obtain the parametrix based third Green identities.

Theorem 2. (i) If 𝑢 ∈ 𝐻1(Ω), then the following third Green identity holds,

𝑢 +𝑏𝑢 +𝑏𝑢 +𝑊𝑏𝛾
+𝑢 = 𝑏𝐴̌𝑢 in Ω, (46)

where the operator 𝐴̌ is defined in (7), and for 𝑢 ∈ 𝐶1(Ω),

𝑏𝐴̌𝑢(𝑦) ∶= ⟨𝐴̌𝑢, 𝑃𝑏(., 𝑦)⟩Ω = −𝑎(𝑢, 𝑃𝑏(., 𝑦)) = −∫
Ω

𝑎(𝑥)∇𝑢(𝑥) ⋅ ∇𝑥𝑃𝑏(𝑥, 𝑦)𝑑𝑥 (47)

and

𝑏𝑢 = −∫
Ω

[𝑎(𝑥) − 𝑏(𝑥)]∇𝑥𝑃𝑏(𝑥, 𝑦) ⋅ ∇𝑢(𝑥)𝑑𝑥 = 1
𝑏(𝑦)

2
∑

𝑗=1
𝜕𝑗Δ

[

(𝑎 − 𝑏)𝜕𝑗𝑢
]

in Ω. (48)

(ii) If 𝐴𝑢 = 𝑟Ω𝑓 in Ω, where 𝑓 ∈ 𝐻̃−1(Ω), then recalling the definition of 𝑇 +
𝑎 (𝑓, 𝑢), in (8), we arrive at the generalised

two-operator third Green identity in the following form,

𝑢 +𝑏𝑢 +𝑏𝑢 − 𝑉𝑏𝑇 +
𝑎 (𝑓, 𝑢) +𝑊𝑏𝛾

+𝑢 = 𝑏𝑓 in Ω, (49)

where it was taken into account that

⟨𝑇 +
𝑎 (𝑓, 𝑢), 𝑃𝑏(𝑥, 𝑦)⟩𝜕Ω = −𝑉𝑏𝑇 +

𝑎 (𝑓, 𝑢) , ⟨𝑓, 𝑃𝑏(𝑥, 𝑦)⟩Ω = 𝑏𝑓. (50)

Proof. (i) Let first 𝑢 ∈ 𝐷(Ω). Let 𝑦 ∈ Ω, 𝐵𝜖(𝑦) ⊂ Ω be a ball centred at 𝑦 with sufficiently small radius 𝜖, and Ω𝜖 ∶= Ω⧵𝐵𝜖(𝑦).
For the fixed 𝑦, evidently, 𝑃𝑏(., 𝑦) ∈ 𝐷(Ω𝜖) ⊂ 𝐻1,0(𝐴; Ω𝜖) and has the coinciding classical and cannonical co-normal derivatives
on 𝜕Ω𝜖 . Then from (20) and the first Green identity (16) employed for Ω𝜖 with 𝑣 = 𝑃𝑏(., 𝑦) we obtain

− ∫
𝜕𝐵𝜖(𝑦)

𝑇 +
𝑥 𝑃𝑏(𝑥, 𝑦)𝛾

+𝑢(𝑥)𝑑𝑠𝑥 − ∫
𝜕Ω

𝑇𝑥𝑃𝑏(𝑥, 𝑦)𝛾+𝑢(𝑥)𝑑𝑠𝑥 + ∫
Ω𝜖

𝑢(𝑥)𝑅𝑏(𝑥, 𝑦)𝑑𝑥 = −∫
Ω𝜖

𝑏(𝑥)∇𝑢(𝑥) ⋅ ∇𝑥𝑃𝑏(𝑥, 𝑦)𝑑𝑥,

which we rewrite as

− ∫
𝜕𝐵𝜖(𝑦)

𝑇 +
𝑥 𝑃𝑏(𝑥, 𝑦)𝛾

+𝑢(𝑥)𝑑𝑠𝑥 − ∫
𝜕Ω

𝑇𝑥𝑃𝑏(𝑥, 𝑦)𝛾+𝑢(𝑥)𝑑𝑠𝑥 − ∫
Ω𝜖

[𝑎(𝑥) − 𝑏(𝑥)] ∇𝑢(𝑥) ⋅ ∇𝑥𝑃𝑏(𝑥, 𝑦)𝑑𝑥

+ ∫
Ω𝜖

𝑢(𝑥)𝑅𝑏(𝑥, 𝑦)𝑑𝑥 = −∫
Ω𝜖

𝑎(𝑥)∇𝑢(𝑥) ⋅ ∇𝑥𝑃𝑏(𝑥, 𝑦)𝑑𝑥. (51)

Taking the limit as 𝜖 → 0, (51) reduces to the third Green identity (46)–(47) for any 𝑢 ∈ (Ω). Taking into account the density
of (Ω) in 𝐻1(Ω), and the mapping properties of the integral potentials, see Appendix, we obtain that (46)–(47) hold true also
for any 𝑢 ∈ 𝐻1(Ω). (ii) Let {𝑓𝑘} ∈ (Ω) be a sequence of converging to 𝑓 in 𝐻̃−1(Ω) as 𝑘→ ∞. Then, according to8, Theorem B.1

there exists a sequence {𝑢𝑘} ∈ (Ω) converging to 𝑢 in 𝐻1(Ω) such that 𝐴𝑢𝑘 = 𝑟Ω𝑓𝑘 and 𝑇 +
𝑎 (𝑢𝑘) = 𝑇 +

𝑎 (𝑓𝑘, 𝑢𝑘) converge to
𝑇 +
𝑎 (𝑓, 𝑢) in 𝐻− 1

2 (𝜕Ω). For such 𝑢𝑘 by (47) and (8), we have

𝑏𝐴̌𝑢𝑘(𝑦) =
1
𝑏(𝑦)

∇𝑦 ⋅ ∫
Ω

𝑎(𝑥)𝑃Δ(𝑥, 𝑦)∇𝑢𝑘(𝑥)𝑑𝑥 = − 1
𝑏(𝑦)

lim
𝜖→0∫

Ω𝜖

𝑎(𝑥)∇𝑢𝑘(𝑥)𝑃Δ(𝑥, 𝑦)𝑑𝑥 = − lim
𝜖→0

Ω𝜖
(𝑢𝑘, 𝑃𝑏(., 𝑦))

= − lim
𝜖→0

⎡

⎢

⎢

⎣

∫
Ω𝜖

𝑓𝑘𝑃𝑏(𝑥, 𝑦)𝑑𝑥 − ∫
𝜕𝐵𝜖(𝑦)

𝑃𝑏(𝑥, 𝑦)𝑇 +
𝑎 𝑢𝑘(𝑥)𝑑𝑆(𝑥)

⎤

⎥

⎥

⎦

+ lim
𝜖→0∫

𝜕Ω

𝑃𝑏(𝑥, 𝑦)𝑇 +
𝑎 𝑢𝑘(𝑥)𝑑𝑆(𝑥) = 𝑏𝑓𝑘 + 𝑉𝑏𝑇 +

𝑎 𝑢𝑘(𝑦).

(52)

Taking the limits as 𝑘→ ∞ in (52), we obtain 𝑏𝐴̌𝑢(𝑦) = 𝑏𝑓 + 𝑉𝑏𝑇 +
𝑎 (𝑓, 𝑢), which substitution to (46) gives (49).

Below we state and prove20, Corollary 3 for completeness.
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Corollary 1. Using the Gauss divergence theorem, we can rewrite 𝑏𝑢(𝑦) in the form that does not involve derivatives of 𝑢,

𝑏𝑢(𝑦) ∶=
[

𝑎(𝑦)
𝑏(𝑦)

− 1
]

𝑢(𝑦) + ̂𝑏𝑢(𝑦), (53)

̂𝑏𝑢(𝑦) ∶=
𝑎(𝑦)
𝑏(𝑦)

𝑊𝑎𝛾
+𝑢(𝑦) −𝑊𝑏𝛾

+𝑢(𝑦) +
𝑎(𝑦)
𝑏(𝑦)

𝑎𝑢(𝑦) −𝑏𝑢(𝑦), (54)

which allows to call 𝑏 integral operator in spite of its integro-differential representation (48).

Proof. As in the proof of Theorem 2 item (i), let first 𝑢 ∈ 𝐷(Ω). Let 𝑦 ∈ Ω, 𝐵𝜖(𝑦) ⊂ Ω be a ball centred at 𝑦 with sufficiently
small radius 𝜖, and Ω𝜖 ∶= Ω⧵𝐵𝜖(𝑦). For the fixed 𝑦, evidently, 𝑃𝑏(., 𝑦) ∈ 𝐷(Ω𝜖) ⊂ 𝐻1,0(𝐴; Ω𝜖) and has the coinciding classical
and cannonical co-normal derivatives on 𝜕Ω𝜖 = 𝜕Ω ∪ 𝜕𝐵𝜖(𝑦). Next, let us denote 𝜖

𝑏𝑢(𝑦) ∶= − ∫Ω𝜖
[𝑎(𝑥) − 𝑏(𝑥)]∇𝑥𝑃𝑏(𝑥, 𝑦) ⋅

∇𝑢(𝑥)d𝑥, which can be rewritten as

𝜖
𝑏𝑢(𝑦) = ∫

Ω𝜖

[

∇
(

𝑎(𝑥) − 𝑏(𝑥)
)

⋅ ∇𝑥𝑃𝑏(𝑥, 𝑦)
]

𝑢(𝑥)𝑑𝑥 − ∫
Ω𝜀

∇
[(

𝑎(𝑥) − 𝑏(𝑥)
)

𝑢(𝑥)
]

⋅ ∇𝑥𝑃𝑏(𝑥, 𝑦)𝑑𝑥.

Observe that

𝐼1(𝑦, 𝜖) = ∫
Ω𝜖

[

∇
(

𝑎(𝑥) − 𝑏(𝑥)
)

⋅ ∇𝑥𝑃𝑏(𝑥, 𝑦)
]

𝑢(𝑥)𝑑𝑥 = ∫
Ω𝜀

[

∇𝑎(𝑥) ⋅ ∇𝑥𝑃𝑏(𝑥, 𝑦)
]

𝑢(𝑥)d𝑥 − ∫
Ω𝜖

[

∇𝑏(𝑥) ⋅ ∇𝑥𝑃𝑏(𝑥, 𝑦)
]

𝑢(𝑥)d𝑥

=
𝑎(𝑦)
𝑏(𝑦) ∫

Ω𝜖

[

∇𝑎(𝑥) ⋅ ∇𝑥𝑃𝑎(𝑥, 𝑦)
]

𝑢(𝑥)d𝑥 − ∫
Ω𝜀

[

∇𝑏(𝑥) ⋅ ∇𝑥𝑃𝑏(𝑥, 𝑦)
]

𝑢(𝑥)d𝑥

and

𝐼2(𝑦, 𝜖) = −∫
Ω𝜖

∇
[(

𝑎(𝑥)−𝑏(𝑥)
)

𝑢(𝑥)
]

⋅∇𝑥𝑃𝑏(𝑥, 𝑦)𝑑𝑥 = ∫
Ω𝜀

[𝑎(𝑥)−𝑏(𝑥)]𝑢(𝑥)Δ𝑥𝑃𝑏(𝑥, 𝑦)𝑑𝑥−∫
𝜕Ω𝜖

[𝑎(𝑥)−𝑏(𝑥)]𝛾+𝑢(𝑥)∇𝑥𝑃𝑏(𝑥, 𝑦)⋅𝑛(𝑥)𝑑𝑆𝑥

= −
𝑎(𝑦)
𝑏(𝑦) ∫

𝜕Ω

𝑎(𝑥)∇𝑥𝑃𝑎(𝑥, 𝑦) ⋅ 𝑛(𝑥)𝛾+𝑢(𝑥)𝑑𝑆𝑥 + ∫
𝜕Ω

𝑏(𝑥)∇𝑥𝑃𝑏(𝑥, 𝑦) ⋅ 𝑛(𝑥)𝛾+𝑢(𝑥)𝑑𝑆𝑥

−
𝑎(𝑦)
𝑏(𝑦) ∫

𝜕𝐵(𝑦,𝜖)

𝑎(𝑥)∇𝑥𝑃𝑎(𝑥, 𝑦) ⋅ 𝑛(𝑥)𝑢(𝑥)𝑑𝑆𝑥 + ∫
𝜕𝐵𝜖(𝑦)

𝑏(𝑥)∇𝑥𝑃𝑏(𝑥, 𝑦) ⋅ 𝑛(𝑥)𝑢(𝑥)𝑑𝑆𝑥

=
𝑎(𝑦)
𝑏(𝑦)

𝑊𝑎𝛾
+𝑢(𝑦) −𝑊𝑏𝛾

+𝑢(𝑦) − 1
𝑏(𝑦) ∫

𝜕𝐵𝜖(𝑦)

𝑎(𝑥)∇𝑥𝑃Δ(𝑥, 𝑦) ⋅ 𝑛(𝑥)𝛾+𝑢(𝑥)𝑑𝑆𝑥 +
1
𝑏(𝑦) ∫

𝜕𝐵𝜖(𝑦)

𝑏(𝑥)∇𝑥𝑃Δ(𝑥, 𝑦) ⋅ 𝑛(𝑥)𝛾+𝑢(𝑥)𝑑𝑆𝑥.

Taking the limit as 𝜖 → 0 we obtain

𝑏𝑢(𝑦) = lim
𝜖→0

𝜖
𝑏𝑢(𝑦) = lim

𝜖→0

[

𝐼1(𝑦, 𝜖) + 𝐼2(𝑦, 𝜖)
]

=
𝑎(𝑦)
𝑏(𝑦)

𝑎𝑢(𝑦) −𝑏𝑢(𝑦) +
𝑎(𝑦)
𝑏(𝑦)

𝑊𝑎𝛾
+𝑢(𝑦) −𝑊𝑏𝛾

+𝑢(𝑦) +
[𝑎(𝑦)
𝑏(𝑦)

− 1
]

𝑢(𝑦)

which is as in Eqs. (53) and (54).

Note that the operator 𝑏 does not vanish unless operators 𝐴 and 𝐵 are equal. For some functions 𝑓, Ψ, Φ let us consider a
more general “indirect" integral relation, associated with (49).

𝑢 +𝑏𝑢 +𝑏𝑢 − 𝑉𝑏Ψ +𝑊𝑏Φ = 𝑏𝑓 in Ω. (55)

Lemma 1. Let 𝑢 ∈ 𝐻1(Ω),Ψ ∈ 𝐻− 1
2 (𝜕Ω),Φ ∈ 𝐻

1
2 (𝜕Ω) and 𝑓 ∈ 𝐻̃−1(Ω) satisfy (55). Then

𝐴𝑢 = 𝑟Ω𝑓 in Ω, (56)
𝑟Ω𝑉𝑏(Ψ − 𝑇 +

𝑎 (𝑓, 𝑢)) − 𝑟Ω𝑊𝑏(Φ − 𝛾+𝑢) = 0 in Ω, (57)

𝛾+𝑢 + 𝛾+𝑏𝑢 + 𝛾+𝑏𝑢 − 𝑏Ψ − 1
2
Φ +𝑏Φ = 𝛾+𝑏𝑓 on 𝜕Ω, (58)

𝑇 +
𝑎 (𝑓, 𝑢) + 𝑇

+
𝑎 𝑏𝑢 + 𝑇 +

𝑎 𝑏𝑢 −
𝑎
2𝑏

Ψ − ′
𝑎𝑏Ψ + +

𝑎𝑏Φ = 𝑇 +
𝑎 (𝑓 + 𝐸̊𝑏

∗𝑓,𝑏𝑓 ) on 𝜕Ω, (59)
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where

𝑏
∗𝑓 (𝑦) ∶= −

3
∑

𝑗=1
𝜕𝑗[(𝜕𝑗𝑏)𝑏𝑓 ]. (60)

Proof. Subtracting (55) from identity (46), we obtain

𝑉𝑏Ψ(𝑦) −𝑊𝑏(Φ − 𝛾+𝑢)(𝑦) = 𝑏[𝐴̌𝑢(𝑦) − 𝑓 ](𝑦), 𝑦 ∈ Ω. (61)

Multiplying equality (61) by 𝑏(𝑦), applying the Laplace operator Δ and taking into account equations (41) and (42), we get
𝑟Ω𝑓 = 𝑟Ω(𝐴̌𝑢) = 𝐴𝑢 in Ω. This means 𝑓 is an extension of the distribution 𝐴𝑢 ∈ 𝐻−1(Ω) to 𝐻̃−1(Ω), and 𝑢 satisfies (56). Then
(8) implies

𝑏[𝐴̌𝑢 − 𝑓 ](𝑦) = ⟨𝐴̌𝑢 − 𝑓, 𝑃𝑏(., 𝑦)⟩Ω = −⟨𝑇 +
𝑎 (𝑓, 𝑢), 𝑃𝑏(.𝑦)⟩𝜕Ω = 𝑉𝑏𝑇

+
𝑎 (𝑓, 𝑢), 𝑦 ∈ Ω. (62)

Substituting (62) into (61) leads to (57). Equation (58) follows from (55) and jump relations in (43) and (44). To prove (59), let
us first remark that for 𝑢 ∈ 𝐻1(Ω), we have 𝐻1(Ω;𝐴) = 𝐻1(Ω;Δ) = 𝐻1(Ω;𝐵) and

𝐵𝑏𝑓 = 𝑓 +𝑏
∗𝑓 in Ω, (63)

due to (56), which implies 𝐵(𝑏𝑓 − 𝑢) = 𝑏
∗𝑓 in Ω, with 𝑏

∗𝑓 given by (60), and thus 𝑏
∗𝑓 ∈ 𝐿2(Ω). Then 𝐵(𝑏𝑓 − 𝑢) can be

canonically extended (by zero) to
𝐵(𝑏𝑓 − 𝑢) = 𝐸̊𝑏

∗𝑓 ∈ 𝐻̃0(Ω) ⊂ 𝐻̃−1(Ω).
Thus there exists a canonical co-normal derivative 𝑇 +

𝑏 (𝑏𝑓 − 𝑢) written as (see, e.g.,8, Eq. (4.14),11, Eq. (4.23).)

𝑇 +
𝑏 (𝑏𝑓 − 𝑢) = 𝑇 +

𝑏 (𝑓 + 𝐸̊𝑏
∗𝑓,𝑏𝑓 ) − 𝑇

+
𝑏 (𝑓, 𝑢), (64)

and hence

𝑇 +
𝑎

(

𝑏𝑓 − 𝑢
)

= 𝑎
𝑏
𝑇 +
𝑏

(

𝑏𝑓 − 𝑢
)

= 𝑎
𝑏
[

𝑇 +
𝑏 (𝑓 + 𝐸̊𝑏

∗𝑓,𝑏𝑓 ) − 𝑇
+
𝑏 (𝑓, 𝑢)

]

= 𝑇 +
𝑎

(

𝑓 + 𝐸̊𝑏
∗𝑓,𝑏𝑓

)

− 𝑇 +
𝑎 (𝑓, 𝑢). (65)

From (55) it follows that 𝑏𝑓 − 𝑢 = 𝑏𝑢 +𝑏𝑢 − 𝑉𝑏Ψ +𝑊𝑏Φ in Ω. Substituting this on the left-hand side of (64) and taking
into account (39) and the jump relation (45), we arrive at (59).

Remark 1. If 𝑓 ∈ 𝐻̃− 1
2 (Ω) ⊂ 𝐻̃−1(Ω), then 𝑓 + 𝐸̊𝑏

∗𝑓 ∈ 𝐻̃− 1
2 (Ω) as well, which implies 𝑓 + 𝐸̊𝑏

∗𝑓 = 𝐴̃𝑏𝑓 and

𝑇 +
𝑎 (𝑓 + 𝐸̊𝑏

∗𝑓,𝑏𝑓 ) = 𝑇 +
𝑎 (𝐵̃𝑏𝑓,𝑏𝑓 ) = 𝑇 +

𝑎 𝑏𝑓. (66)

Furthermore, if the hypotheses of Lemma 1 are satisfied, then (56) implies 𝑢 ∈ 𝐻1,− 1
2 (Ω;𝐴) and 𝑇 +

𝑎 (𝑓, 𝑢) = 𝑇 +
𝑎 (𝐴̃𝑢, 𝑢) = 𝑇 +

𝑎 𝑢.
Henceforth (59), takes the familiar form, cf.15, equation (3.23),

𝑇 +
𝑎 𝑢 + 𝑇

+
𝑎 𝑏𝑢 + 𝑇 +

𝑎 𝑏𝑢 −
𝑎
2𝑏

Ψ − ′
𝑎𝑏Ψ + +

𝑎𝑏Φ = 𝑇 +
𝑎 𝑏𝑓 on 𝜕Ω.

Remark 2. Let 𝑓 ∈ 𝐻̃−1(Ω) and a sequence {𝜙𝑖} ∈ 𝐻̃−1(Ω) converge to 𝑓 in 𝐻̃−1(Ω). By the continuity of operators8, C.1 and C.2,
estimate (9) and relation (66) for 𝜙𝑖, we obtain that

𝑇 +
𝑎 (𝑓 + 𝐸̊𝑏

∗𝑓,𝑏𝑓 ) = lim
𝑖→∞

𝑇 +
𝑎 (𝜙𝑖 + 𝐸̊

𝑏
∗𝜙𝑖,𝑏𝜙𝑖) = lim

𝑖→∞
𝑇 +
𝑎 𝑏𝜙𝑖.

in 𝐻− 1
2 (𝜕Ω), cf. also8, Theorem B.1.

Lemma 1 and the third Green identity (49) imply, the following assertion.

Corollary 2. If 𝑢 ∈ 𝐻1(Ω) and 𝑓 ∈ 𝐻̃−1(Ω) are such that 𝐴𝑢 = 𝑟Ω𝑓 in Ω, then
1
2
𝛾+𝑢 + 𝛾+𝑏𝑢 + 𝛾+𝑏𝑢 − 𝑏𝑇 +

𝑎 (𝑓, 𝑢) +𝑏𝛾
+𝑢 = 𝛾+𝑏𝑓 on 𝜕Ω, (67)

(

1 − 𝑎
2𝑏

)

𝑇 +
𝑎 (𝑓, 𝑢) + 𝑇

+
𝑎 𝑏𝑢 + 𝑇 +

𝑎 𝑏𝑢 − ′
𝑎𝑏𝑇

+
𝑎 (𝑓, 𝑢) + +

𝑎𝑏𝛾
+𝑢 = 𝑇 +

𝑎 (𝑓 + 𝐸̊𝑏
∗𝑓,𝑏𝑓 ) on 𝜕Ω. (68)

Note that if 𝑏 is not only the parametrix but also the fundamental solution of the operator 𝐵, then the remainder operator
𝑏 vanishes in (49) and (67)-(68) (and everywhere in the paper), while the operator 𝑏 stays unless 𝐴 = 𝐵. The following
statement is proved in8, Lemma 4.6.

Theorem 3. Let 𝑓 ∈ 𝐻̃−1(Ω). A function 𝑢 ∈ 𝐻1(Ω) is a solution of PDE 𝐴𝑢 = 𝑟Ω𝑓 in Ω if and only if it is a solution of
BDIDE (49).
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Proof. If 𝑢 ∈ 𝐻1(Ω) solves PDE 𝐴𝑢 = 𝑟Ω𝑓 in Ω, then it satisfies (49). On the other hand, if 𝑢 solves BDIDE (49), then using
Lemma 1 for Ψ = 𝑇 +

𝑎 (𝑓, 𝑢), Φ = 𝛾+𝑢 completes the proof.

5 INVERTIBILITY OF SINGLE LAYER POTENTIAL OPERATOR

The boundary integral operator, Δ ∶ 𝐻− 1
2 (𝜕Ω) → 𝐻

1
2 (𝜕Ω) is a Fredholm operator of index zero (see, e.g.,9, Theorem 7.6). Thus

the first relation in (37) leads to the same result for the single layer potential 𝑏. For the case of 3D, Lemma 3.2(i) in15 asserts
that for Ψ∗ ∈ 𝐻− 1

2 (𝜕Ω), if 𝑉𝑏Ψ∗ = 0 in Ω, then Ψ∗ = 0 in Ω. Implying the invertibility of single layer potential operator 𝑉𝑏
mapping from 𝐻− 1

2 (𝜕Ω) to 𝐻
1
2 (𝜕Ω). But this is not the case for 2D. It is well-known (see, e.g.,33, Remark 1.42(ii) and34, Theorem 6.22)

that for some 2D domains the kernel of the operator Δ is nontrivial, thus due to the first relation in (37), the kernel of operator
𝑏 is nontrivial as well for the same domains. To ensure the invertibility of the single layer potential operator in 2D, for 𝑠 ∈ ℝ,
let us define the subspace of 𝐻𝑠(𝜕Ω), (cf. e.g.,34, p. 147),

𝐻𝑠
∗∗(𝜕Ω) ∶= {𝑔 ∈ 𝐻𝑠(𝜕Ω) ∶ ⟨𝑔, 1⟩𝜕Ω = 0}. (69)

The following result is proved in18, Theorem 4, see also35, Theorem 1.

Theorem 4. If 𝜓 ∈ 𝐻
− 1

2
∗∗ (𝜕Ω) satisfies 𝑏𝜓 = 0 on 𝜕Ω, then 𝜓 = 0.

Following9, Theorem 8.15, there exists a unique real-valued distribution 𝜓𝑒𝑞 ∈ 𝐻− 1
2 (𝜕Ω) called equilibrium density for 𝜕Ω such

that Δ𝜓𝑒𝑞 is constant on 𝜕Ω, and (1, 𝜓𝑒𝑞)𝜕Ω = 1. For 𝑛 = 2 the constant Δ𝜓𝑒𝑞 is not always positive and one introduces the
logarithmic capacity, Cap𝜕Ω using the relation

Δ𝜓𝑒𝑞 =
1
2𝜋

ln
(

𝑟0
Cap∂Ω

)

,

for some positive constant 𝑟0 as in equation (20). In particular Δ𝜓𝑒𝑞 = 0 if and only if 𝑟0 = Cap𝜕Ω. The following statement is
proved in9, Theorem 8.16.

Theorem 5. Let 𝑟0 be some positive constant.

(i) The operator Δ ∶ 𝐻− 1
2 (𝜕Ω) → 𝐻

1
2 (𝜕Ω), is 𝐻− 1

2 (𝜕Ω)- elliptic, i.e., ⟨Δ𝜓,𝜓⟩𝜕Ω ≥ 𝑐‖𝜓‖
𝐻− 1

2 (𝜕Ω)
for all 𝜓 ∈ 𝐻− 1

2 (𝜕Ω),
if and only if 𝑟0 > Cap

∂Ω
.

(ii) The operator Δ ∶ 𝐻− 1
2 (𝜕Ω) → 𝐻

1
2 (𝜕Ω), has a bounded inverse if and only if 𝑟0 ≠ Cap

∂Ω
.

The following theorem ensures the invertibility of the single layer potential operator 𝑏 in 2D.

Theorem 6. Let Ω ⊂ ℝ2 with 𝑟0 > diam(Ω). Then the single layer potential 𝑏 ∶ 𝐻
− 1

2 (𝜕Ω) → 𝐻
1
2 (𝜕Ω) is invertible.

Proof. Since Cap
𝜕Ω

≤ diam(Ω), (see,36, p.553, properties 1 and 3), then 𝑟0 > diam(Ω) implies 𝑟0 > Cap
𝜕Ω

. For the case 𝑎 = 𝑏 the
assertion is proved in18, Theorem 5. Due to the first relation in (37) and Theorem 5(ii) follows the invertibility of the single layer
potential operator 𝑏 for the case 𝑎 ≠ 𝑏 as well ( see also35, Theorem 2).

As in20 we shall restrict ourselves to Theorem 6 while discussing about the invertibility of single layer potential 𝑉𝑏 in 2D.
Similar results can be obtained using Theorem 4 as well. The proof to the following result is due to35, Lemma 1 and14, Lemma 2.

Lemma 2. (i) Let 𝑟0 > diam(Ω). If Ψ∗ ∈ 𝐻− 1
2 (𝜕Ω) and 𝑟Ω𝑉𝑏Ψ∗ = 0 in Ω, then Ψ∗ = 0.

(ii) If Φ∗ ∈ 𝐻
1
2 (𝜕Ω) and 𝑟Ω𝑊𝑏Φ∗ = 0 in Ω, then Φ∗ = 0.
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6 TWO-OPERATOR BDIE SYSTEMS FOR DIRICHLET PROBLEM

Let Ω be a domain in ℝ2 bounded by a smooth curve 𝜕Ω. We shall derive and investigate the two-operator BDIE systems for
the following Dirichlet problem: for 𝜑0 ∈ 𝐻

1
2 (𝜕Ω) and 𝑓 ∈ 𝐻−1(Ω), find a function 𝑢 ∈ 𝐻1(Ω) satisfying

𝐴𝑢 = 𝑓 in Ω, (70)
𝛾+𝑢 = 𝜑0 on 𝜕Ω. (71)

Here equation (70) is understood in the distributional sense (4) and the Dirichlet boundary condition (71) is understood in the
trace sense. The following assertion is well-known and can be proved e.g. using variational settings and the Lax-Milgram lemma:

Theorem 7. The Dirichlet problem (70)-(71) is uniquely solvable in 𝐻1(Ω). The solution is 𝑢 = (𝐷)−1(𝑓, 𝜑0)𝑇 , where the
inverse operator, (𝐷)−1 ∶ 𝐻

1
2 (𝜕Ω) ×𝐻−1(Ω) → 𝐻1(Ω), to the left-hand side operator, 𝐷 ∶ 𝐻1(Ω) → 𝐻

1
2 (𝜕Ω) ×𝐻−1(Ω),

of the Dirichlet problem (70)-(71), is continuous.

6.1 BDIE system formulation to the Dirichlet problem
Following8, for 𝑢 ∈ 𝐻1(Ω), we shall reduce the Dirichlet problem (70)-(71) with 𝑓 ∈ 𝐻−1(Ω) in to two different segregated
two-operator BDIE systems.

Let 𝑓 ∈ 𝐻̃−1(Ω) be an extension of 𝑓 ∈ 𝐻−1(Ω) (i.e., 𝑓 = 𝑟Ω𝑓 ), which always exists, see,8, Lemma 2.15 and Theorem 2.16. We
represent in (49), (67) and (68) the generalized conormal derivative and the trace of the function 𝑢 as

𝑇 +(𝑓, 𝑢) = 𝜓, 𝛾+𝑢 = 𝜑0

respectively, and will regard the new unknown function 𝜓 ∈ 𝐻− 1
2 (𝜕Ω) as formally segregated of 𝑢. Thus we will look for the

couple (𝑢, 𝜓) ∈ 𝐻1(Ω) ×𝐻− 1
2 (𝜕Ω).

BDIE system (D1). To reduce BVP (70)-(71) to one of BDIE systems we will use equation (49) in Ω and equation (67) on
𝜕Ω. Then we arrive at the system of BDIEs (D1),

𝑢 +𝑏𝑢 +𝑏𝑢 − 𝑉𝑏𝜓 = 𝐷1
1 in Ω, (72)

𝛾+𝑏𝑢 + 𝛾+𝑏𝑢 − 𝑏𝜓 = 𝐷1
2 on 𝜕Ω, (73)

where

𝐷1 ∶=
⎡

⎢

⎢

⎣

𝐷1
1

𝐷1
2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐹0

𝛾+𝐹0 − 𝜑0

⎤

⎥

⎥

⎦

and 𝐹0 ∶= 𝑏𝑓 −𝑊𝑏𝜑0. (74)

For 𝜑0 ∈ 𝐻
1
2 (𝜕Ω), we have the inclusions 𝐷1 = 𝐹0 ∈ 𝐻1(Ω) if 𝑓 ∈ 𝐻̃−1(Ω) and due to the mapping properties of operators

involved in (74), we have the inclusion 𝐷2 ∈ 𝐻1(Ω) ×𝐻
1
2 (𝜕Ω).

Remark 3. Let 𝑓 ∈ 𝐻̃−1(Ω) and 𝜑0 ∈ 𝐻
1
2 (𝜕Ω). Then 𝐷1 = 0 if and only if (𝑓, 𝜑0) = 0.

Proof. The later equality implies the former. Conversely, let 𝐷1 = 0, that is, 𝐹0 = 𝑏𝑓 −𝑊𝑏𝜑0 = 0 in Ω and 𝛾+𝐹0 − 𝜑0 = 0
on 𝜕Ω. Multiplying the first relation by 𝑏, we get Δ𝑓 −𝑊Δ(𝑏𝜑0) = 0 in Ω. Taking into account that 𝑏𝑊𝑏(𝜑0) = 𝑊Δ(𝑏𝜑0)
is harmonic and applying Laplace operator gives 𝑓 = 0 in ℝ2, and hence 𝑊𝑏𝜑0 = 0 in Ω. Then by Lemma 2(ii), 𝜑0 = 0 on
𝜕Ω.

BDIE system (D2). To obtain a segregated BDIE system of the second kind, we will use equation (49) in Ω and equation (68)
on 𝜕Ω. Then we arrive at the system, (D2), of BDIEs,

𝑢 +𝑏𝑢 +𝑏𝑢 − 𝑉𝑏𝜓 = 𝑏𝑓 −𝑊𝑏𝜑0 in Ω, (75)

(

1 − 𝑎
2𝑏

)

𝜓 + 𝑇 +
𝑎 𝑏𝑢 + 𝑇 +

𝑎 𝑏𝑢 − ′
𝑎𝑏𝜓 = 𝑇 +

𝑎 (𝑓 + 𝐸̊𝑏
∗𝑓,𝑏𝑓 ) − +

𝑎𝑏𝜑0 on 𝜕Ω, (76)
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where

𝐷2 ∶=
⎡

⎢

⎢

⎣

𝐷2
1

𝐷2
2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑏𝑓 −𝑊𝑏𝜑0

𝑇 +
𝑎 (𝑓 + 𝐸̊𝑏

∗𝑓,𝑏𝑓 ) − +
𝑎𝑏𝜑0

⎤

⎥

⎥

⎦

. (77)

Due to the mapping properties of operators involved in (77), we have the inclusion 𝐷2 ∈ 𝐻1(Ω) ×𝐻− 1
2 (𝜕Ω). In similar way

as in Remark 3, we can prove the following statement.

Remark 4. Let 𝑓 ∈ 𝐻̃−1(Ω) and 𝜑0 ∈ 𝐻
1
2 (𝜕Ω). Then 𝐷2 = 0 if and only if (𝑓, 𝜑0) = 0.

6.2 BDIE systems equivalence to the Dirichlet problem
Theorem 8. Let 𝜑0 ∈ 𝐻

1
2 (𝜕Ω), 𝑓 ∈ 𝐻−1(Ω) and 𝑓 ∈ 𝐻̃−1(Ω) is such that 𝑟Ω𝑓 = 𝑓 . Then

(i) If 𝑢 ∈ 𝐻1(Ω) solves the BVP (70)-(71), then the couple (𝑢, 𝜓) ∈ 𝐻1(Ω) ×𝐻− 1
2 (Ω), where

𝜓 = 𝑇 +
𝑎 (𝑓, 𝑢), on 𝜕Ω, (78)

solves the BDIE systems (D1) and (D2).

(ii) If a couple (𝑢, 𝜓) ∈ 𝐻1(Ω) × 𝐻− 1
2 (𝜕Ω) solves BDIE system (D1) and 𝑟0 > diam(Ω), then this solution is unique and

solves BDIEs (D2), while 𝑢 solves the Dirichlet problem (70)-(71), and 𝜓 satisfies (78).

(iii) If a couple (𝑢, 𝜓) ∈ 𝐻1(Ω) ×𝐻− 1
2 (𝜕Ω) solves BDIE system (D2), then this solution is unique and solves BDIEs (D1),

while 𝑢 solves the Dirichlet problem (70)-(71), and 𝜓 satisfies (78).

Proof. (i) Let 𝑢 ∈ 𝐻1(Ω) be a solution to BVP (70)–(71). Due to Theorem 7 it is unique. Setting 𝜓 by (78) evidently implies,
𝜓 ∈ 𝐻− 1

2 (𝜕Ω). From Theorem 3 and relations (67)–(68) follows that the couple (𝑢, 𝜓) satisfies the BDIE systems (D1) and
(D2), with the right-hand sides (74) and (77) respectively, which completes the proof of item (i).

Let now the couple (𝑢, 𝜓) ∈ 𝐻1(Ω) × 𝐻− 1
2 (𝜕Ω) solve BDIE system (D1) or (D2). Due to Theorem 3, the hypothesis of

Lemma 1 are satisfied implying that 𝑢 solves PDE (70) in Ω, while relations in (56) and (57) also hold.
(ii) Let the couple (𝑢, 𝜓) ∈ 𝐻1(Ω) × 𝐻− 1

2 (𝜕Ω) solve BDIE system (D1). Taking trace of (72) on 𝜕Ω and subtracting (73)
from it we obtain

𝛾+𝑢 = 𝜑0 on 𝜕Ω, (79)
i.e. 𝑢 satisfies the Dirichlet condition (71). (72) and Lemma 1 with Ψ = 𝜓, Φ = 𝜑0 imply that 𝑉𝑏Ψ∗ −𝑊𝑏Φ∗ = 0, in Ω, where
Ψ∗ = 𝜓 − 𝑇 +

𝑎 (𝑓, 𝑢) and Φ∗ = 𝜑0 − 𝛾+𝑢. Due to (79), Φ∗ = 0. Then Lemma 2(i) implies Ψ∗ = 0, which proves condition (78).
Thus 𝑢 obtained from the solution of BDIE system (D1) solves the Dirichlet problem and hence, by item (i) of the theorem, (𝑢, 𝜓)
solve also BDIE system (D2). Let now the couple (𝑢, 𝜓) ∈ 𝐻1(Ω) × 𝐻− 1

2 (𝜕Ω) solve BDIE system (D2). Taking generalized
conormal derivative of (75) and subtracting (76) from it, we get 𝜓 = 𝑇 +

𝑎 (𝑓, 𝑢) on 𝜕Ω. Then substituting this in (57) gives
𝑊𝑏(𝜑0 − 𝛾+𝑢) = 0 in Ω and Lemma 2(ii) then implies 𝜑0 = 𝛾+𝑢 on 𝜕Ω.

Due to (74), the BDIE system (72)-(73) with zero right-hand side can be considered as obtained for 𝑓 = 0, 𝜑0 = 0, where
𝑓 ∈ 𝐻̃(Ω) is an extension of 𝑓 ∈ 𝐻−1(Ω), i.e., 𝑓 = 𝑟Ω𝑓, implying that its solution is given by a solution of the homogeneous
problem (70)-(71), which is zero by Theorem 7. This implies uniqueness of the solution of the the inhomogeneous BDIE system
(72)-(73). Similar arguments work for the BDIE system (75)-(76).

6.3 BDIE system operators invertibility for the Dirichlet problem
The BDIE systems (D1) and (D2) can be written as

𝔇1 𝐷 = 𝐷1 and 𝔇2 𝐷 = 𝐷2,
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respectively. Here  𝐷 ∶= (𝑢, 𝜓)𝑇 ∈ 𝐻1(Ω) ×𝐻− 1
2 (𝜕Ω),

𝔇1 ∶=
⎡

⎢

⎢

⎣

𝐼 +𝑏 +𝑏 −𝑉𝑏

𝛾+𝑏 + 𝛾+𝑏 −𝑏

⎤

⎥

⎥

⎦

, (80)

𝔇2 ∶=

[

𝐼 +𝑏 +𝑏 −𝑉𝑏
𝑇 +
𝑎 𝑏 + 𝑇 +

𝑎 𝑏

(

1 − 𝑎
2𝑏

)

𝐼 − ′
𝑎𝑏

]

, (81)

while 𝐷1 and 𝐷2 are given by (74) and (77) respectively. Due to the mapping properties of the operators participating in the
definitions of the operators 𝔇1 and 𝔇2 as well as the right-hand sides 𝐷1 and 𝐷2 (see, e.g.,1,6 and the Appendix in8), we
have 𝐷1 ∈ 𝐻1(Ω) ×𝐻

1
2 (𝜕Ω), 𝐷2 ∈ 𝐻1(Ω) ×𝐻− 1

2 (𝜕Ω), while the operators

𝔇1 ∶ 𝐻1(Ω) ×𝐻− 1
2 (𝜕Ω) → 𝐻1(Ω) ×𝐻

1
2 (𝜕Ω) (82)

𝔇2 ∶ 𝐻1(Ω) ×𝐻− 1
2 (𝜕Ω) → 𝐻1(Ω) ×𝐻− 1

2 (𝜕Ω) (83)

are continuous. Due to Theorem 8(ii)-(iii), operators (82) and (83) are injective.

Lemma 3. For any couple (1,2) ∈ 𝐻1(Ω)×𝐻− 1
2 (𝜕Ω), there exists a unique couple (𝑓∗∗,Φ∗) ∈ 𝐻̃−1(Ω)×𝐻

1
2 (𝜕Ω) such that

1 = 𝑏𝑓∗∗ −𝑊𝑏Φ∗ (84)
2 = 𝑇 +

𝑎 (𝑓∗∗ + 𝐸̊
𝑏
∗𝑓∗∗,𝑏𝑓∗∗) − +

𝑎𝑏Φ∗ (85)

Moreover, (𝑓∗∗,Φ∗) = ∗∗(1,2) with ∗∗ ∶ 𝐻1(Ω) ×𝐻− 1
2 (𝜕Ω) → 𝐻̃−1(Ω) ×𝐻

1
2 (𝜕Ω) a linear continuous operator given by

𝑓∗∗ = Δ̌(𝑏1) + 𝛾∗(2 + (𝛾+1)𝜕𝑛𝑏) (86)

Φ∗ =
1
𝑏

(

− 1
2
𝐼 +Δ

)−1
𝛾+

{

− 𝑏1 + Δ

[

Δ̌(𝑏1) + 𝛾∗
(𝑏
𝑎
2 + (𝛾+1)𝜕𝑛𝑏

)]}

(87)

where Δ̌(𝑏1) = ∇ ⋅ 𝐸̌∇(𝑏1).

Proof. Let us first assume that there exist (𝑓∗∗,Φ∗) ∈ 𝐻̃−1(Ω)×𝐻
1
2 (𝜕Ω) satisfying equations (84)-(85) and find their expression

in terms of 1 and 2. Let us rewrite (84) as

1 − 𝑏𝑓∗∗ = −𝑊𝑏Φ∗ in Ω. (88)

Multiplying (88) by 𝑏 and applying Laplacian to it, we obtain,

Δ(𝑏1 − Δ𝑓∗∗) = Δ(𝑏1) − 𝑓∗∗ = −Δ(𝑊Δ(𝑏Φ∗)) = 0 in Ω, (89)

which means

Δ(𝑏1) = 𝑟Ω𝑓∗∗ in Ω, (90)

and 𝑏1 − Δ𝑓∗∗ ∈ 𝐻1,0(Ω,Δ) and hence 1 − 𝑏𝑓∗∗ ∈ 𝐻1,0(Ω, 𝐵) = 𝐻1,0(Ω, 𝐴). The latter imply that the canonical co-
normal derivatives 𝑇 +

𝑏 (1 − 𝑏𝑓∗∗) and 𝑇 +
𝑎 (1 − 𝑏𝑓∗∗) are well defined and can be also written in terms of their generalized

co-normal derivatives
𝑏
𝑎
𝑇 +
𝑎 (1 − 𝑏𝑓∗∗) = 𝑇 +

𝑏 (1 − 𝑏𝑓∗∗) = 𝑇 +
𝑏 (𝐵̃(1 − 𝑏𝑓∗∗),1 − 𝑏𝑓∗∗)

= 𝑇 +
𝑏 (𝐸̊∇ ⋅ (𝑏∇(1 − 𝑏𝑓∗∗)),1 − 𝑏𝑓∗∗)

= 𝑇 +
𝑏 (𝐸̊Δ(𝑏1 − Δ𝑓∗∗) − 𝐸̊∇ ⋅ ((1 − 𝑏𝑓∗∗)∇𝑏),1 − 𝑏𝑓∗∗)

= 𝑇 +
𝑏 (−𝐸̊∇ ⋅ (1∇𝑏) − 𝐸̊𝑏

∗𝑓∗∗,1 − 𝑏𝑓∗∗)
and therefore,

𝑇 +
𝑎 (1 − 𝑏𝑓∗∗) = 𝑇 +

𝑎 (−𝐸̊∇ ⋅ (1∇𝑏) − 𝐸̊𝑏
∗𝑓∗∗, 1 − 𝑏𝑓∗∗) (91)

where (63) and (90) were taken into account. Applying the co-normal derivative operator 𝑇 +
𝑎 to both sides of equation (88),

substituting their (91), taking into account (11), we obtain,

𝑇 +
𝑎 (𝑓∗∗ − 𝐸̊∇ ⋅ (1∇𝑏), 1) − 𝑇 +

𝑎 (𝑓∗∗ + 𝐸̊
𝑏
∗𝑓∗∗,𝑏𝑓∗∗) = −+

𝑎𝑏Φ∗, on 𝜕Ω. (92)
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Subtracting this from (85), we get,

2 = 𝑇 +
𝑎

(

𝑓∗∗ − 𝐸̊∇ ⋅ (1∇𝑏),1
)

on 𝜕Ω. (93)

Due to (90), we can represent

𝑓∗∗ = Δ̌(𝑏1) + 𝑓1∗ = ∇ ⋅ 𝐸̊∇(𝑏1) − 𝛾∗Ψ∗∗ (94)

where 𝑓1∗ ∈ 𝐻−1
𝜕Ω is defined by (2) and hence, due to e.g.10, Theorem 2.10 can be in turn represented as 𝑓1∗ = −𝛾∗Ψ∗∗, with some

Ψ∗∗ ∈ 𝐻− 1
2 (𝜕Ω). Then (90) is satisfied and

𝑏
𝑎
𝑇 +
𝑎

(

𝑓∗∗ − 𝐸̊Δ ⋅ (1∇𝑏),1
)

= 𝑇 +
𝑏

(

𝑓∗∗ − 𝐸̊Δ ⋅ (1∇𝑏),1
)

= (𝛾−1)∗[𝑓∗∗ − 𝐸̊∇ ⋅ (1∇𝑏) − 𝐵̌1] = (𝛾−1)∗[𝑓∗∗ − 𝐸̊∇ ⋅ (1∇𝑏) − ∇ ⋅ 𝐸̊(𝑏∇1)]
= (𝛾−1)∗[∇ ⋅ 𝐸̊∇(𝑏1) − ∇ ⋅ 𝐸̊(𝑏∇1) − 𝛾∗Ψ∗∗ − 𝐸̊∇ ⋅ (1∇𝑏)]
(𝛾−1)∗[∇ ⋅ 𝐸̊(1∇𝑏) − 𝛾∗Ψ∗∗ − 𝐸̊∇ ⋅ (1∇𝑏)] = −Ψ∗∗ − (𝛾+1)𝜕𝑛𝑏

for which

𝑇 +
𝑎 (𝑓∗∗ − 𝐸̊Δ ⋅ (1∇𝑏),1) =

𝑎
𝑏
[

−Ψ∗∗ − (𝛾+1)𝜕𝑛𝑏
]

(95)

because
⟨(𝛾−1)∗[∇ ⋅ 𝐸̊(1∇𝑏) − 𝛾∗Ψ∗∗ − 𝐸̊∇ ⋅ (1∇𝑏)], 𝑤⟩𝜕Ω
= ⟨[∇ ⋅ 𝐸̊(1∇𝑏) − 𝛾∗Ψ∗∗ − 𝐸̊∇ ⋅ (1∇𝑏)], 𝛾−1𝑤⟩Ω
= ⟨[∇ ⋅ 𝐸̊(1∇𝑏), 𝛾−1𝑤⟩ℝ2 − 𝛾∗Ψ∗∗ − ⟨𝐸̊∇ ⋅ (1∇𝑏)], 𝛾−1𝑤⟩Ω
= −⟨[𝐸̊(1∇𝑏),∇(𝛾−1𝑤)⟩ℝ2 − 𝛾∗Ψ∗∗ + ⟨(1∇𝑏),∇(𝛾−1𝑤)⟩Ω
− ⟨𝑛 ⋅ 𝛾+(1∇𝑏), 𝛾+𝛾−𝑤⟩Ω = −⟨(𝛾+(1)∇𝑏), 𝑤⟩𝜕Ω − Ψ∗∗.

(96)

Hence (93) reduces to

Ψ∗∗ = −𝑏
𝑎
2 − (𝛾+1)𝜕𝑛𝑏 = −𝑇 +

𝑏 1 − (𝛾+1)𝜕𝑛𝑏, (97)

and (94) to (86).
Now (88) can be written in the form

𝑊Δ(𝑏Φ∗) = Δ in Ω, (98)

where

Δ ∶= −𝑏1 + Δ𝑓∗∗ = −𝑏1 + Δ

[

Δ̌(𝑏1) + 𝛾∗
(𝑏
𝑎
2 + (𝛾+1)𝜕𝑛𝑏

)]

(99)

is harmonic function in Ω due to (89). The trace of Eq. (99) gives

−1
2
𝑏Φ∗ +Δ(𝑏Φ∗) = 𝛾+Δ on 𝜕Ω. (100)

It is well known that the operator
[

− 1
2
𝐼 +Δ

]

is an isomorphism (see,e.g.,34, Lemmas 6.10 and 6.11), this implies

Φ∗ =
1
𝑏

(

− 1
2
𝐼 +Δ

)−1
𝛾+Δ

= 1
𝑏

(

− 1
2
𝐼 +Δ

)−1
𝛾+

{

− 𝑏1 + Δ

[

Δ̌(𝑏1) + 𝛾∗
(𝑏
𝑎
2 + (𝛾+1)𝜕𝑛𝑏

)]}

,

which is Eq. (87). Relations (86), (87) can be written as (𝑓∗∗,Φ∗) = ∗∗(1,2), where ∗∗ ∶ 𝐻1(Ω) ×𝐻− 1
2 (𝜕Ω) → 𝐻̃−1(Ω) ×

𝐻
1
2 (𝜕Ω) is a linear continuous operator, as required. We still have to check that the functions 𝑓∗∗ and Φ∗, given by (86) and

(87), satisfy equations (84) and (85). Indeed, Φ∗ given by (87) satisfies equation (100) and thus 𝛾+𝑊Δ(𝑎Φ∗) = 𝛾+Δ. Since
both 𝑊Δ(𝑎Φ∗) and Δ are harmonic functions, this implies (98)-(99) and by (86) also (84). Finally, (86) implies by (95) that
(93) is satisfied, and adding (92) to it leads to (85). Let us prove that the operator ∗∗ is unique. Indeed, let a couple (𝑓∗∗,Φ∗) ∈
𝐻̃−1(Ω) ×𝐻

1
2 (𝜕Ω) be a solution of linear system (84)-(85) with 1 = 0 and 2 = 0. Then (90) implies that 𝑟Ω𝑓∗∗ = 0 in Ω,

that is 𝑓∗∗ ∈ 𝐻−1
𝜕Ω ⊂ 𝐻̃

−1(Ω). Hence (93) reduces to

0 = 𝑇 +
𝑎 (𝑓∗∗, 0) on 𝜕Ω. (101)
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By the first Green identity (10), this gives,

0 = ⟨𝑇 +
𝑎 (𝑓∗∗, 0), 𝛾

+𝑣⟩𝜕Ω = ⟨𝑓∗∗, 𝑣⟩Ω, ∀𝑣 ∈ 𝐻1(Ω), (102)

which implies 𝑓∗∗ = 0 in ℝ2. Finally, (87) gives Φ∗ = 0. Hence any solution of non-homogeneous linear system (84)− (85) has
only one solution, which implies the uniqueness of the operator ∗∗.

The following assertion is5, Lemma 19 generalized to a wider space in 2D.

Lemma 4. For any couple (̃1, ̃2) ∈ 𝐻1(Ω) ×𝐻
1
2 (𝜕Ω), there exists a unique couple (𝑓∗∗,Φ∗) ∈ 𝐻̃−1(Ω) ×𝐻

1
2 (𝜕Ω) such that

̃1 = 𝑏𝑓∗∗ −𝑊𝑏Φ∗ (103)
̃2 = 𝛾+(𝑏𝑓∗∗ −𝑊𝑏Φ∗) (104)

Moreover, (𝑓∗∗,Φ∗) = ̃∗∗(̃1, ̃2) with ̃∗∗ ∶ 𝐻1(Ω)×𝐻
1
2 (𝜕Ω) → 𝐻̃−1(Ω)×𝐻− 1

2 (𝜕Ω) a linear continuous operator is given by

𝑓∗∗ = Δ̌(𝑏̃1) + 𝛾∗(𝑇 +
𝑏 ̃1 + ̃2)𝜕𝑛𝑏) (105)

Φ∗ =
1
𝑏

(

− 1
2
𝐼 +Δ

)−1(
− 𝑏̃2 + 𝛾+Δ[Δ̌(𝑏̃1) + 𝛾∗(𝑇 +

𝑏 ̃1 + ̃2)𝜕𝑛𝑏)]
)

(106)

where Δ̌(𝑏̃1) = ∇ ⋅ 𝐸̌∇(𝑏̃1).

Proof. Let us first assume that there exist (𝑓∗∗,Φ∗) ∈ 𝐻̃−1(Ω) × 𝐻
1
2 (𝜕Ω) satisfying equations (103)-(104) and find their

expression in terms of ̃1 and ̃2. Let us re write (103) as

̃1 − 𝑏𝑓∗∗ = −𝑊𝑏Φ∗ in Ω. (107)

Multiplying (107) by 𝑏 and applying Laplacian to it, we obtain,

Δ(𝑏̃1 − Δ𝑓∗∗) = Δ(𝑏̃1) − 𝑓∗∗ = −Δ(𝑊Δ(𝑏Φ∗)) = 0 in Ω, (108)

which means

Δ(𝑏̃1) = 𝑟Ω𝑓∗∗ in Ω, (109)

and 𝑏̃1 − Δ𝑓∗∗ ∈ 𝐻1,0(Ω,Δ), while ̃1 − 𝑏𝑓∗∗ ∈ 𝐻1,0(Ω, 𝐵) = 𝐻1,0(Ω, 𝐴). The latter imply that the canonical co-normal
derivatives 𝑇 +

𝑏 (̃1 − 𝑏𝑓∗∗) and 𝑇 +
𝑎 (̃1 − 𝑏𝑓∗∗) are well defined and 𝑇 +

𝑎 (̃1 − 𝑏𝑓∗∗) =
𝑏
𝑎
𝑇 +
𝑏 (̃1 − 𝑏𝑓∗∗).

Due to (109) and using 𝑓1∗ = −𝛾∗Ψ∗∗ with some Ψ∗∗ ∈ 𝐻− 1
2 (𝜕Ω) as in (97), we can represent

𝑓∗∗ = Δ̌(𝑏̃1) + 𝑓1∗ = ∇ ⋅ 𝐸̊∇(𝑏̃1) − 𝛾∗Ψ∗∗ (110)

where 𝑓1∗ ∈ 𝐻−1
𝜕Ω . Then (109) is satisfied. Replacing 2 by 𝑇 +

𝑎 (̃1, 𝑢) in Lemma 3, Eq. (97) yields,

Ψ∗∗ = −𝑏
𝑎
𝑇 +
𝑎 ̃1 − (𝛾+̃1)𝜕𝑛𝑏 = −𝑇 +

𝑏 ̃1 − ̃2𝜕𝑛𝑏 (111)

and (110) reduces to (105). Now (107) can be written in the form

𝑊Δ(𝑏Φ∗) = Δ in Ω, (112)

where

Δ ∶= −𝑏̃1 + Δ𝑓∗∗ = −𝑏̃1 + Δ[Δ̌(𝑏̃1) + 𝛾∗(𝑇 +
𝑏 ̃1 + (𝛾+̃1)𝜕𝑛𝑏)] (113)

is harmonic function in Ω due to (108). The trace of equation (113) gives

−1
2
𝑏Φ∗ +Δ(𝑏Φ∗) = 𝛾+Δ on 𝜕Ω. (114)

By similar argument as in Lemma 3, the operator − 1
2
𝐼 +Δ ∶ 𝐻

1
2 (𝜕Ω) → 𝐻− 1

2 (𝜕Ω) is an isomorphism this implies

Φ∗ =
1
𝑏

(

− 1
2
𝐼 +Δ

)−1
𝛾+Δ

= 1
𝑏

(

− 1
2
𝐼 +Δ

)−1
𝛾+{−𝑏̃1 + Δ[Δ̌(𝑏̃1) + 𝛾∗(𝑇 +

𝑏 ̃1 + (𝛾+̃1)𝜕𝑛𝑏)]}

= 1
𝑏

(

− 1
2
𝐼 +Δ

)−1
(

−𝑏̃2 + 𝛾+Δ[Δ̌(𝑏̃1) + 𝛾∗(𝑇 +
𝑏 ̃1 + (𝛾+̃1)𝜕𝑛𝑏)]

)
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which is Eq. (106). Relations (105), (106) can be written as (𝑓∗∗,Φ∗) = ̃∗∗(̃1, ̃2), where ̃∗∗ ∶ 𝐻1(Ω) × 𝐻− 1
2 (𝜕Ω) →

𝐻̃−1(Ω)×𝐻
1
2 (𝜕Ω) is a linear continuous operator, as required. We still have to check that the functions 𝑓∗∗ andΦ∗, given by (105)

and (106), satisfy equations (103) and (104). Indeed, Φ∗ given by (106) satisfies equation (114) and thus 𝛾+𝑊Δ(𝑎Φ∗) = 𝛾+Δ.
Since both 𝑊Δ(𝑎Φ∗) and Δ are harmonic functions, this implies (112)-(113) and by (105) also (103) while (104) follows from
Eqs.(105) and (112).

Let us prove that the operator ̃∗∗ is unique. Indeed, let a couple (𝑓∗∗,Φ∗) ∈ 𝐻̃−1(Ω)×𝐻
1
2 (𝜕Ω) be a solution of linear system

(103)-(104) with ̃1 = 0 and ̃2 = 0. Then (109) implies that 𝑟Ω𝑓∗∗ = 0 in Ω, that is 𝑓∗∗ ∈ 𝐻−1
𝜕Ω ⊂ 𝐻̃

−1(Ω). Hence (93) reduces
to

0 = 𝑇 +
𝑎 (𝑓∗∗, 0) on 𝜕Ω. (115)

By the first Green identity (10), this gives relation (102), which implies 𝑓∗∗ = 0 in ℝ2. Finally, (106) gives Φ∗ = 0. Hence any
solution of nonhomogeneous linear system (103) − (104) has only one solution, which implies the uniqueness of the operator
̃∗∗.

Theorem 9. Let 𝑟0 > diam(Ω). The operators (82) and (83) are continuous and continuously invertible.

Proof. The continuity of operators (82) and (83) is proved above. To prove the invertibility of operator (82), let us consider the
BDIE system (D1) with arbitrary right-hand side

𝐷1
∗ = (𝐷1

∗1 ,
𝐷1
∗2 )

𝑇 ∈ 𝐻1(Ω) ×𝐻
1
2 (𝜕Ω).

Take ̃1 = 𝐷1
∗1 and Φ∗ = 𝛾+𝐷1

∗1 − 𝐷1
∗2 in Lemma 4, to obtain the representation of 𝐷1

∗ as:

𝐷1
∗1 = ̃1 𝐷1

∗2 = 𝛾+̃1 − Φ∗

where the couple
(𝑓∗,Φ∗) = ̃∗∗(̃1, ̃2) ∈ 𝐻̃−1(Ω) ×𝐻

1
2 (𝜕Ω) (116)

is unique and the operator
̃∗∗ ∶ 𝐻1(Ω) ×𝐻

1
2 (𝜕Ω) → 𝐻̃−1(Ω) ×𝐻

1
2 (𝜕Ω) (117)

is linear and continuous. If 𝑟0 > diam(Ω), then taking into account8, Remark 5.3 and applying Theorem 7 with 𝑓 = 𝑟Ω𝑓 =
𝑟Ω𝑓∗, Φ∗ = 𝜑0, we obtain that BDIE system (D1) is uniquely solvable and its solution is: 1 = (𝐷)−1(𝑟Ω𝑓, 𝜑0)𝑇 , 2 =
𝛾+1−𝜑0, where the inverse operator, (𝐷)−1 ∶ 𝐻−1(Ω)×𝐻

1
2 (𝜕Ω) → 𝐻1(Ω), to the left-hand side operator, 𝐷 ∶ 𝐻1(Ω) →

𝐻−1(Ω) × 𝐻
1
2 (𝜕Ω), of the Dirichlet problem (70)–(71), is continuous. Representation (116) and continuity of the operator

(117) imply invertibility of (82). To prove the invertibility of operator (83), let us consider the BDIE system (D2) with arbitrary
right-hand side

𝐷2
∗ = (𝐷2

∗1 ,
𝐷2
∗2 )

⊤ ∈ 𝐻1(Ω) ×𝐻− 1
2 (𝜕Ω).

Take 1 = 𝐷2
∗1 and 2 = 𝑇 +

𝑎 (1, 𝑢) = 𝐷2
∗2 in Lemma 3 to represent 𝐷2

∗ as

𝐷2
∗1 = 1 𝐷2

∗2 = 𝑇 +
𝑎 (1, 𝑢) = 2

and the couple
(𝑓∗∗,Φ∗) = ̃∗∗(1,2) ∈ 𝐻̃−1(Ω) ×𝐻

1
2 (𝜕Ω)

is unique and the operator
̃∗∗ ∶ 𝐻1(Ω) ×𝐻− 1

2 (𝜕Ω) → 𝐻̃−1(Ω) ×𝐻
1
2 (𝜕Ω) (118)

is linear and continuous. Taking into account8, Remark 5.3 and applying Theorem 7 with 𝑓 = 𝑓∗∗, Φ∗ = 𝜑0, we obtain that BDIE
system (D2) is uniquely solvable and its solution is: 1 = (𝐷)−1(𝑟Ω𝑓, 𝜑0)⊤, 2 = 𝑇 +

𝑎 (𝑟Ω𝑓,1), where the inverse operator,
(𝐷)−1 ∶ 𝐻−1(Ω) ×𝐻

1
2 (𝜕Ω) → 𝐻1(Ω), to the left-hand side operator, 𝐷 ∶ 𝐻1(Ω) → 𝐻−1(Ω) ×𝐻

1
2 (𝜕Ω), of the Dirichlet

problem (70)–(71), is continuous. Representation (116) and continuity of the operator (118) imply invertibility of (83).



AYELE AND YIMER 17

7 TWO-OPERATOR BDIE SYSTEMS FOR NEUMANN PROBLEM

Let Ω be a domain in ℝ2 bounded by a smooth curve 𝜕Ω. We shall derive and investigate the two-operator BDIE systems for
the following Neumann problem: for 𝜓0 ∈ 𝐻− 1

2 (𝜕Ω) and 𝑓 ∈ 𝐻̃−1(Ω), find a function 𝑢 ∈ 𝐻1(Ω) satisfying

𝐴𝑢 = 𝑟Ω𝑓 in Ω, (119)
𝑇 +
𝑎 (𝑓, 𝑢) = 𝜓0 on 𝜕Ω. (120)

Here Eq. (119) is understood in the distributional sense (4) and the Neumann boundary condition (120) in the weak sense (10).
The following assertion is well-known and can be proved e.g. using variational settings and the Lax-Milgram lemma.

Theorem 10. (i) The homogeneous Neumann problem (119)-(120) admits only linearly independent solution 𝑢0 = 1 in
𝐻1(Ω).

(ii) The nonhomogeneous Neumann problem (119)-(120) is solvable if and only if the following solvability condition is
satisfied.

⟨𝑓, 𝑢0⟩Ω − ⟨𝜓0, 𝛾
+𝑢0⟩𝜕Ω = 0 (121)

7.1 BDIE system formulation for the Neumann problem
We explore different possibilities of reducing the Neumann problem (119)–(120) with 𝑓 ∈ 𝐻̃−1(Ω), for 𝑢 ∈ 𝐻1(Ω), to two dif-
ferent segregated boundary-domain integral equations (BDIE) systems. Corresponding formulations for the Neumann problem
for 𝑢 ∈ 𝐻1,0(Ω,Δ) with 𝑓 ∈ 𝐿2(Ω) in 2D were introduced and analysed in19. Let us represent in (49), (67) and (68) the
generalised co-normal derivative and the trace of the function 𝑢 as

𝑇 +
𝑎 (𝑓, 𝑢) = 𝜓0, 𝛾+𝑢 = 𝜑,

and will regard the new unknown function 𝜑 ∈ 𝐻
1
2 (𝜕Ω) as formally segregated of 𝑢. Thus we will look for the couple (𝑢, 𝜑) ∈

𝐻1(Ω) ×𝐻
1
2 (𝜕Ω).

BDIE system (N1). To reduce BVP (119)-(120) to a BDIE system in this section we will use equation (49) in Ω and
equation (68) on 𝜕Ω. Then we arrive at the following system, (N1), of two boundary-domain integral equations for the couple
of unknowns,(𝑢, 𝜑),

𝑢 +𝑏𝑢 +𝑏𝑢 +𝑊𝑏𝜑 = 𝑁1
1 in Ω, (122)

𝑇 +
𝑎 𝑏𝑢 + 𝑇 +

𝑎 𝑏𝑢 + +
𝑎𝑏𝜑 = 𝑁1

2 on 𝜕Ω, (123)

where

𝑁1 ∶=
⎡

⎢

⎢

⎣

𝑁1
1

𝑁1
2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑏𝑓 + 𝑉𝑏𝜓0

𝑇 +
𝑎 (𝑓 + 𝐸̊𝑏

∗𝑓,𝑏𝑓 ) − 𝜓0 +
𝑎
2𝑏
𝜓0 + ′

𝑎𝑏𝜓0

⎤

⎥

⎥

⎦

. (124)

Due to the mapping properties of operators involved in (124) we have 𝑁1 ∈ 𝐻1(Ω) ×𝐻− 1
2 (𝜕Ω) and 𝑁

0 ∶= 𝑏𝑓 + 𝑉𝑏𝜓0 ∈
𝐻1(Ω).

Remark 5. Let 𝑓 ∈ 𝐻̃−1(Ω), 𝜓0 ∈ 𝐻− 1
2 (𝜕Ω) and 𝑟0 > diam(Ω). Then 𝑁1 = 0 if and only if (𝑓, 𝜓0) = 0.

Proof. The later equality implies the former. Conversely, let 𝑁1 = 0, that is, 𝑏𝑓 +𝑉𝑏𝜓0 = 0 in Ω and 𝑇 +
𝑎 (𝑓 + 𝐸̊𝑏

∗𝑓,𝑏𝑓 )−
𝜓0 +

𝑎
2𝑏
𝜓0 +  ′

𝑎𝑏𝜓0 = 0 on 𝜕Ω. Multiplying the first relation by 𝑏 gives Δ𝑓 + 𝑉Δ𝜓0 = 0 in Ω. Further, taking into account
that 𝑏𝑉𝑏(𝜓0) = 𝑉Δ(𝜓0) is harmonic and applying Laplace operator we get 𝑓 = 0 in ℝ2 and hence 𝑉𝑏𝜓0 = 0 in Ω. Then due to
Lemma 2(i), we get 𝜓0 = 0 on 𝜕Ω.

BDIE system (N2). To obtain a segregated BDIE system of the second kind, we will use equation (49) in Ω and equation (67)
on 𝜕Ω. Then we arrive at the following system, (D2), of boundary-domain integral equation systems,

𝑢 +𝑏𝑢 +𝑏𝑢 +𝑊𝑏𝜑 = 𝑏𝑓 + 𝑉𝑏𝜓0 in Ω, (125)
1
2
𝜑 + 𝛾+𝑏𝑢 + 𝛾+𝑏𝑢 +𝑏𝜑 = 𝛾+𝑏𝑓 + 𝑏𝜓0 on 𝜕Ω, (126)
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where

𝑁2 ∶=
⎡

⎢

⎢

⎣

𝑁2
1

𝑁2
2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑏𝑓 + 𝑉𝑏𝜓0

𝛾+𝑏𝑓 + 𝑏𝜓0

⎤

⎥

⎥

⎦

(127)

Due to the mapping properties of operators involved in (127), we have the inclusion 𝑁2
1 = 𝑏𝑓 + 𝑉𝑏𝜓0 ∈ 𝐻1(Ω) and 𝑁2 ∈

𝐻1(Ω) ×𝐻
1
2 (𝜕Ω).

Remark 6. Let 𝑓 ∈ 𝐻̃−1(Ω), 𝜓0 ∈ 𝐻− 1
2 (𝜕Ω) and 𝑟0 > diam(Ω). Then 𝑁2 = 0 if and only if (𝑓, 𝜓0) = 0.

Proof. The later equality implies the former. Conversely, let 𝑁2 = 0, that is, 𝑏𝑓 + 𝑉𝑏𝜓0 = 0 in Ω and 𝛾+𝑏𝑓 + 𝑏𝜓0 on 𝜕Ω.
Multiplying the first relation by 𝑏 gives Δ𝑓 + 𝑉Δ𝜓0 = 0 in Ω. Further, taking into account that 𝑏𝑉𝑏(𝜓0) = 𝑉Δ(𝜓0) is harmonic
and applying Laplace operator we get 𝑓 = 0 in ℝ2 and hence 𝑉𝑏𝜓0 = 0 in Ω. Then due to Lemma 2(i), we get 𝜓0 = 0 on 𝜕Ω.

7.2 BDIE systems equivalence to the Neumann problem
Theorem 11. Let 𝜓0 ∈ 𝐻− 1

2 (𝜕Ω) and 𝑓 ∈ 𝐻̃−1(Ω) satisfying condition (121).

(i) If a function 𝑢 ∈ 𝐻1(Ω) solves the BVP (119)-(120) , then the couple (𝑢, 𝜑), where

𝜑 = 𝛾+𝑢 (128)

solves the BDIE systems (N1) and (N2).

(ii) If a couple (𝑢, 𝜑) ∈ 𝐻1(Ω)×𝐻
1
2 (𝜕Ω) solves the BDIE system (N1), then the 𝑢 solves BDIE system (N2) and 𝑢 solves the

Neumann problem (119)-(120) and 𝜑 satisfies (128).

(iii) If a couple (𝑢, 𝜑) ∈ 𝐻1(Ω) ×𝐻
1
2 (𝜕Ω) solves the BDIE system (N2) and 𝑟0 > diam(Ω), then the 𝑢 solves BDIE system

(N2) and 𝑢 solves the Neumann problem (119)-(120) and 𝜑 satisfies (128).

(iv) The homogeneous BDIE systems (N1) and (N2) have unique linearly independent solution 0 = (𝑢0, 𝜑0)𝑇 in 𝐻1(Ω) ×
𝐻

1
2 (𝜕Ω). Condition (121) is necessary and sufficient for solvability of the non-homogeneous BDIE systems (N1) and

(N2) in 𝐻1(Ω) ×𝐻
1
2 (𝜕Ω).

Proof. (i) Let 𝑢 ∈ 𝐻1(Ω) be a solution to the Neumann BVP (119)–(120). It immediately follows from Theorem 49 and relations
(67)–(68) that the couple (𝑢, 𝜑) with 𝜑 = 𝛾+𝑢 satisfies the BDIE systems (N1) and (N2), which proves item (i).

(ii) Let now a couple (𝑢, 𝜑) ∈ 𝐻1(Ω) × 𝐻
1
2 (𝜕Ω) solve BDIE system (N1) or (N2). Due to the first equations in the BDIE

systems, the hypotheses of Lemma 1 are satisfied implying that 𝑢 is a solution of equation (119) in Ω, and and equations (56)-(59)
hold for Ψ = 𝜓0 and Φ = 𝜑.

If a couple (𝑢, 𝜑) ∈ 𝐻1(Ω) ×𝐻
1
2 (𝜕Ω) solve the system (N1) then subtracting (59) from (123) gives 𝑇 +

𝑎 (𝑓, 𝑢) = 𝜓0 on 𝜕Ω.
Thus Neumann (120) is satisfied. Further, from (56) we derive 𝑊𝑏(𝛾+𝑢 − 𝜑) = 0 in Ω, where 𝛾+𝑢 = 𝜑 on 𝜕Ω by Lemma 2
completing item (ii).

(iii) Let now couple (𝑢, 𝜑) ∈ 𝐻1(Ω) × 𝐻
1
2 (𝜕Ω) solve BDIE system (N2). Further, taking the trace of (125) on 𝜕Ω and

comparing the results with (126), we easily derive that 𝛾+𝑢 = 𝜑 on 𝜕Ω. Lemma 1 for equation (125) implies that 𝑢 is a solution
of equation (119), while equations (56)-(59) hold for Ψ = 𝜓0 and Φ = 𝜑. Further, from (56) we derive

𝑉𝑏(𝜓0 − 𝑇𝑎(𝑓, 𝑢)) = 0 in Ω,

whence 𝑇𝑎(𝑓, 𝑢) = 𝜓0 on 𝜕Ω due to Lemma 2 (i) and 𝑢 solves Neumann problem (119)-(120) which completes the proof of item
(iii).

(iv) Theorem 10 along with items (i) and (ii) imply the claims of item (iii) for BDIE system (N2) and (N1).

7.3 Properties of BDIE system operators for the Neumann problem
BDIE systems (N1) and (N2) can be written respectively, as

ℜ1𝑁 = 𝑁1, ℜ2𝑁 = 𝑁2, (129)
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where 𝑁 = (𝑢, 𝜑)𝑇 ∈ 𝐻1(Ω) ×𝐻
1
2 (𝜕Ω𝐷), while 𝑁1 and 𝑁2 are given by Eqs. (124) and (127) respectively. Due to the

mapping properties of potentials in (124) and (127), 𝑁1 ∈ 𝐻1(Ω) ×𝐻− 1
2 (𝜕Ω) and 𝑁2 ∈ 𝐻1(Ω) ×𝐻

1
2 (𝜕Ω).

ℜ1 ∶=
[

𝐼 +𝑏 +𝑏 𝑊𝑏
𝑇 +
𝑎 𝑏 + 𝑇 +

𝑎 𝑏 +
𝑎𝑏

]

, ℜ2 ∶=

[

𝐼 +𝑏 +𝑏 𝑊𝑏
𝛾+𝑏 + 𝛾+𝑏

1
2
𝐼 +𝑏

]

.

Due to the mapping properties of potentials in (124) and (127), the right hand sides of BDIE systems (N1)and (N2) are such
that 𝑁1 ∈ 𝐻1(Ω) ×𝐻− 1

2 (𝜕Ω) and 𝑁2 ∈ 𝐻1(Ω) ×𝐻
1
2 (𝜕Ω).

Theorem 12. The operators

ℜ1 ∶ 𝐻1(Ω) ×𝐻
1
2 (𝜕Ω) → 𝐻1(Ω) ×𝐻− 1

2 (𝜕Ω), (130)

ℜ2 ∶ 𝐻1(Ω) ×𝐻
1
2 (𝜕Ω) → 𝐻1(Ω) ×𝐻

1
2 (𝜕Ω), (131)

are continuous. They have one-dimensional null spaces, kerℜ1 = kerℜ2, in 𝐻1(Ω) × 𝐻
1
2 (𝜕Ω), spanned over the element

(𝑢0, 𝜑0) = (1, 1).

Proof. The mapping properties of the potentials imply continuity of the operators (130) and (131). The claims that kerℜ1

and kerℜ2 are one-dimensional and the couple (𝑢0, 𝜑0) = (1, 1) belong to kerℜ1 = kerℜ2 directly follows from Theorem
11(iii).

To describe in more details the range of operators (130) and (131), i.e., to give more information about the co-kernels of these
operators, we will need several auxiliary assertions. First of all, let us remark that for any 𝑣 ∈ 𝐻𝑠− 3

2 (𝜕Ω), 𝑠 < 3
2
, the single layer

potential can be defined as follows:

𝑉𝑏𝑣(𝑦) ∶= −⟨𝛾𝑃𝑏(., 𝑦), 𝑣⟩𝜕Ω = −⟨𝑃𝑏(., 𝑦), 𝛾∗𝑣⟩ℝ3 = −𝐏𝑏𝛾∗𝑣(𝑦), 𝑦 ∈ ℝ2 ⧵ 𝜕Ω. (132)

where 𝛾∗ ∶ 𝐻𝑠− 3
2 (𝜕Ω) → 𝐻𝑠−2

𝜕Ω , 𝑠 < 3
2
, is the operator adjoined to the trace operator 𝛾 ∶ 𝐻2−𝑠(ℝ3) → 𝐻

3
2
−𝑠(𝜕Ω), and the space

𝐻𝑠
𝜕Ω is defined by (2).

Lemma 5. Let 𝑓 ∈ 𝐻̃𝑠−2(Ω), 𝑠 > 1
2

and 𝑟0 > diam(Ω). If

𝑟ΩP𝑏𝑓 = 0 in Ω, (133)

then 𝑓 = 0 in ℝ2.

Proof. Multiplying (133) by 𝑏, taking into account the first relation in (35) and applying the Laplace operator, we obtain 𝑟Ω𝑓 = 0,
which means 𝑓 ∈ 𝐻𝑠−2

𝜕Ω . If 𝑠 ≥ 3
2
, then 𝑓 = 0 by10, Theorem 2.10. If 1

2
< 𝑠 < 3

2
, then by the same theorem there exists 𝑣 ∈ 𝐻𝑠− 3

2 (𝜕Ω)
such that 𝑓 = 𝛾∗𝑣. This gives 𝐏𝑏𝑓 = 𝐏𝑏𝛾∗𝑣 = −𝑉𝑏𝑣 in ℝ2. Then (133) reduces to 𝑉𝑏𝑣 = 0 in Ω, which by Lemma 2(i) (for
𝑠 = 1, which can be generalized to 1

2
< 𝑠 < 3

2
) implies 𝑣 = 0 on 𝜕Ω and thus 𝑓 = 0 in ℝ2.

Theorem 13. Let 1
2
< 𝑠 < 3

2
and 𝑟0 > diam(Ω). The operator

𝐏𝑏 ∶ 𝐻̃𝑠−2(Ω) → 𝐻𝑠(Ω) (134)

and its inverse
(𝐏𝑏)−1 ∶ 𝐻𝑠(Ω) → 𝐻̃𝑠−2(Ω) (135)

are continuous and

(𝐏𝐛)−1𝑔 =
[

Δ𝐸̊(𝐼 − 𝑟Ω𝑉Δ−1
Δ 𝛾+) − 𝛾∗−1

Δ 𝛾+
]

(𝑏𝑔) in ℝ2, ∀𝑔 ∈ 𝐻𝑠(Ω). (136)

Proof. The continuity of equation (134) follows from1, Theorem 3.8. By Lemma 5 operator (134) is injective. Let us prove its
surjectivity. To this end, for arbitrary 𝑔 ∈ 𝐻𝑠(Ω) let us consider the following equation with respect to 𝑓 ∈ 𝐻̃𝑠−2(Ω),

𝐏Δ𝑓 = 𝑔 in Ω. (137)

Let 𝑔1 ∈ 𝐻𝑠(Ω) be the (unique) solution of the following Dirichlet problem:

Δ𝑔1 = 0 in Ω, 𝛾+𝑔1 = 𝛾+𝑔,
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which by35, Theorem 2 the single layer potential −1
Δ exists and due to27 or10, Lemma 2.6 can be particularly presented as 𝑔1 =

𝑉Δ−1
Δ 𝛾+𝑔. Let 𝑔0 ∶= 𝑔 − 𝑔1. Then ∈ 𝐻𝑠(Ω) and 𝛾+𝑔0 = 0 and thus 𝑔0 can be uniquely extended to 𝐸̊𝑔0 ∈ 𝐻̃𝑠(Ω), where 𝐸̊ is

the operator of extension by zero outside Ω . Thus by (132), equation (137) takes form

𝑟ΩPΔ[𝑓 + 𝛾∗−1
Δ 𝛾+𝑔] = 𝑔0 in Ω. (138)

Any solution 𝑓 ∈ 𝐻̃𝑠−2(Ω) of the corresponding equation on ℝ2

𝐏Δ[𝑓 + 𝛾∗−1
Δ 𝛾+𝑔] = 𝐸̊𝑔0 in ℝ2, (139)

solves (138). If 𝑓 solves (139) then acting with the Laplace operator on (139), we obtain

𝑓 = 𝑄̃𝑔 ∶= Δ𝐸̊𝑔0 − 𝛾∗−1
Δ 𝛾+𝑔 = Δ𝐸̊(𝑔 − 𝑟Ω𝑉Δ−1

Δ 𝛾+𝑔) − 𝛾∗−1
Δ 𝛾+𝑔 in ℝ2. (140)

On the other hand, substituting 𝑓 given by (140) to (139) and taking into account that PΔΔℎ̃ = ℎ̃ for any ℎ̃ ∈ 𝐻̃𝑠(Ω), 𝑠 ∈ ℝ, we
obtain that 𝑄̃𝑔 is indeed a solution of equation (139) and thus (138). By Lemma 5 the solution of (139) is unique, which means
that the operator 𝑄̃ is inverse to operator (134), i.e., 𝑄̃ = (𝑟Ω𝐏𝑏)−1. Since Δ is a continuous operator from 𝐻̃𝑠(Ω) to 𝐻̃𝑠−2(Ω),
equation (86) implies that operator (𝑟Ω𝐏)−1𝑏 = 𝑄̃ ∶ 𝐻𝑠(Ω) → 𝐻̃𝑠−2(Ω) is continuous. The relations 𝐏𝑏 =

1
𝑏
PΔ and 𝑏(𝑥) > 𝑐 > 0

then imply invertibility of operator (134) and anstatz (136).

Theorem 14. The co-kernel of operator (130) is spanned over the functional

𝑔∗1 ∶= ((𝛾+)∗𝜕𝑛𝑏, 1)⊤ (141)

in 𝐻̃−1(Ω) ×𝐻
1
2 (𝜕Ω), i.e., 𝑔∗1(1,2) = ⟨(𝛾+1)𝜕𝑛𝑏 + 2, 𝛾+𝑢0⟩𝜕Ω, where 𝑢0 = 1.

Proof. The proof follows from the proof of8, Theorem 6.7 and Lemma 3. Indeed, let us consider the first equation in (129), i.e. the
equation ℜ1 = (1,2)⊤, representing the BDIE system (N1)

𝑢 +𝑏𝑢 +𝑏𝑢 +𝑊𝑏𝜑 = 1 in Ω, (142)
𝑇 +
𝑎 𝑏𝑢 + 𝑇 +

𝑎 𝑏𝑢 + +
𝑎𝑏𝜑 = 2 on 𝜕Ω, (143)

with arbitrary right hand side (1,2)𝑇 ∈ 𝐻1(Ω) ×𝐻− 1
2 (𝜕Ω), for (𝑢, 𝜑) ∈ 𝐻1(Ω) ×𝐻

1
2 (𝜕Ω). By Lemma 3 the right hand side

of the system has the form (84)-(85), i.e., system (142)-(143) reduces to

𝑢 +𝑏𝑢 +𝑏𝑢 +𝑊𝑏(𝜑 + Φ∗) = 𝑏𝑓∗∗ in Ω, (144)
𝑇 +
𝑎 𝑏𝑢 + 𝑇 +

𝑎 𝑏𝑢 + +
𝑎𝑏(𝜑 + Φ∗) = 𝑇 +

𝑎 (𝑓∗∗ + 𝐸̊
𝑏
∗𝑓∗∗,𝑏𝑓∗∗) on 𝜕Ω, (145)

where the couple (𝑓∗∗,Φ∗) ∈ 𝐻̃−1(Ω) ×𝐻
1
2 (𝜕Ω) is given by (84)-(85). Up to the notations (144)-(145) is the same as in (124)

with 𝜓0 = 0. Then Theorems 11(iii) and 13 imply that the BDIE system (144)-(145) and hence (142)-(143) is solvable if and
only if

⟨𝑓∗∗, 𝑢
0
⟩Ω = ⟨(Δ̌𝑏1) + 𝛾∗(2 + (𝛾+1)𝜕𝑛𝑏), 𝑢0⟩Ω

= ⟨(∇ ⋅ 𝐸̌∇(𝑏1) + 𝛾∗(2 + (𝛾+1)𝜕𝑛𝑏), 𝑢0⟩ℝ2

= ⟨(∇ ⋅ 𝐸̌∇(𝑏1,∇𝑢0⟩ℝ2 + ⟨(2 + (𝛾+1)𝜕𝑛𝑏), 𝛾+𝑢0⟩𝜕Ω
= ⟨(2 + (𝛾+1)𝜕𝑛𝑏), 𝛾+𝑢0⟩𝜕Ω = 0

(146)

where we took into account that ∇𝑢0 = 0 in ℝ2. Thus the functional 𝑔∗1 defined by (141) generates the necessary and sufficient
solvability condition for the first equation in (129). Hence 𝑔∗1 is basis of the co-kernel of ℜ1.

Theorem 15. Let 𝑟0 > diam(Ω). Then the co-kernel of operator (131) is spanned over

𝑔∗2 ∶=

(

−𝑏𝛾+∗( 1
2
+ ′

Δ)
−1
Δ 𝛾+𝑢0

−𝑏( 1
2
− ′

Δ)
−1
Δ 𝛾+𝑢0

)

(147)

in 𝐻̃−1(Ω) ×𝐻− 1
2 (𝜕Ω), i.e.,

𝑔∗2(1,2) =
⟨

− 𝑏𝛾+∗
(1
2
+ ′

Δ

)

−1
Δ 𝛾+𝑢0,1

⟩

Ω
+
⟨

− 𝑏
(1
2
− ′

Δ

)

−1
Δ 𝛾+𝑢0,2

⟩

𝜕Ω
,

where 𝑢0 = 1.
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Proof. The proof follows from the proof of8, Theorem 6.8,35, Theorem 2 and Lemma 3. Indeed, let us consider the first equation in
(129), i.e. the equation ℜ1 = (1,2)⊤, representing the BDIE system (N1)

𝑢 +𝑏𝑢 +𝑏𝑢 +𝑊𝑏𝜑 = 1 in Ω, (148)
1
2
𝜑 + 𝛾+𝑏𝑢 + 𝛾+𝑏𝑢 +𝑏𝜑 = 2 on 𝜕Ω, (149)

with arbitrary (1,2)𝑇 ∈ 𝐻1(Ω) ×𝐻− 1
2 (𝜕Ω), for (𝑢, 𝜑) ∈ 𝐻1(Ω) ×𝐻

1
2 (𝜕Ω).

Introducing the new variable , 𝜑′ = 𝜑 − (2 − 𝛾+1), BDIE system (148)-(149) takes the form

𝑢 +𝑏𝑢 +𝑏𝑢 +𝑊𝑏𝜑 =  ′
1 in Ω, (150)

1
2
𝜑′ + 𝛾+𝑏𝑢 + 𝛾+𝑏𝑢 +𝑏𝜑

′ =  ′
2 on 𝜕Ω, (151)

where
 ′
1 = 1 −𝑊𝑏(2 − 𝛾+1) ∈ 𝐻1(Ω).

Let us recall that 𝑏 = 𝑟Ω𝐏𝑏 ∶ 𝐻̃𝑠−2(Ω) → 𝐻𝑠(Ω) and then by Theorem 13, the operator −1
𝑏 = (𝐏𝑏)−1 ∶ 𝐻𝑠(Ω) → 𝐻̃𝑠−2(Ω)

is continuous for 1
2
< 𝑠 < 3

2
, while −1

Δ exists due to35, Theorem 2. Hence we always represent 1 = 𝑏𝑓∗, with

𝑓∗ = [Δ𝐸̊(𝐼 − 𝑟Ω𝑉Δ−1
Δ 𝛾+) − 𝛾∗−1

Δ 𝛾+](𝑏 ′
1) ∈ 𝐻̃−1(Ω).

For  ′
1 = 𝑏𝑓∗, the right hand side of BDIE system (150)-(151) is the same as in (127) with 𝑓 = 𝑓∗ and 𝜓0 = 0. Then Theorems

11(iii) implies that the BDIE system (150)-(151) and hence (148)-(149) is solvable if and only if
⟨𝑓∗, 𝑢

0
⟩Ω = ⟨[Δ𝐸̊(𝐼 − 𝑟Ω𝑉Δ−1

Δ 𝛾+) − 𝛾+∗−1
Δ 𝛾+](𝑏 ′

1), 𝑢
0
⟩ℝ2

= ⟨𝐸̊(𝐼 − 𝑟Ω𝑉Δ−1
Δ 𝛾+)(𝑏 ′

1),Δ𝑢
0
⟩ℝ2 − ⟨(𝛾+∗−1

Δ 𝛾+)(𝑏 ′
1), 𝑢

0
⟩ℝ2

= −⟨𝛾+(𝑏 ′
1),

−1
Δ 𝛾+𝑢0⟩𝜕Ω

= −
⟨1
2
[𝛾+(𝑏1) + (𝑏2)] −Δ[𝑏(2 − 𝛾+1)],−1

Δ 𝛾+𝑢0
⟩

𝜕Ω

=
⟨

− 𝑏𝛾+∗
(1
2
+ ′

Δ

)

−1
Δ 𝛾+𝑢0,1

⟩

Ω
+
⟨

− 𝑏
(1
2
+ ′

Δ

)

−1
Δ 𝛾+𝑢0,2

⟩

𝜕Ω
= 0.

(152)

Thus the functional 𝑔∗2 defined by (147) generates the necessary and sufficient solvability condition of the equation ℜ2 =
(1,2)⊤. Hence 𝑔∗2 is basis of the cokernel of ℜ2.

7.4 Perturbed segregated BDIE systems for Neumann problem
Theorem 11 implies, that even when the solvability condition (121) is satisfied, the solutions of both BDIE systems, (N1) and
(N2), are not unique. By Theorem 12, in turn, the BDIE left hand side operators, ℜ1 and ℜ2, have non-zero kernels and thus are
not invertible. To find a solution (𝑢, 𝜑) from uniquely solvable BDIE system with continuously invertible left hand side operators,
let us consider, following37, some BDIE systems obtained form (N1) and (N2) by finite-dimensional operator perturbations
(cf.14for the three-dimensional case). Below we use the notations  = (𝑢, 𝜑)⊤ and |𝜕Ω| ∶= ∫𝜕Ω 𝑑𝑆.

7.4.1 Perturbation of BDIE system (N1)
Let us introduce the perturbed counterparts of the BDIE system (N1),

ℜ̂1𝑁 = 𝑁1, (153)

where
ℜ̂1 ∶= ℜ̂1 + ℜ̊1 and ℜ̊1𝑁 (𝑦) ∶= 𝑔0(𝑁 )1(𝑦) = 1

|𝜕Ω| ∫
|𝜕Ω|

𝜑(𝑥)𝑑𝑆
(

0
1

)

,

that is,

𝑔0(𝑁 ) ∶= 1
|𝜕Ω| ∫

𝜕Ω

𝜑(𝑥)𝑑𝑆, 1(𝑦) ∶=
(

0
1

)

.

For the functional 𝑔∗1 given by (141) in Theorem 14, 𝑔∗1(1) = |𝜕Ω| , while 𝑔0( 0) = 1. Hence8, Theorem D.1 in Appendix implies
the following assertion.
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Theorem 16. (i) The operator ℜ̂1 ∶ 𝐻1(Ω) ×𝐻
1
2 (𝜕Ω) → 𝐻1(Ω) ×𝐻− 1

2 (𝜕Ω) is continuous and continuously invertable.

(ii) If condition 𝑔∗1(𝑁1) = 0 or condition (121) for 𝑁1 in form (130) is satisfied, then the unique solution of perturbed
BDIDE system (153) gives a solution of original BDIE system (N1) such that

𝑔0( ) = 1
|𝜕Ω| ∫

𝜕Ω

𝛾+𝑢𝑑𝑆 = 1
|𝜕Ω| ∫

𝜕Ω

𝜑𝑑𝑆 = 0.

7.4.2 Perturbation of BDIE system (N2)
Let us introduce the perturbed counterparts of the BDIE system (N2)

ℜ̂2 = 𝑁2, (154)

where
ℜ̂2 ∶= ℜ2 + ℜ̊2 and ℜ̊2 (𝑦) ∶= 𝑔0( )2(𝑦) = 1

|𝜕Ω| ∫
|𝜕Ω|

𝜑(𝑥)𝑑𝑠
(

𝑏−1(𝑦)
𝛾+𝑏−1(𝑦)

)

,

that is,

𝑔0( ) ∶= 1
|𝜕Ω| ∫

|𝜕Ω|

𝜑(𝑥)𝑑𝑠, 2(𝑦) ∶=
(

𝑏−1(𝑦)𝑢0(𝑦)
𝛾+[𝑏−1𝑢0](𝑦)

)

.

For the functional 𝑔∗2 given by (147) in Theorem 15, since the operator −1
Δ ∶ 𝐻

1
2 (𝜕Ω) → 𝐻− 1

2 (𝜕Ω) is positive definite and
𝑢0(𝑥) = 1, there exists a positive constant 𝐶 such that

𝑔∗2(2) =
⟨

− 𝑏𝛾+∗
(1
2
+ ′

Δ

)

−1
Δ 𝛾+𝑢0, 𝑏−1𝑢0

⟩

Ω

+
⟨

− 𝑏
(1
2
− ′

Δ

)

−1
Δ 𝛾+𝑢0, 𝛾+

(

𝑏−1𝑢0
)⟩

𝜕Ω

= −⟨(1
2
+ ′

Δ)
−1
Δ 𝛾+𝑢0 + (1

2
− ′)−1

Δ 𝛾+𝑢0, 𝛾+𝑢0⟩𝜕Ω

= −⟨−1
Δ 𝛾+𝑢0, 𝛾+𝑢0⟩𝜕Ω

≤ −𝐶‖𝛾+𝑢0‖2
𝐻

1
2 (𝜕Ω)

≤ −𝐶‖𝛾+𝑢0‖2
𝐻

1
2 (𝜕Ω)

= −𝐶|𝜕Ω|2 < 0.

(155)

Due to (155) and 𝑔0( 0) = 1, Theorem8, Theorem D.1 implies the following assertion.

Theorem 17. (i) The operator ℜ̂2 ∶ 𝐻1(Ω) ×𝐻
1
2 (𝜕Ω) → 𝐻1(Ω) ×𝐻

1
2 (𝜕Ω) is continuous and continuously invertable.

(ii) If condition 𝑔∗2(2) = 0 or condition (121) for 𝑁2 in form (131) is satisfied, then the unique solution of perturbed
BDIDE system (154) gives a solution of original BDIE system (N2) such that

𝑔0(𝑁 ) = 1
|𝜕Ω| ∫

𝜕Ω

𝛾+𝑢𝑑𝑆 = 1
|𝜕Ω| ∫

𝜕Ω

𝜑𝑑𝑆 = 0.
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