
Received 2020; Revised 2020; Accepted 2020

DOI: xxx/xxxx

ARTICLE TYPE

Analysis of Two-operator Boundary-Domain Integral Equations
for Variable Coefficient BVPs with General Data

Tsegaye G. Ayele*

1Department of Mathematics, Addis Ababa
University, P. O. Box 1176, Addis Ababa,
Ethiopia

Correspondence
*Tsegaye G. Ayele,
Department of Mathematics
Addis Ababa University
P.O. Box 1176 Addis Ababa
Email: tsegaye.ayele@aau.edu.et

Summary

The Dirichlet, Neumann and mixed boundary value problems for the linear second-
order scalar elliptic differential equation with variable coefficient in a bounded
three-dimensional domain are considered. The PDE right-hand side belongs to
H−1(Ω) or H̃−1(Ω), when neither classical nor canonical co-normal derivatives are
well defined. Using the two-operator approach and appropriate parametrix (Levi
function) each problem is reduced to different systems of boundary domain integral
equations (BDIEs). Equivalence of the BDIEs to the original BVP, BDIE solvability,
solution uniqueness/non- uniqueness, and as well as invertibility of the BDIE oper-
ators are analysed in appropriate Sobolev (Bessel potential) spaces. It is shown that
the BDIE operators for the Neumann BVP are not invertible, and appropriate finite-
dimensional perturbations are constructed leading to invertibility of the perturbed
operators.
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1 INTRODUCTION

Partial Differential Equations (PDEs) with variable coefficients often arise in mathematical modelling of inhomogeneous media
(e.g. functionally graded materials or materials with damage induced inhomogeneity) in solid mechanics, electromagnetics,
thermo-conductivity, fluid flows trough porous media, and other areas of physics and engineering.
Generally, explicit fundamental solutions are not available if the PDE coefficients are not constant, preventing reduction of

boundary value problems (BVPs) for such PDEs to explicit boundary integral equations, which could be effectively solved
numerically. Nevertheless, for a rather wide class of variable-coefficient PDEs it is possible to use instead an explicit parametrix
(Levi function) associated with the fundamental solution of the corresponding frozen-coefficient PDEs, and reduce BVPs for
such PDEs to systems of boundary-domain integral equations (BDIEs) for further numerical solution of the latter, see e.g.
Mikhailov1,2,3,4 and Mikhailov et al5,6 as well as references therein. However this (one-operator) approach does not work when
the fundamental solution of the frozen-coefficient PDE is not known explicitly (as e.g. in the Lamé system of anisotropic
elasticity).
To overcome this difficulty, one can apply the so-called two-operator approach, formulated in Mikhailov7 for a certain non-

linear problem, that employs a parametrix of another (second) PDE, not related with the PDE in question, for reducing the BVP
to a BDIE system. Since the second PDE is rather arbitrary, one can always chose it in such a way, that its parametrix is known
explicitly. The simplest choice for the second PDE is the one with an explicit fundamental solution.
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The corresponding BVPs are well studied nowadays, see e.g., Lions and Magenes8, Grisvard9 and McLean10, but this is not
the case for the two-operator BDIEs associated with the BVPs. The BDIE analysis is useful for discretisation and numerical
solution of the BDIE and thus of the associated BVP. To analyze the two-operator approach, in Ayele and Mikhailov11,12 one of
its linear versions is applied to the mixed (Dirichlet-Neumann) BVP for a linear second-order scalar elliptic variable-coefficient
PDE with square integrable right-hand side and reduced it to four different two-operator BDIE systems. The BDIE systems are
nonstandard systems of equations containing integral operators defined on the domain under consideration and potential type
and pseudo-differential operators defined on open sub-manifolds of the boundary. Using results of5, a rigorous analysis of the
two-operator BDIEs was given in appropriate Sobolev spaces.
For a function from the Sobolev spaceH1(Ω), a classical co-normal derivative in the sense of traces may not exist. However,

when this function satisfies a second order PDE with a right-hand side fromH−1(Ω), the generalized co-normal derivative can
be defined in the weak sense, associated with the first Green identity and an extension of the PDE right-hand side to H̃−1(Ω)
(see13,14,10 Lemma 4.3,15 Definition 3.1). Since the extension is non-unique, the co-normal derivative appears to be a non-unique
operator, which is also non-linear in u unless a linear relation between u and the PDE right-hand side extension is enforced.
This creates some difficulties in formulating the boundary-domain integral equations. These difficulties are addressed in13,14

presenting formulation and analysis of direct segregated BDIE systems equivalent to the Dirichlet and Neumann boundary value
problems for the divergent-type PDE with a variable scalar coefficient and a general right-hand side from H−1(Ω) extended
when necessary to H̃−1(Ω). This needed a non-trivial generalization of the third Green identity and its co-normal derivative for
such functions, which extends the approach implemented in5,16,17,4,6 for the PDE right-hand from L2(Ω). In this paper, using the
two-operator approach in extended settings, different from the one in11,12 and using the results in13,18, we derive generalization
of the two-operator third Green identity and its co-normal derivative and give a rigorous analysis of the two-operator BDIEs
for Dirichlet, Neumann and mixed (Dirichlet-Neumann) problems in the appropriate Sobolev-Slobodetski (Bessel-potential)
spaces. This paper extends our publication18.

2 CO-NORMAL DERIVATIVES AND BOUNDARY VALUE PROBLEMS

LetΩ be an open bounded three-dimensional region ofℝ3. For simplicity, we assume that the boundary )Ω is simply connected,
closed, infinitely smooth surface. Moreover, )Ω = )ΩD

⋃

)ΩN where )ΩD and )ΩN are open, non-empty, non-intersecting,
simply connected sub-manifolds of )Ωwith an infinitely smooth boundary curve )ΩD

⋂

)ΩN ∈ C∞. Let a ∈ C∞(Ω), a(x) > 0
for x ∈ Ω. Let also )j = )xj ∶= )∕)xj (j = 1, 2, 3), )x = ()x1 , )x2 , )x3). We consider the scalar elliptic differential equation,
which for sufficiently smooth u has the following strong form,

Au(x) ∶= A(x, )x)u(x) ∶=
3
∑

i=1

)
)xi

(

a(x)
)u(x)
)xi

)

= f (x), x ∈ Ω, (1)

where u is unknown function and f is a given function in Ω.
In what follows (Ω) = C∞0 (Ω), H

s(Ω) = Hs
2(Ω), H

s()Ω) = Hs
2()Ω) are the Bessel potential spaces, where s ∈ ℝ is an

arbitrary real number (see, e.g.,8,10). We recall thatHs coincides with the Sobolev-Slobodetski spacesW s
2 for any non-negative

s. We denote by H̃s(Ω) the subspace ofHs(ℝ3),

H̃s(Ω) ∶= {g ∶ g ∈ Hs(ℝ3), supp(g) ⊂ Ω}

whileHs(Ω) denotes the space of restriction on Ω of distributions fromH(ℝ3),

Hs(Ω) = {rΩg ∶ g ∈ Hs(ℝ3)}

where rΩ denotes the restriction operator on Ω. We will also use the notation g|Ω ∶= rΩg. We denote by Hs
)Ω the following

subspace ofH(ℝ3) (and H̃(Ω)),
Hs
)Ω ∶= {g ∶ g ∈ Hs(ℝ3), supp(g) ⊂ )Ω}. (2)

From the trace theorem (see, e.g.,8,19,10) for u ∈ H1(Ω), it follows that 
+u ∈ H
1
2 ()Ω), where 
+ = 
+)Ω are the trace operators

on )Ω from Ω. Let also 
−1 ∶ H
1
2 ()Ω) → H1(Ω) denote a (non-unique) continuous right inverse to the trace operator 
+,

i.e., 
+)Ω

−1
)Ωw = 
+
−1w = w for any w ∈ H

1
2 ()Ω), and (
−1)∗ ∶ H̃−1(Ω) → H− 1

2 ()Ω) is continuous operator dual to

−1 ∶ H

1
2 ()Ω)→ H1(Ω), i.e., ⟨(
−1)∗f̃ , w⟩)Ω ∶= ⟨f̃ , 
−1w⟩Ω for any f̃ ∈ H̃−1(Ω) and w ∈ H

1
2 ()Ω).
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For u ∈ H2(Ω), we denote by T +a the corresponding canonical (strong) co-normal derivative operator on )Ω in the sense of
traces,

T +a u ∶=
3
∑

i=1
a(x)ni(x)
+

)u(x)
)xi

= a(x)
+
)u(x)
)n(x)

,

where n(x) is the outward (to Ω) unit normal vector at the point x ∈ )Ω. However the classical co-normal derivative operator is
generally, not well defined if u ∈ H1(Ω), (see, e.g.13 Appendix A).
For u ∈ H1(Ω), the PDE Au in (1) is understood in the sense of distributions,

⟨Au, v⟩Ω ∶= −a(u, v), ∀v ∈ (Ω), (3)

where
a(u, v) ∶= ∫

Ω

a(x)∇u(x).∇v(x)dx

and the duality brackets ⟨g, ⋅⟩
Ω
denote the value of a linear functional (distribution) g, extending the usual L2 inner product.

Since the set (Ω) is dense in H̃1(Ω), the above formula defines a continuous operator A ∶ H1(Ω)→ H−1(Ω) = [H̃1(Ω)]∗,

⟨Au, v⟩Ω ∶= −a(u, v), ∀u ∈ H1(Ω), ∀v ∈ H̃1(Ω).

Let us consider also the operator, Ǎ ∶ H1(Ω)→ H̃−1(Ω) = [H1(Ω)]∗,

⟨Ǎu, v⟩Ω ∶= −a(u, v) = −∫
Ω

a(x)∇u(x).∇v(x)dx = −∫
ℝ3

E̊[a∇u](x).∇V (x)dx = ⟨∇.E̊[a∇u], V ⟩ℝ3 = ⟨∇.E̊[a∇u], v⟩Ω,

∀u ∈ H1(Ω), ∀v ∈ H1(Ω), which is evidently continuous and can be written as

Ǎu = ∇.E̊[a∇u]. (4)

Here V ∈ H1(ℝ3) is such that rΩV = v and E̊ denotes the operator of extension of the functions, defined in Ω, by zero outside
Ω in ℝ3. For any u ∈ H1(Ω), the functional Ǎu belongs to H̃−1(Ω) and is the extension of the functional Au ∈ H−1(Ω), which
domain is thus extended from H̃1(Ω) to the domainH1(Ω) for Ǎu.
Inspired by the first Green identity for smooth functions, we can define the generalized co-normal derivative (cf., for

example,13 Definition 2.310 Lemma 4.3,15 Definition 3.1,20 Lemma 2.2).

Definition 1. Let u ∈ H1(Ω) andAu = rΩf̃ inΩ for some f̃ ∈ H̃−1(Ω). Then the generalized co-normal derivative T +a (f̃ , u) ∈
H− 1

2 ()Ω) is defined as

⟨T +a (f̃ , u), w⟩)Ω ∶= ⟨f̃ , 
−1w⟩Ω + a(u, 
−1w) = ⟨f̃ − Ǎu, 
−1w⟩Ω , ∀w ∈ H
1
2 (Ω), (5)

that is, T +(f̃ , u) ∶= (
−1)∗(f̃ − Ǎu).

By10 Lemma 4.3,15 Theorem 5.3, we have the estimate

‖T +a (f̃ , u)‖H− 12 ()Ω)
≤ C1‖u‖H1(Ω) + C2‖f̃‖H̃−1(Ω), (6)

and for u ∈ H1(Ω) such that Au = rΩf̃ in Ω for some f̃ ∈ H̃−1(Ω) the first Green identity holds in the following form,

⟨T +a (f̃ , u), 

+v⟩

)Ω
∶= ⟨f̃ , v⟩Ω + a(u, v) = ⟨f̃ − Ǎu, v⟩Ω , ∀v ∈ H1(Ω). (7)

As follows from Definition 1, the generalized co-normal derivative is nonlinear with respect to u for a fixed f̃ , but linear with
respect to the couple (f̃ , u), i.e.,

�1T
+
a (f̃1, u1) + �2T

+
a (f̃2, u2) = T

+
a (�1f̃1, �1u1) + T

+
a (�2f̃2, �2u2) = T

+
a (�1f̃1 + �2f̃2, �1u1 + �2u2) (8)

for any complex numbers �1, �2.
Let us also define some subspaces ofHs(Ω), cf.21,9,15,17.

Definition 2. Let s ∈ ℝ and A∗ ∶ Hs(Ω)→ ∗(Ω) be a linear operator. For t ≥ − 1
2
we introduce the space

Hs,t(Ω;A∗) ∶= {g ∶ g ∈ Hs(Ω) ∶ A∗g|Ω = f̃g|Ω , f̃g ∈ H̃ t(Ω)}

endowed with the norm
‖g‖2Hs,t(Ω;A∗)

∶= ‖g‖2Hs(Ω) + ‖f̃g‖
2
H̃ t(Ω)
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and the inner product
(g, ℎ)Hs,t(Ω;A∗) = (g, ℎ)Hs(Ω) + (f̃g , f̃ℎ)H̃ t(Ω)

We will mostly use the operator A or Δ as A∗ in the above definition. Note that since Au − aΔu = ∇a.∇u ∈ L2(Ω), for
u ∈ H1(Ω), we haveH1,0(Ω;A) = H1,0(Ω;Δ).

Definition 3. For u ∈ H1,− 1
2 (Ω;A), we define the canonical co-normal derivative T +a u ∈ H

− 1
2 ()Ω) as

⟨T +a u,w⟩)Ω ∶= ⟨Ãu, 
−1w⟩Ω + a(u, 
−1w) = ⟨Ãu − Ǎu, 
−1w⟩Ω , ∀w ∈ H
1
2 (Ω), (9)

that is, T +a u ∶= (

−1)∗(Ãu − Ǎu).

The canonical co-normal derivative T +a u is independent of (non-unique) choice of the operator 
−1, the operator T +a ∶
H1,− 1

2 (Ω;A)→ H− 1
2 ()Ω) is continuous, and the first Green identity holds in the following form,

⟨T +a u, 

+v⟩

)Ω
∶= ⟨Ãu, v⟩Ω + a(u, v) , ∀v ∈ H1(Ω). (10)

The operator T +a ∶ H1, t(Ω;A) → H− 1
2 ()Ω) in Definition 3 is continuous for t ≥ − 1

2
. The canonical co-normal derivative is

defined by the function u and the operator A and does not depend separately on the right-hand side f̃ (i.e. its behavior on the
boundary), unlike the generalized co-normal derivative defined in (5), and the operator T +a is linear. Note that the canonical
co-normal derivative coincides with classical co-normal derivative T +a u = a )u

)n
if the latter does exist in the trace sense, see,15

Corollary 3.14 and Theorem 3.16.
Let u ∈ H1,− 1

2 (Ω;A). Then Definitions 1 and 3 imply that the generalized co-normal derivative for arbitrary extension
f̃ ∈ H̃−1(Ω) of the distribution Au can be expressed as

⟨T +a (f̃ , u), w⟩)Ω ∶= ⟨T +a u,w⟩)Ω + ⟨f̃ − Ǎu, 
−1w⟩Ω , ∀w ∈ H
1
2 (Ω). (11)

Let us consider the auxiliary linear elliptic partial differential operator B defined by

Bu(x) ∶= B(x, )x)u(x) ∶=
3
∑

i=1

)
)xi

(

b(x)
)u(x)
)xi

)

, (12)

where b ∈ C∞(Ω), b(x) > 0 for x ∈ Ω.
Note that since for u ∈ H1(Ω), Au−Bu = (a−b)Δu+∇(a−b)∇u ∈ L2(Ω),we have,H1,0(Ω;A) = H1,0(Ω;Δ) = H1,0(Ω;B).
Let u ∈ H1(Ω) and v ∈ H1,0(Ω;B). Then we write the first Green identity for operator B in the form

b(u, v) + ∫
Ω

u(x)Bv(x)dx = ⟨T +b v, 

+u⟩)Ω (13)

with
b(u, v) = ∫

Ω

b(x)∇u(x).∇v(x)dx.

If, in addition, Au = f̃ in Ω, where f̃ ∈ H̃−1(Ω), then according to the definition of T +a (f̃ , u), in (5), the two-operator second
Green identity can be written as

⟨f̃ , v⟩Ω − ∫
Ω

u(x)Bv(x)dx + ∫
Ω

[a(x) − b(x)]∇u(x) ⋅ ∇v(x)dx = ⟨T +a (f̃ , u), 

+v⟩)Ω − ⟨T +b v, 


+u⟩)Ω. (14)

If, moreover u, v ∈ H1,0(Ω;A) = H1,0(Ω;B) then (14) becomes

∫
Ω

[v(x)Au(x) − u(x)Bv(x)]dx + ∫
Ω

[a(x) − b(x)]∇u(x) ⋅ ∇v(x)dx = ⟨T +a u, 

+v⟩)Ω − ⟨T +b v, 


+u⟩)Ω. (15)

3 PARAMETRIX AND POTENTIAL TYPE OPERATORS

3.1 Parametrix
Definition 4. A function Pb(x, y) of two variables x, y ∈ Ω is a parametrix (Levi function) for the operator B(x; )x) in ℝ3 if
(see, e.g.,22,23,1)
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B(x, )x)Pb(x, y) = �(x − y) + Rb(x, y), (16)
where �(.) is the Dirac distribution and Rb(x, y) possesses a weak (integrable) singularity at x = y, i.e.,

Rb(x, y) = (|x − y|−z) with z < 3. (17)

It is easy to see that for the operator B(x; )x) defined by the right-hand side of (12), the function

Pb(x, y) =
1
b(y)

PΔ(x, y) =
−1

4�b(y)|x − y|
, x, y ∈ ℝ3, (18)

is a parametrix, while the corresponding remainder function is

Rb(x, y) = ∇b(x).∇xPb(x, y) = −
∇b(x).∇yPΔ(x, y)

b(y)
=
(x − y).∇b(x)
4�b(y)|x − y|3

, x, y ∈ ℝ3, (19)

which satisfies estimate (17) with z = 2, due to smoothness of the function b(x). Here the function PΔ(x, y) = −(4�|x − y|)−1
is the fundamental solution of the Laplace operator. Evidently, the parametrix Pb(x, y) given by (18) is the fundamental solution
to the operator B(y, )x) ∶= b(y)Δ()x) with “frozen" coefficient b(x) = b(y), and

B(y, )x)Pb(x, y) = �(x − y).

3.2 Volume potentials
Let b ∈ C∞(ℝ3) and b(x) > 0 a.e. inℝ3. For some scalar function g the parametrix-based Newtonian and the remainder volume
potential operators, corresponding to the parametrix (18) and the remainder (19) are given by

Pbg(y) ∶= ∫
ℝ3

Pb(x, y)g(x)dx (20)

bg(y) ∶= ∫
Ω

Pb(x, y)g(x)dx (21)

bg(y) ∶= ∫
Ω

Rb(x, y)g(x)dx. (22)

For g ∈ Hs(Ω), s ∈ ℝ, (20) is understood as Pbg =
1
b
PΔg, where the Newtonian potential operator PΔ for Laplacian Δ is well

defined in terms of the Fourier transform (i.e., as pseudo-differential operator), on any spaceHs(ℝ3). For g ∈ H̃s(Ω), and any
s ∈ ℝ, definitions in (21) and (22) can be understood as

bg =
1
b
rΩPΔg, bg =

1
b
rΩPΔg and bg = −

1
b
rΩ∇.PΔ(g∇b), (23)

while for g ∈ Hs(Ω),− 1
2
< s < 1

2
, as (23) with g replaced by Ẽg, where Ẽ ∶ Hs(Ω) → H̃s(Ω),− 1

2
< s < 1

2
, is the unique

extension operator related with the operator E̊ of extension by zero, cf.15 Theorem 16. For y ∉ )Ω, the single layer and the
double layer surface potential operators, corresponding to the parametrix (18) are defined as

Vbg(y) ∶= −∫
)Ω

Pb(x, y)g(x)dSx =
1
b
VΔg(y), (24)

Wbg(y) ∶= −∫
)Ω

[Tb(x, n(x), )x)Pb(x, y)]g(x)dSx =
1
b
WΔ(bg)(y), (25)

where g is some scalar density function, and the integrals are understood in the distributional sense if g is not integrable. The
corresponding boundary integral (pseudo-differential) operators of direct surface values of the single layer potential b and the
double layer potentialsb for y ∈ )Ω are,

bg(y) ∶= −∫
)Ω

Pb(x, y)g(x)dSx =
1
b
Δg(y), (26)

bg(y) ∶= −∫
)Ω

Tb(x, n(x), )x)Pb(x, y)g(x)dSx =
1
b
Δ(bg)(y) (27)
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We can also calculate at y ∈ )Ω the co-normal derivatives, associated with the operator A, of the single layer potential and of
the double layer potential:

T ±a Vbg(y) =
a(y)
b(y)

T ±b Vbg(y), (28)

±abg(y) ∶= T
±
a Wbg(y) =

a(y)
b(y)

T ±b Wbg(y) =∶
a(y)
b(y)

±b g(y) (29)

The direct value operators associated with (28) are

 ′
abg(y) ∶= −∫

)Ω

[Ta(y, n(y), )y)Pb(x, y)]g(x)dSx =
a(y)
b(y)

 ′
bg(y), (30)

 ′
bg(y) ∶= −∫

)Ω

[Tb(y, n(y), )y)Pb(x, y)]g(x)dSx. (31)

From equations (20)-(31) we deduce representations of the parametrix-based surface potential boundary operators in terms
of their counterparts for b = 1, that is, associated with the fundamental solution PΔ(x, y) of the Laplace operator Δ.

Pag =
1
a
PΔg, Pbg =

1
b
PΔg, ag =

1
a
Δg, bg =

1
b
Δg. (32)

a
b
Vag = Vbg =

1
b
VΔg;

a
b
Wa

(bg
a

)

= Wbg =
1
b
WΔ (bg) , (33)

a
b
ag = bg =

1
b
Δg;

a
b
a

(bg
a

)

= bg =
1
b
Δ (bg) , (34)

 ′
abg =

a
b
 ′

bg =
a
b

{

 ′
Δ (bg) +

[

b )
)n

(1
b

)]

Δg
}

, (35)

±abg =
a
b
±b g =

a
b

{

Δ(bg) +
[

b )
)n

(1
b

)]


±WΔ(bg)
}

. (36)

It is taken into account that b and its derivatives are continuous in ℝ3 and

Δ(bg) ∶= +Δ(bg) = −Δ(bg)

by the Liapunov-Tauber theorem. Hence,

Δ(bVbg) = 0, Δ(bWbg) = 0 in Ω, ∀g ∈ Hs()Ω) (∀s ∈ ℝ), (37)

Δ(bg) = g in Ω, ∀g ∈ H̃s(Ω) (∀s ∈ ℝ). (38)

Theorem 1. For g1 ∈ H
− 1
2 ()Ω), and g2 ∈ H

1
2 ()Ω), there hold the following relations on )Ω,


±Vbg1 = bg1, (39)


±Wbg2 = ∓
1
2
g2 +bg2, (40)

T ±a Vbg1 = ±
1
2
a
b
g1 + ′

abg1. (41)

For a = b, the jump relations (39)-(41) are stated and proved in5 Theorem 3.3 , and4 Theorem A.3. For a ≠ b the proof
follows from relations (20)-(31). The mapping properties of the volume and surface potentials are summarized in Appendix A,
see also11 Theorem A.6.

4 THE TWO-OPERATOR THIRD GREEN IDENTITY AND INTEGRAL RELATIONS

In this section applying some limiting procedures (cf.23,19 S.3.8), we obtain the parametrix based third Green identities.

Theorem 2. (i) If u ∈ H1(Ω), then the following third Green identity holds,

u +bu +bu +Wb

+u = bǍu in Ω, (42)
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where the operator Ǎ is defined in (4), and for u ∈ C1(Ω),

bǍu(y) ∶= ⟨Ǎu, Pb(., y)⟩Ω = −a(u, Pb(., y)) = −∫
Ω

a(x)∇u(x).∇xPb(x, y)dx (43)

(ii) If Au = rΩf̃ in Ω, where f̃ ∈ H̃−1(Ω), then recalling the definition of T +a (f̃ , u), in (5), we arrive at the generalised
two-operator third Green identity in the following form,

u +bu +bu − VbT +a (f̃ , u) +Wb

+u = bf̃ in Ω, (44)

where it was taken into account that

⟨T +a (f̃ , u), Pb(x, y)⟩)Ω = −VbT
+
a (f̃ , u) , ⟨f̃ , Pb(x, y)⟩Ω = bf̃ , (45)

and

bu = −∫
Ω

[a(x) − b(x)]∇xPb(x, y) ⋅ ∇u(x)dx =
1
b(y)

3
∑

j=1
)jΔ

[

(a − b))ju
]

in Ω. (46)

Proof. (i) Let first u ∈ D(Ω). Let y ∈ Ω, B�(y) ⊂ Ω be a ball centered at ywith sufficiently small radius �, andΩ� ∶= Ω⧵B�(y).
For the fixed y, evidently, Pb(., y) ∈ D(Ω�) ⊂ H1,0(A; Ω�) and has the coinciding classical and canonical co-normal derivatives
on )Ω� . Then from (18) and the first Green identity (13) employed for Ω� with v = Pb(., y) we obtain

− ∫
)B�(y)

T +x Pb(x, y)

+u(x)dsx − ∫

)Ω

TxPb(x, y)
+u(x)dsx = −∫
Ω�

b(x)∇u(x).∇xPb(x, y)dx,

which we rewrite as

− ∫
)B�(y)

T +x Pb(x, y)

+u(x)dsx − ∫

)Ω

TxPb(x, y)
+u(x)dsx − ∫
Ω�

[a(x) − b(x)] ∇u(x)∇xPb(x, y)dx

= −∫
Ω�

a(x)∇u(x).∇xPb(x, y)dx.
(47)

Taking the limit as � → 0, equation (47) reduces to the third Green identity (42)–(43) for any u ∈ (Ω). Taking into account
the density of (Ω) in H1(Ω), and the mapping properties of the integral potentials, see Appendix, we obtain that (42)–(43)
hold true also for any u ∈ H1(Ω).
(ii) Let {f̃k} ∈ (Ω) be a sequence of covering to f̃ in H̃−1(Ω) as k → ∞. Then, according to13 Theorem B.1 there exists

a sequence {uk} ∈ (Ω) converging to u in H1(Ω) such that Auk = rΩf̃k and T +a (uk) = T +a (f̃k, uk) converge to T
+
a (f̃ , u) in

H− 1
2 ()Ω). For such uk by (43) and (5), we have

bǍuk(y) =
1
b(y)

∇y.∫
Ω

a(x)PΔ(x, y)∇uk(x)dx = − lim�→0∫
Ω�

a(x)∇uk(x)PΔ(x, y)dx = − lim�→0 Ω� (uk, Pb(., y))

= − lim
�→0

[

∫
Ω�

f̃kPb(x, y)dx − ∫
)B�(y)

Pb(x, y)T +a uk(x)dS(x) − ∫
)Ω

Pb(x, y)T +a uk(x)dS(x)
]

= bf̃k + VbT +a uk(y).
(48)

Taking the limits as k→∞, we obtain bǍu(y) = bf̃ + VbT +a (f̃ , u), which substitution to (42) gives (44).

Using the Gauss divergence theorem, we can rewrite bu(y) in the form that does not involve derivatives of u,

bu(y) ∶=
[

a(y)
b(y)

− 1
]

u(y) + ̂bu(y), (49)

̂bu(y) ∶=
a(y)
b(y)

Wa

+u(y) −Wb


+u(y) +
a(y)
b(y)

au(y) −bu(y), (50)

which allows to call b integral operator in spite of its integro-differential representation (46). Note that the operator b does
not vanish unless operators A and B are equal. Substituting equation (49) and (50) into equations (42) and (44), we obtain Eqs.
(4.1) and (4.3) in13 (and also for s = 1 in14) respectively.
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For some functions f̃ , Ψ, Φ let us consider a more general “indirect" integral relation, associated with (44).

u +bu +bu − VbΨ +WbΦ = bf̃ in Ω. (51)

For the case a = b, the following lemma is stated and proved in13 Lemma 4.2 (also in14 Lemmas 4.2 and 4.4 for s = 1), and
in18 Lemma 1 for a ≠ b.

Lemma 1. Let u ∈ H1(Ω),Ψ ∈ H− 1
2 ()Ω),Φ ∈ H

1
2 ()Ω) and f̃ ∈ H̃−1(Ω), satisfy (51). Then

Au = rΩf̃ in Ω, (52)
rΩVb(Ψ − T +a (f̃ , u)) − rΩWb(Φ − 
+u) = 0 in Ω, (53)


+u + 
+bu + 
+bu − bΨ −
1
2
Φ +bΦ = 
+bf̃ on )Ω, (54)

T +a (f̃ , u) + T
+
a bu + T +a bu −

a
2b
Ψ − ′

abΨ + +abΦ = T +a (f̃ + E̊
b
∗f̃ ,bf̃ ) on )Ω, (55)

where

b
∗f̃ (y) ∶= −

3
∑

j=1
)j[()jb)bf̃ ]. (56)

Proof. Subtracting (51) from identity (42), we obtain

VbΨ(y) −Wb(Φ − 
+u)(y) = b[Ǎu(y) − f̃ ](y), y ∈ Ω. (57)

Multiplying equality (57) by b(y), applying the Laplace operator Δ and taking into account Eqs. (37) and (38), we get rΩf̃ =
rΩ(Ǎu) = Au in Ω. This means f̃ is an extension of the distribution Au ∈ H−1(Ω) to H̃−1(Ω), and u satisfies (52). Then (5)
implies

b[Ǎu − f̃ ](y) = ⟨Ǎu − f̃ , Pb(., y)⟩Ω = −⟨T +a (f̃ , u), Pb(.y)⟩)Ω = VbT
+
a (f̃ , u), y ∈ Ω. (58)

Substituting (58) into (57) leads to (53). Equation (54) follows from (51) and jump relations in (39) and (40) in Theorem 1.
To prove (55), let us first remark that for u ∈ H1(Ω), we haveH1(Ω;A) = H1(Ω;Δ) = H1(Ω;B) and

Bbf̃ = f̃ +b
∗f̃ in Ω, (59)

due to (52), which implies B(bf̃ − u) = b
∗f̃ in Ω, withb

∗f̃ given by (56) and thusb
∗f̃ ∈ L2(Ω). Then B(bf̃ − u) can be

canonically extended (by zero) to B̃(bf̃ −u) = E̊b
∗f̃ ∈ H̃

0(Ω) ⊂ H̃−1(Ω). Thus there exists a canonical co-normal derivative
T +b (bf̃ − u) written as (see, e.g.,

13 Eq. (4.14),14 Eq. (4.23).)

T +b (bf̃ − u) = T
+
b (f̃ + E̊

b
∗f̃ ,bf̃ ) − T

+
b (f̃ , u), (60)

and hence

T +a
(

bf̃ − u
)

= a
b
T +b

(

bf̃ − u
)

= a
b
[

T +b (f̃ + E̊
b
∗f̃ ,bf̃ ) − T

+
b (f̃ , u)

]

= T +a
(

f̃ + E̊b
∗f̃ ,bf̃

)

− T +a (f̃ , u) (61)

From (51) it follows that bf̃ − u = bu +bu − VbΨ +WbΦ in Ω. Substituting this on the left-hand side of (60) and taking
into account (36) and the jump relation (41), we arrive at (55).

Remark 1. If f̃ ∈ H̃− 1
2 (Ω) ⊂ H̃−1(Ω), then f̃ + E̊b

∗f̃ ∈ H̃
− 1
2 (Ω) as well, which implies f̃ + E̊b

∗f̃ = Ãbf̃ and

T +a (f̃ + E̊
b
∗f̃ ,bf̃ ) = T

+
a (B̃bf̃ ,bf̃ ) = T

+
a bf̃ . (62)

Furthermore, if the hypotheses of Lemma 1 are satisfied, then (52) implies u ∈ H1,− 1
2 (Ω;A) and T +a (f̃ , u) = T

+
a (Ãu, u) = T

+
a u.

Henceforth (55), takes the familiar form, cf.11 equation (3.23),

T +a u + T
+
a bu + T +a bu −

a
2b
Ψ − ′

abΨ + +abΦ = T +a bf̃ on )Ω.

Remark 2. Let f̃ ∈ H̃−1(Ω) and a sequence {�i} ∈ H̃−1(Ω) converge to f̃ in H̃−1(Ω). By the continuity of operators13 C.1
and C.2, estimate (6) and relation (62) for �i, we obtain that

T +a (f̃ + E̊
b
∗f̃ ,bf̃ ) = lim

i→∞
T +a (�i + E̊

b
∗�i,b�i) = lim

i→∞
T +a b�i.

inH− 1
2 ()Ω), cf. also13 Theorem B.1.

Lemma 1 and the third Green identity (44) imply, the following assertion.
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Corollary 1. If u ∈ H1(Ω) and f̃ ∈ H̃−1(Ω) are such that Au = rΩf̃ in Ω, then
1
2

+u + 
+bu + 
+bu − bT +a (f̃ , u) +b


+u = 
+bf̃ on )Ω, (63)
(

1 − a
2b

)

T +a (f̃ , u) + T
+
a bu + T +a bu − ′

abT
+
a (f̃ , u) + +ab


+u = T +a (f̃ + E̊
b
∗f̃ ,bf̃ ) on )Ω. (64)

Lemma 2.
(i) If Ψ∗ ∈ H− 1

2 ()Ω) and rΩVbΨ∗ = 0 in Ω, then Ψ = 0.

(ii) If Φ∗ ∈ H
1
2 ()Ω) and rΩWbΦ∗ = 0 in Ω, then Φ = 0.

(iii) Let )Ω = S1 ∪ S2, where S1 and S2 are nonintersecting simply connected sub-manifolds of )Ω with infinitely smooth
boundaries and S1 is nonempty. Let Ψ∗ ∈ H̃− 1

2 (S1),Φ∗ ∈ H̃
1
2 (S2). If rΩVbΨ∗ − rΩWbΦ∗ = 0, in Ω, then Ψ∗ = 0 and

Φ∗ = 0 on )Ω.

Proof. For the case a = b, items (i) and (ii) are proved in13 Lemma 4.6. Due to relations in (33), they hold true for a ≠ b as
well. From11 Lemma 3.2 (iii) follows the proof of item (iii).

Theorem 3. Let f̃ ∈ H̃−1(Ω). A function u ∈ H1(Ω) is a solution of PDE Au = rΩf̃ in Ω if and only if it is a solution of
BDIDE (44).

Proof. If u ∈ H1(Ω) solves PDE Au = rΩf̃ in Ω, then it satisfies (44). On the other hand, if u solves BDIDE (44), then using
Lemma 1 for Ψ = T +a (f̃ , u), Φ = 
+u completes the proof.

5 THE DIRICHLET PROBLEM AND TWO-OPERATOR BDIE SYSTEMS

In this section, we shall derive and investigate the two-operator BDIE systems for the following Dirichlet problem: Find a
function u ∈ H1(Ω) satisfying equations

Au = f in Ω, (65)

+u = '0 on )Ω, (66)

where '0 ∈ H
1
2 ()Ω) and f ∈ H−1(Ω).

Equation (65) is understood in the distributional sense (3) and the Dirichlet boundary condition (66) in the trace sense. The
following assertion is well-known and can be proved e.g. using variational settings and the Lax-Milgram lemma.

Theorem 4. The Dirichlet problem (65)-(66) is uniquely solvable in H1(Ω). The solution is u = (D)−1(f, '0)T , where the
inverse operator, (D)−1 ∶ H

1
2 ()Ω) ×H−1(Ω) → H1(Ω), to the left-hand side operator, D ∶ H1(Ω) → H

1
2 ()Ω) ×H−1(Ω),

of the Dirichlet problem (65)-(66), is continuous.

Following Mikhailov,13 for u ∈ H1(Ω), we shall reduce the Dirichlet problem (65)-(66) with f ∈ H−1(Ω) in to two different
segregated two-operator BDIE systems.
Let f̃ ∈ H̃−1(Ω) be an extension of f ∈ H−1(Ω) (i.e., f = rΩf̃ ), which always exists, see, Lemma 2.15 and Theorem 2.16

in Mikhailov13. We represent in (44), (63) and (64) the generalized co-normal derivative and the trace of the function u as

T +(f̃ , u) =  , 
+u = '0

respectively, and will regard the new unknown function  ∈ H− 1
2 ()Ω) as formally segregated of u. Thus we will look for the

couple (u,  ) ∈ H1(Ω) ×H− 1
2 ()Ω).

5.1 BDIE system (D1)
To reduce BVP (65)-(66) to one of BDIE systems we will use equation (44) in Ω and equation (63) on )Ω. Then we arrive at
the system of BDIEs (D1),

u +bu +bu − Vb = D1
1 in Ω, (67)


+bu + 
+bu − b = D1
2 on )Ω, (68)
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where

D1 ∶=
⎡

⎢

⎢

⎣

D1
1

D1
2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

FD
0


+FD
0 − '0

⎤

⎥

⎥

⎦

and FD
0 ∶= bf̃ −Wb'0. (69)

For '0 ∈ H
1
2 ()Ω), we have the inclusions FD

0 ∈ H1(Ω) if f̃ ∈ H̃−1(Ω) an due to the mapping properties of operators involved
in (69), we have the inclusion D2 ∈ H1(Ω) ×H

1
2 ()Ω).

5.2 BDIE system (D2)
To obtain a segregated BDIE system of the second kind, we will use equation (44) inΩ and equation (64) on )Ω. Then we arrive
at the system, (D2), of BDIEs,

u +bu +bu − Vb = bf̃ −Wb'0 in Ω, (70)

(

1 − a
2b

)

 + T +a bu + T +a bu − ′
ab = T

+
a (f̃ + E̊

b
∗f̃ ,bf̃ ) − +ab'0 on )Ω, (71)

where

D2 ∶=
⎡

⎢

⎢

⎣

D2
1

D2
2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

bf̃ −Wb'0

T +a (f̃ + E̊
b
∗f̃ ,bf̃ ) − +ab'0

⎤

⎥

⎥

⎦

. (72)

Due to the mapping properties of operators involved in (72), we have the inclusion D2 ∈ H1(Ω) ×H− 1
2 ()Ω).

6 EQUIVALENCE AND INVERTIBILITY OF BOUNDARY DOMAIN INTEGRAL
EQUATION SYSTEMS

Theorem 5. Let '0 ∈ H
1
2 ()Ω), f ∈ H−1(Ω) and f̃ ∈ H̃−1(Ω) is such that rΩf̃ = f . Then

(i) If u ∈ H1(Ω) solves the BVP (65)-(66), then the couple (u,  ) ∈ H1(Ω) ×H− 1
2 (Ω), where

 = T +a (f̃ , u), on )Ω, (73)

solves the BDIE systems (D1) and (D2).

(ii) If a couple (u,  ) ∈ H1(Ω) ×H− 1
2
()Ω) solves one of the BDIE systems, (D1) or (D2), then this solution is unique and

solves the other system, while u solves the Dirichlet BVP, and  satisfies (73).

Proof. (i) Let u ∈ H1(Ω) be a solution to BVP (65)–(66). Due to Theorem 4 it is unique. Setting  by (73) evidently implies,
 ∈ H− 1

2 ()Ω). From Theorem 3 and relations (63)–(64) follows that the couple (u,  ) satisfies the BDIE systems (D1) and
(D2), with the right-hand sides (69) and (72) respectively, which completes the proof of item (i).
(ii) Let now a couple (u,  ) ∈ H1(Ω) × H− 1

2 ()Ω) solve BDIE system (67)–(68). Taking trace of equation (67) on )Ω and
subtracting equation (68) from it we obtain


+u = '0 on )Ω, (74)
i.e. u satisfies the Dirichlet condition (66).
Equation (67) and Lemma 1 with Ψ =  , Φ = '0 imply that u is a solution of PDE (65) and VbΨ∗ −WbΦ∗ = 0, in Ω, where

Ψ∗ =  − T +a (f̃ , u) and Φ
∗ = '0 − 
+u. Due to equation (74), Φ∗ = 0. Then Lemma (2)(i) implies Ψ∗ = 0, which proves

condition (73). Thus u obtained from the solution of BDIE system (D1) solves the Dirichlet problem and hence, by item (i) of
the theorem, (u,  ) solve also BDIE system (D2).
Due to (69), the BDIE system (67)-(68) with zero right-hand side can be considered as obtained for f̃ = 0, '0 = 0, implying

that its solution is given by a solution of the homogeneous problem (65)-(66), which is zero by Theorem 4. This implies unique-
ness of the solution of the the inhomogeneous BDIE system (67)-(68). Similar arguments work if we suppose that instead of the
BDIE system (D1), the couple (u,  ) ∈ H1(Ω) ×H− 1

2 ()Ω) solves BDIE system (70)-(71).
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BDIE systems (D1) and (D2) can be written as

D1 D = D1 and D2 D = D2,

respectively.
Here  D ∶= (u,  )⊤ ∈ H1(Ω) ×H− 1

2 ()Ω),

D1 ∶=
⎡

⎢

⎢

⎣

I +b +b −Vb


+b + 
+b b

⎤

⎥

⎥

⎦

, (75)

D2 ∶=

[

I +b +b −Vb
T +a b + T +a b

(

1 − a
2b

)

I − ′
ab

]

, (76)

while D1 and D2 are given by (69) and (72) respectively.
Due to the mapping properties of the operators participating in the definitions of the operators D1 and D2 as well as the

right-hand sides D1 and D2 (see, e.g.,5,4, we have D1 ∈ H1(Ω) ×H
1
2 ()Ω), D2 ∈ H1(Ω) ×H− 1

2 ()Ω), while the operators

D1 ∶ H1(Ω) ×H− 1
2 ()Ω)→ H1(Ω) ×H

1
2 ()Ω) (77)

D2 ∶ H1(Ω) ×H− 1
2 ()Ω)→ H1(Ω) ×H− 1

2 ()Ω) (78)

are continuous. Due to Theorem 5 (ii), operators (77) and (78) are injective.

Lemma 3. For any couple (1,2) ∈ H1(Ω)×H− 1
2 ()Ω), there exists a unique couple (f̃∗∗,Φ∗) ∈ H̃−1(Ω)×H

1
2 ()Ω) such that

1 = bf̃∗∗ −WbΦ∗ (79)
2 = T +a (f̃∗∗ + E̊

b
∗f̃∗∗,bf̃∗∗) − +abΦ∗ (80)

Moreover, (f̃∗∗,Φ∗) = ∗∗(1,2) with ∗∗ ∶ H1(Ω) ×H− 1
2 ()Ω)→ H̃−1(Ω) ×H

1
2 ()Ω) a linear continuous operator given by

f̃∗∗ = Δ̌(b1) + 
∗(2 + 
+1))nb) (81)

Φ∗ =
1
b

(

− 1
2
I +Δ

)−1

+
{

− b1 + Δ
[

Δ̌(b1) + 
∗
(b
a
2 + (
+1))nb

)]}

(82)

where Δ̌(b1) = ∇ ⋅ Ě∇(b1).

Let us first assume that there exist (f̃∗∗,Φ∗) ∈ H̃−1(Ω) ×H
1
2 ()Ω) satisfying equations (79)-(80) and find their expression in

terms of 1 and 2. Let us re write (79) as

1 − bf̃∗∗ = −WbΦ∗ in Ω. (83)

Multiplying (83) by b and applying Laplacian to it, we obtain,

Δ(b1 − Δf̃∗∗) = Δ(b1) − f̃∗∗ = −Δ(WΔ(bΦ∗)) = 0 in Ω, (84)

which means

Δ(b1) = rΩf̃∗∗ in Ω, (85)

and b1 − Δf̃∗∗ ∈ H1,0(Ω,Δ) and hence 1 − bf̃∗∗ ∈ H1,0(Ω, B) = H1,0(Ω, A). The latter imply that the canonical co-
normal derivatives T +b (1 − bf̃∗∗) and T +a (1 − bf̃∗∗) are well defined and can be also written in terms of their generalized
co-normal derivatives

b
a
T +a (1 − bf̃∗∗) = T +b (1 − bf̃∗∗) = T +b (B̃(1 − bf̃∗∗),1 − bf̃∗∗) = T +b (E̊∇ ⋅ (b∇(1 − bf̃∗∗)),1 − bf̃∗∗)

= T +b (E̊Δ(b1 − Δf̃∗∗) − E̊∇ ⋅ ((1 − bf̃∗∗)∇b),1 − bf̃∗∗) = T +b (−E̊∇ ⋅ (1∇b) − E̊b
∗f̃∗∗,1 − bf̃∗∗)

and therefore,

T +a (1 − bf̃∗∗) = T +a (−E̊∇ ⋅ (1∇b) − E̊b
∗f̃∗∗, 1 − bf̃∗∗) (86)

where (59) and (85) were taken into account. Applying the co-normal derivative operator T +a to both sides of equation (83),
substituting their (86), taking into account (8), we obtain,

T +a (f̃∗∗ − E̊∇ ⋅ (1∇b), 1) − T +a (f̃∗∗ + E̊
b
∗f̃∗∗,bf̃∗∗) = −

+
abΦ∗, on )Ω. (87)
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Subtracting this from (80), we get,

2 = T +a
(

f̃∗∗ − E̊∇ ⋅ (1∇b),1
)

on Ω. (88)

Due to (85), we can represent

f̃∗∗ = Δ̌(b1) + f̃1∗ = ∇ ⋅ E̊∇(b1) − 
∗Ψ∗∗ (89)

where f̃1∗ ∈ H−1
)Ω is defined by (2) and hence, due to e.g.15 Theorem 2.10 can be in turn represented as f̃1∗ = −
∗Ψ∗∗, with

some Ψ∗∗ ∈ H
− 1
2 ()Ω). Then (85) is satisfied and

b
a
T +a

(

f̃∗∗ − E̊Δ ⋅ (1∇b),1
)

= T +b
(

f̃∗∗ − E̊Δ ⋅ (1∇b),1
)

= (
−1)∗[f̃∗∗ − E̊∇ ⋅ (1∇b) − B̌1] = (
−1)∗[f̃∗∗ − E̊∇ ⋅ (1∇b) − ∇ ⋅ E̊(b∇1)]
= (
−1)∗[∇ ⋅ E̊∇(b1) − ∇ ⋅ E̊(b∇1) − 
∗Ψ∗∗ − E̊∇ ⋅ (1∇b)]
(
−1)∗[∇ ⋅ E̊(1∇b) − 
∗Ψ∗∗ − E̊∇ ⋅ (1∇b)] = −Ψ∗∗ − (
+1))nb

for which

T +a (f̃∗∗ − E̊Δ ⋅ (1∇b),1) =
a
b
[

−Ψ∗∗ − (
+1))nb
]

(90)

because
⟨(
−1)∗[∇ ⋅ E̊(1∇b) − 
∗Ψ∗∗ − E̊∇ ⋅ (1∇b)], w⟩)Ω = ⟨[∇ ⋅ E̊(1∇b) − 
∗Ψ∗∗ − E̊∇ ⋅ (1∇b)], 
−1w⟩Ω
= ⟨[∇ ⋅ E̊(1∇b), 
−1w⟩ℝ3 − 
∗Ψ∗∗ − ⟨E̊∇ ⋅ (1∇b)], 
−1w⟩Ω
= −⟨[E̊(1∇b),∇(
−1w)⟩ℝ3 − 
∗Ψ∗∗ + ⟨(1∇b),∇(
−1w)⟩Ω − ⟨n ⋅ 
+(1∇b), 
+
−w⟩Ω
= −⟨(
+(1)∇b), w⟩)Ω − Ψ∗∗.

(91)

Hence (88) reduces to

Ψ∗∗ = −
b
a
2 − (
+1))nb = T +b 1 − (


+1))nb, (92)

and (89) to (81).
Now (83) can be written in the form

WΔ(bΦ∗) = Δ in Ω, (93)

where

Δ ∶= −b1 + Δf̃∗∗ = −b1 + Δ
[

Δ̌(b1) + 
∗
(b
a
2 + (
+1))nb

)]

(94)

is harmonic function in Ω due to (84). The trace of equation (94) gives

−1
2
bΦ∗ +Δ(bΦ∗) = 
+Δ on )Ω. (95)

Since the operator − 1
2
I +Δ ∶ H

1
2 ()Ω)→ H− 1

2 ()Ω) is an isomorphism (see e.g.19 Ch.XI, Part B, §2, Remark 8 this implies

Φ∗ =
1
b

(

− 1
2
I +Δ

)−1

+Δ

= 1
b

(

− 1
2
I +Δ

)−1

+
{

− b1 + Δ
[

Δ̌(b1) + 
∗
(b
a
2 + (
+1))nb

)]}

,

which is Eq.(82). Relations (81), (82) can be written as (f̃∗∗,Φ∗) = ∗∗(1,2), where ∗∗ ∶ H1(Ω) ×H∨̉⃗ 1
2 ()Ω)→ H̃−1(Ω) ×

H
1
2 ()Ω) is a linear continuous operator, as required. We still have to check that the functions f̃∗∗ and Φ∗, given by (81) and

(82), satisfy equations (79) and (80). Indeed, Φ∗ given by (82) satisfies equation (95) and thus 
+WΔ(aΦ∗) = 
+Δ. Since both
WΔ(aΦ∗) and Δ are harmonic functions, this implies (93)-(94) and by (81) also (79). Finally, (81) implies by (90) that (88) is
satisfied, and adding (87) to it leads to (80).
Let us prove that the operator ∗∗ is unique. Indeed, let a couple (f̃∗∗,Φ∗) ∈ H̃−1(Ω)×H

1
2 ()Ω) be a solution of linear system

(79)-(80) with 1 = 0 and 2 = 0. Then (85) implies that rΩf̃∗∗ = 0 in Ω, that is f̃∗∗ ∈ H−1
)Ω ⊂ H̃

−1(Ω). Hence (88) reduces to

0 = T +a (f̃∗∗, 0) on )Ω. (96)
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By the first Green identity (7), this gives,

0 = ⟨T +a (f̃∗∗, 0), 

+v⟩)Ω = ⟨f̃∗∗, v⟩Ω, ∀v ∈ H1(Ω), (97)

which implies f̃∗∗ = 0 in ℝ3. Finally, (82) gives Φ∗ = 0. Hence any solution of non-homogeneous linear system (79) − (80)
has only one solution, which implies the uniqueness of the operator ∗∗. The following assertion is3 Lemma 19 generalized to
a wider space.

Lemma 4. For any couple (̃1, ̃2) ∈ H1(Ω) ×H
1
2 ()Ω), there exists a unique couple (f̃∗∗,Φ∗) ∈ H̃−1(Ω) ×H

1
2 ()Ω) such that

̃1 = bf̃∗∗ −WbΦ∗ (98)
̃2 = 
+(bf̃∗∗ −WbΦ∗) (99)

Moreover, (f̃∗∗,Φ∗) = ̃∗∗(̃1, ̃2)with ̃∗∗ ∶ H1(Ω)×H− 1
2 ()Ω)→ H̃−1(Ω)×H

1
2 ()Ω) a linear continuous operator is given by

f̃∗∗ = Δ̌(b̃1) + 
∗(T +b ̃1 + ̃2)nb) (100)

Φ∗ =
1
b

(

− 1
2
I +Δ

)−1(
− b̃2 + 
+Δ[Δ̌(b̃1) + 
∗(T +b ̃1 + ̃2)nb)]

)

(101)

where Δ̌(b̃1) = ∇ ⋅ Ě∇(b̃1).

Proof. Let us first assume that there exist (f̃∗∗,Φ∗) ∈ H̃−1(Ω)×H
1
2 ()Ω) satisfying equations (98)-(99) and find their expression

in terms of ̃1 and ̃2. Let us re write (98) as

̃1 − bf̃∗∗ = −WbΦ∗ in Ω. (102)

Multiplying (102) by b and applying Laplacian to it, we obtain,

Δ(b̃1 − Δf̃∗∗) = Δ(b̃1) − f̃∗∗ = −Δ(WΔ(bΦ∗)) = 0 in Ω, (103)

which means

Δ(b̃1) = rΩf̃∗∗ in Ω, (104)

and b̃1 − Δf̃∗∗ ∈ H1,0(Ω,Δ), while ̃1 − bf̃∗∗ ∈ H1,0(Ω, B) = H1,0(Ω, A). The latter imply that the canonical co-normal
derivatives T +b (̃1 − bf̃∗∗) and T +a (̃1 − bf̃∗∗) are well defined and T +a (̃1 − bf̃∗∗) =

b
a
T +b (̃1 − bf̃∗∗).

Due to (104) and using f̃1∗ = −
∗Ψ∗∗ with some Ψ∗∗ ∈ H
− 1
2 ()Ω) as in (92), we can represent

f̃∗∗ = Δ̌(b̃1) + f̃1∗ = ∇ ⋅ E̊∇(b̃1) − 
∗Ψ∗∗ (105)

where f̃1∗ ∈ H−1
)Ω . Then (104) is satisfied. Replacing 2 by T

+
a (̃1, u) in Lemma 3, Eq. (92) yields,

Ψ∗∗ = −
b
a
T +a ̃1 − (


+̃1))nb = −T +b ̃1 − ̃2)nb (106)

and (105) reduces to (100).
Now (102) can be written in the form

WΔ(bΦ∗) = Δ in Ω, (107)

where

Δ ∶= −b̃1 + Δf̃∗∗ = −b̃1 + Δ[Δ̌(b̃1) + 
∗(T +b ̃1 + (

+1))nb)] (108)

is harmonic function in Ω due to (103). The trace of equation (108) gives

−1
2
bΦ∗ +Δ(bΦ∗) = 
+Δ on )Ω. (109)
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By similar argument as in Lemma 3 the operator − 1
2
I +Δ ∶ H

1
2 ()Ω)→ H− 1

2 ()Ω) is an isomorphism this implies

Φ∗ =
1
b

(

− 1
2
I +Δ

)−1

+Δ

= 1
b

(

− 1
2
I +Δ

)−1

+{−b̃1 + Δ[Δ̌(b̃1) + 
∗(T +b ̃1 + (


+1))nb)]}

= 1
b

(

− 1
2
I +Δ

)−1
(

−b̃2 + 
+Δ[Δ̌(b̃1) + 
∗(T +b ̃1 + (

+1))nb)]

)

which is Eq.(101).
Relations (100), (101) can be written as (f̃∗∗,Φ∗) = ̃∗∗(̃1, ̃2), where ̃∗∗ ∶ H1(Ω) ×H− 1

2 ()Ω) → H̃−1(Ω) ×H
1
2 ()Ω) is

a linear continuous operator, as required. We still have to check that the functions f̃∗∗ and Φ∗, given by (100) and (101), satisfy
equations (98) and (99). Indeed,Φ∗ given by (101) satisfies equation (109) and thus 
+WΔ(aΦ∗) = 
+Δ. Since bothWΔ(aΦ∗)
and Δ are harmonic functions, this implies (107)-(108) and by (100) also (98) while (99) follows from Esq.(100) and (107).
Let us prove that the operator ̃∗∗ is unique. Indeed, let a couple (f̃∗∗,Φ∗) ∈ H̃−1(Ω) × H

1
2 ()Ω) be a solution of linear

system (98)-(99) with ̃1 = 0 and ̃2 = 0. Then (104) implies that rΩf̃∗∗ = 0 in Ω, that is f̃∗∗ ∈ H−1
)Ω ⊂ H̃−1(Ω). in Ω, that is

f̃∗∗ ∈ H−1
)Ω ⊂ H̃

−1(Ω). Hence (88) reduces to

0 = T +a (f̃∗∗, 0) on )Ω. (110)

By the first Green identity (7), this gives relation (97), which implies f̃∗∗ = 0 in ℝ2. Finally, (101) gives Φ∗ = 0. Hence any
solution of non-homogeneous linear system (98) − (99) has only one solution, which implies the uniqueness of the operator
̃∗∗.

Theorem 6. Operators (77) and (78) are continuous and continuously invertible.

Proof. The continuity of operators (77) and (78) is proved above. To prove the invertibility of operator (77), let us consider the
BDIE system (D1) with arbitrary right-hand side

D1
∗ = (D1

∗1 ,
D1
∗2 )

T ∈ H1(Ω) ×H
1
2 ()Ω).

Take ̃1 = D1
∗1 and Φ∗ = 
+D1

∗1 − D1
∗2 in Lemma 4, to obtain the representation of D1

∗ as:

D1
∗1 = ̃1 D1

∗2 = 

+̃1 − Φ∗

where the couple
(f̃∗,Φ∗) = ̃∗∗(̃1, ̃2) ∈ H̃−1(Ω) ×H

1
2 ()Ω) (111)

is unique and the operator
̃∗∗ ∶ H1(Ω) ×H

1
2 ()Ω)→ H̃−1(Ω) ×H

1
2 ()Ω) (112)

is linear and continuous. Applying Theorem 5 with f̃ = f̃∗, Φ∗ = '0, we obtain that BDIE system (D1) is uniquely solvable
and its solution is:
1 = (D)−1(rΩf̃ , '0)T , 2 = 
+1 − '0, where the inverse operator, (D)−1 ∶ H−1(Ω) ×H

1
2 ()Ω) → H1(Ω), to the

left-hand side operator,D ∶ H1(Ω)→ H−1(Ω) ×H
1
2 ()Ω), of the Dirichlet problem (65)–(66), is continuous. Representation

(111) and continuity of the operator (112) imply invertibility of (77).
To prove the invertibility of operator (78), let us consider the BDIE system (D2) with arbitrary right-hand side

D2
∗ = (D2

∗1 ,
D2
∗2 )

⊤ ∈ H1(Ω) ×H− 1
2 ()Ω).

Take 1 = D2
∗1 and 2 = T +a (1, u) = D2

∗2 in Lemma 3 which is the version of13 Lemma 6.6, to represent D2
∗ as

D2
∗1 = 1 D2

∗2 = T
+
a (1, u) = 2

and the couple
(f̃∗∗,Φ∗) = ̃∗∗(1,2) ∈ H̃−1(Ω) ×H

1
2 ()Ω)

is unique and the operator
̃∗∗ ∶ H1(Ω) ×H− 1

2 ()Ω)→ H̃−1(Ω) ×H
1
2 ()Ω) (113)

is linear and continuous. Applying Theorem 5 with f̃ = f̃∗∗, Φ∗ = '0, we obtain that BDIE system (D2) is uniquely solvable
and its solution is:1 = (D)−1(rΩf̃ , '0)⊤, 2 = T +a (rΩf̃ ,1), where the inverse operator, (D)−1 ∶ H−1(Ω)×H

1
2 ()Ω)→
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H1(Ω), to the left-hand side operator, D ∶ H1(Ω) → H−1(Ω) ×H
1
2 ()Ω), of the Dirichlet problem (65)–(66), is continuous.

Representation (111) and continuity of the operator (113) imply invertibility of (78).

7 TWO-OPERATOR BDIE SYSTEMS FOR NEUMANN PROBLEM

In this section we shall derive and investigate the two-operator BDIE systems for the following Neumann problem: Find a
function u ∈ H1(Ω) satisfying equations

Au = rΩf̃ in Ω, (114)
T +a (f̃ , u) =  0 on )Ω. (115)

where  0 ∈ H
− 1
2 ()Ω) and f̃ ∈ H̃−1(Ω).

Equation (114) is understood in the distributional sense (3) and the Neumann boundary condition (115) in the weak sense
(7). The following assertion is well-known and can be proved e.g. using variational settings and the Lax-Milgram lemma.

Theorem 7.

(i) The homogeneous Neumann problem (114)-(115) admits only linearly independent solution u0 = 1 inH1(Ω).

(ii) The non-homogeneous Neumann problem (114)-(115) is solvable if and only if the following solvability condition is
satisfied.

⟨f̃ , u0⟩Ω − ⟨ 0, 

+u0⟩)Ω = 0 (116)

We explore different possibilities of reducing the Neumann problem (114)–(115) with f̃ ∈ H̃−1(Ω), for u ∈ H1(Ω), to two
different segregated Boundary-Domain Integral Equation (BDIE) systems. Corresponding formulations for the mixed problem
for u ∈ H1,0(Ω,Δ) with f ∈ L2(Ω) were introduced and analysed in11,12,5,16,4. Let us represent in (44), (63) and (64) the
generalised co-normal derivative and the trace of the function u as

T +a (f̃ , u) =  0, 
+u = ',

and will regard the new unknown function ' ∈ H
1
2 ()Ω) as formally segregated of u. Thus we will look for the couple (u, ') ∈

H1(Ω) ×H
1
2 ()Ω).

7.1 BDIE system (N1)
To reduce BVP (114)-(115) to a BDIE system in this section we will use equation (44) in Ω and equation (64) on )Ω. Then we
arrive at the following system, (N1), of two boundary-domain integral equations for the couple of unknowns,(u, '),

u +bu +bu +Wb' = N1
1 in Ω, (117)

T +a bu + T +a bu + +ab' = N1
2 on )Ω, (118)

where

N1 ∶=
⎡

⎢

⎢

⎣

N1
1

N1
2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

bf̃ + Vb 0

T +a (f̃ + E̊
b
∗f̃ ,bf̃ ) −  0 +

a
2b
 0 + ′

ab 0

⎤

⎥

⎥

⎦

. (119)

Due to the mapping properties of operators involved in (119) we have FN1 ∈ H1(Ω) ×H− 1
2 ()Ω).

7.2 BDIE system (N2)
To obtain a segregated BDIE system of the second kind, we will use equation (44) inΩ and equation (63) on )Ω. Then we arrive
at the following system, (D2), of boundary-domain integral equation systems,

u +bu +bu +Wb' = bf̃ + Vb 0 in Ω, (120)
1
2
' + 
+bu + 
+bu +b' = 
+bf̃ + b 0 on )Ω, (121)
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where

N2 ∶=
⎡

⎢

⎢

⎣

N2
1

N2
2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

bf̃ + Vb 0


+bf̃ + b 0

⎤

⎥

⎥

⎦

. (122)

Due to the mapping properties of operators involved in (122), we have the inclusion N2 ∈ H1(Ω) ×H
1
2 ()Ω).

8 EQUIVALENCE OF BOUNDARY-DOMAIN INTEGRAL EQUATION SYSTEMS AND THE
NEUMANN PROBLEM

Theorem 8. Let  0 ∈ H
− 1
2 ()Ω) and f̃ ∈ H̃−1(Ω).

(i) If a function u ∈ H1(Ω) solves the BVP (114)-(115) , then the couple (u, '), with ' = 
+u solves the BDIE systems (N1)
and (N2).

(ii) Vice versa, if a couple (u, ') ∈ H1(Ω) ×H
1
2 ()Ω) solves one of the BDIE systems, (N1) or (N2), then the couple solves

the other one BDIE system and u solves the Neumann problem (114)-(115) and 
+u = '.

(iii) The homogeneous BDIE systems (N1) and (N2) have unique linearly independent solution 0 = (u0, '0)⊤ in H1(Ω) ×
H

1
2 ()Ω). Condition (116) is necessary and sufficient for solvability of the nonhomogeneous BDIE systems (N1) and (N2)

inH1(Ω) ×H
1
2 ()Ω).

Proof. (i) Let u ∈ H1(Ω) be a solution to the Neumann BVP (114)–(115). It immediately follows from Theorem 3 and relations
(63)–(64) that the couple (u, ') with ' = 
+u satisfies the BDIE systems (N1) and (N2), which proves item (i).
(ii) Let now a couple (u, ') ∈ H1(Ω) ×H

1
2 ()Ω) solve BDIE system (N1). Lemma 1 for equation (117) implies that u is a

solution of equation (1), and equations (53)-(55) hold for Ψ =  0 and Φ = '. Subtracting (55) from (118) gives T +a (f̃ , u) =  0
on )Ω. Further, from (53) we deriveWb(
+u−') = 0 in Ω+, where 
+u = ' on )Ω by Lemma 2 completing item (ii) for BDIE
system (N1).
Let now couple (u, ') ∈ H1(Ω) ×H

1
2 ()Ω) solve BDIE system (N2). Further, taking the trace of (120) on )Ω and comparing

the results with (121), we easily derive that 
+u = ' on )Ω. Lemma 1 for equation (120) implies that u is a solution of (1),
while equations (53)-(55) hold for Ψ =  0 and Φ = '. Further, from (53) we derive

Vb( 0 − Ta(f̃ , u)) = 0 in Ω+,

whence T +a u =  0 on )Ω by Lemma 2, i.e., u solves Neumann problem (114)-(115) which completes the proof of item (ii) for
BDIE system (N2). (iii) Theorem 7 along with items (i) and (ii) imply the claims of item (iii) for BDIE system (N2) and (N1).

9 PROPERTIES OF BDIE SYSTEM OPERATORS FOR THE NEUMANN PROBLEM

BDIE systems (N1) and (N2) can be written respectively, as

ℜ1N = N1, ℜ2N = N2,

where N = (u, ')⊤ ∈ H1(Ω) ×H
1
2 ()ΩD),

ℜ1 ∶=
[

I +b +b Wb
T +a b + T +a b +ab

]

, ℜ2 ∶=

[

I +b +b Wb

+b + 
+b

1
2
+b

]

.

Due to the mapping properties of potentials in (119) and (122), the right-hand sides of BDIE systems (N1)and (N2) are such
that N1 ∈ H1(Ω) ×H− 1

2 ()Ω) and N2 ∈ H1(Ω) ×H
1
2 ()Ω).

Theorem 9. The operators

ℜ1 ∶ H1(Ω) ×H
1
2 ()Ω)→ H1(Ω) ×H− 1

2 ()Ω), (123)

ℜ2 ∶ H1(Ω) ×H
1
2 ()Ω)→ H1(Ω) ×H

1
2 ()Ω), (124)
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are continuous. They have one-dimensional null spaces, kerℜ1 = kerℜ2, in H1(Ω) × H
1
2 ()Ω), spanned over the element

(u0, '0) = (1, 1).

Proof. The mapping properties of the potentials imply continuity of the operators (123) and (124). The claims that kerℜ1

and kerℜ2 are one-dimensional and the couple (u0, '0) = (1, 1) belong to kerℜ1 = kerℜ2 directly follows from Theorem
8(iii).

To describe in more details the range of operators (123) and (124), i.e., to give more information about the co-kernels of these
operators, we will need several auxiliary assertions. First of all, let us remark that for any v ∈ Hs− 3

2 ()Ω), s < 3
2
, the single layer

potential can be defined as follows:

Vbv(y) ∶= −⟨
Pb(., y), v⟩)Ω = −⟨Pb(., y), 
∗v⟩ℝ3 = −Pb
∗v(y), y ∈ ℝ3 ⧵ )Ω. (125)

where 
∗ ∶ Hs− 3
2 ()Ω)→ Hs−2

)Ω , s < 3
2
, is the operator adjoined to the trace operator 
 ∶ H2−s(ℝ3)→ H

3
2
−s()Ω), and the space

Hs
)Ω is defined by (2).

Lemma 5. Let f̃ ∈ H̃s−2(Ω), s > 1
2
. If

rΩPbf̃ = 0 in Ω, (126)
then f̃ = 0 in ℝ3.

Proof. Multiplying (126) by b, taking into account the first relation in (32) and applying the Laplace operator, we obtain rΩf̃ = 0,
which means f̃ ∈ Hs−2

)Ω . If s ≥ 3
2
, then f̃ = 0 by15 Theorem 2.10. If 1

2
< s < 3

2
, then by the same theorem there exists

v ∈ Hs− 3
2 ()Ω) such that f̃ = 
∗v. This gives Pbf̃ = Pb
∗v = −Vbv in ℝ3. Then (126) reduces to Vbv = 0 in Ω, which implies

v = 0 on )Ω (see e.g., Lemma 2(i) for s = 1, which can be generalized to 1
2
< s < 3

2
) and thus f̃ = 0 in ℝ3.

Theorem 10. Let 1
2
< s < 3

2
. The operator

Pb ∶ H̃s−2(Ω)→ Hs(Ω) (127)
and its inverse

(Pb)−1 ∶ Hs(Ω)→ H̃s−2(Ω) (128)
are continuous and

(Pb)−1g =
[

ΔE̊(I − rΩVΔ−1Δ 
+) − 
∗−1Δ 
+
]

(bg) in ℝ3, ∀g ∈ Hs(Ω). (129)

Proof. The continuity of equation (127) follows from5 Theorem 3.8. By Lemma 5 operator (127) is injective. Let us prove its
surjectivity. To this end, for arbitrary g ∈ Hs(Ω) let us consider the following equation with respect to f̃ ∈ H̃s−2(Ω),

PΔf̃ = g in Ω. (130)

Let g1 ∈ Hs(Ω) be the (unique) solution of the following Dirichlet problem:

Δg1 = 0 in Ω, 
+g1 = 
+g,

which due to21 or15 Lemma 2.6 can be particularly presented as g1 = VΔ−1Δ 
+g. Let g0 ∶= g−g1. Then∈ Hs(Ω) and 
+g0 = 0
and thus g0 can be uniquely extended to E̊g0 ∈ H̃s(Ω), where E̊ is the operator of extension by zero outside Ω . Thus by (125),
equation (130) takes form

rΩPΔ[f̃ + 
∗−1Δ 
+g] = g0 in Ω. (131)
Any solution f̃ ∈ H̃s−2(Ω) of the corresponding equation on ℝ3

PΔ[f̃ + 
∗−1Δ 
+g] = E̊g0 in ℝ3, (132)

solves (131). If f̃ solves (132) then acting with the Laplace operator on (132), we obtain

f̃ = Q̃g ∶= ΔE̊g0 − 
∗−1Δ 
+g = ΔE̊(g − rΩVΔ−1Δ 
+g) − 
∗−1Δ 
+g (133)

inℝ3.On the other hand, substituting f̃ given by (133) to (132) and taking into account that PΔΔℎ̃ = ℎ̃ for any ℎ̃ ∈ H̃s(Ω), s ∈
ℝ, we obtain that Q̃g is indeed a solution of equation (132) and thus (131). By Lemma 5 the solution of (132) is unique, which
means that the operator Q̃ is inverse to operator (127), i.e., Q̃ = (rΩPb)−1. Since Δ is a continuous operator from H̃s(Ω) to
H̃s−2(Ω), equation (81) implies that operator (rΩP)−1b = Q̃ ∶ Hs(Ω) → H̃s−2(Ω) is continuous. The relations Pb =

1
b
PΔ and

b(x) > 0 then imply invertibility of operator (127) and anstatz (129).
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Theorem 11. The co-kernel of operator (123) is spanned over the functional

g∗1 ∶= ((
+)∗)nb, 1)⊤ (134)

in H̃−1(Ω) ×H
1
2 ()Ω), i.e., g∗1(1,2) = ⟨(
+1))nb + 2, 
+u0⟩)Ω, where u0 = 1.

Proof. The proof follows from the proof of13 Theorem 6.7 and Lemma 3. Indeed, let us consider the equationℜ1 = (1,2)⊤,
i. e. system the system (N1)

u +bu +bu +Wb' = 1 in Ω, (135)
T +a bu + T +a bu + +ab' = 2 on )Ω, (136)

with arbitrary right-hand side (1,2)⊤ ∈ H1(Ω) ×H− 1
2 ()Ω), for (u, ') ∈ H1(Ω) ×H

1
2 ()Ω). By Lemma 3 the right-hand side

of the system has the form (79)-(80), i.e., system (135)-(136) reduces to

u +bu +bu +Wb(' + Φ∗) = bf̃∗∗ in Ω, (137)
T +a bu + T +a bu + +ab(' + Φ∗) = T

+
a (f̃∗∗ + E̊

b
∗f̃∗∗,bf̃∗∗) on )Ω, (138)

where the couple (f̃∗∗,Φ∗) ∈ H̃−1(Ω) ×H
1
2 ()Ω) is given by (79)-(80). Up to the notations (137)-(138) is the same as in (119)

with  0 = 0. Then Theorems 8(iii) and 10 imply that the BDIE system (137)-(138) and hence (135)-(136) is solvable if and
only if

⟨f̃∗∗, u
0
⟩Ω = ⟨(Δ̌b1) + 
∗(2 + (
+1))nb), u0⟩Ω = ⟨(∇ ⋅ Ě∇(b1) + 
∗(2 + (
+1))nb), u0⟩ℝ3

= ⟨(∇ ⋅ Ě∇(b1,∇u0⟩ℝ3 + ⟨(2 + (
+1))nb), 
+u0⟩)Ω = ⟨(2 + (
+1))nb), 
+u0⟩)Ω = 0
(139)

where we took into account that ∇u0 = 0 in ℝ3. Thus the functional g∗1 defined by (134) generates the necessary and sufficient
solvability condition of equation ℜ1 = (1,2)⊤. Hence g∗1 is basis of the cokernel ofℜ1.

Theorem 12. The co-kernel of operator (124) is spanned over

g∗2 ∶=

(

−b
+∗( 1
2
+ ′

Δ)
−1
Δ 
+u0

−b( 1
2
− ′

Δ)
−1
Δ 
+u0

)

(140)

in H̃−1(Ω) ×H− 1
2 ()Ω), i.e.,

g∗2(1,2) =
⟨

− b
+∗
(1
2
+ ′

Δ

)

−1Δ 
+u0,1
⟩

Ω
+
⟨

− b
(1
2
− ′

Δ

)

−1Δ 
+u0,2
⟩

)Ω

where u0 = 1.

Proof. The proof follows from the proof of13 Theorem 6.8 and Lemma 3. Indeed, let us consider the equationℜ2 = (1,2)⊤,
i. e. system the system (N2)

u +bu +bu +Wb' = 1 in Ω, (141)
1
2
' + 
+bu + 
+bu +b' = 2 on )Ω, (142)

with arbitrary (1,2)⊤ ∈ H1(Ω) ×H− 1
2 ()Ω), for (u, ') ∈ H1(Ω) ×H

1
2 ()Ω).

Introducing the new variable , '′ = ' − (2 − 
+1), BDIE system (141)-(142) takes the form

u +bu +bu +Wb' =  ′
1 in Ω, (143)

1
2
'′ + 
+bu + 
+bu +b'

′ =  ′
2 on )Ω, (144)

where
 ′
1 = 1 −Wb(2 − 
+1) ∈ H1(Ω).

Let us recall that b = rΩPb ∶ H̃s−2(Ω) → Hs(Ω) and then by Theorem 10, the operator −1
b = (Pb)−1 ∶ Hs(Ω) → H̃s−2(Ω)

is continuous for 1
2
< s < 3

2
. Hence we always represent 1 = bf̃∗, with

f̃∗ = [ΔE̊(I − rΩVΔ−1Δ 
+) − 
∗−1Δ 
+](b ′
1) ∈ H̃

−1(Ω).
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For  ′
1 = bf̃∗, the right-hand side of BDIE system (143)-(144) is the same as in (122) with f = f̃∗ and  0 = 0. Then

Theorems 8(iii) implies that the BDIE system (143)-(144) and hence (141)-(142) is solvable if and only if
⟨f̃∗, u

0
⟩Ω = ⟨[ΔE̊(I − rΩVΔ−1Δ 
+) − 
+∗−1Δ 
+](b ′

1), u
0
⟩ℝ3

= ⟨E̊(I − rΩVΔ−1Δ 
+)(b ′
1),Δu

0
⟩ℝ3 − ⟨(
+∗−1Δ 
+)(b ′

1), u
0
⟩ℝ3

= −⟨
+(b ′
1),

−1
Δ 
+u0⟩)Ω = −

⟨1
2
[
+(b1) + (b2)] −Δ[b(2 − 
+1)],−1Δ 
+u0

⟩

)Ω

=
⟨

− b
+∗
(1
2
+ ′

Δ

)

−1Δ 
+u0,1
⟩

Ω
+
⟨

− b
(1
2
+ ′

Δ

)

−1Δ 
+u0,2
⟩

)Ω
= 0.

(145)

Thus the functional g∗2 defined by (140) generates the necessary and sufficient solvability condition of equation ℜ2 =
(1,2)⊤. Hence g∗2 is basis of the cokernel ofℜ2.

9.1 Perterbed segregated BDIE systems for Neumann problem
Theorem 8 implies, that evenwhen the solvability condition (116) is satisfied, the solutions of both BDIE systems, (N1) and (N2),
are not unique. By Theorem 9, in turn, the BDIE left-hand side operators, ℜ1 and ℜ2, have non-zero kernels and thus are not
invertible. To find a solution (u, ') from uniquely solvable BDIE system with continuously invertible left-hand side operators,
let us consider, following24, some BDIE systems obtained form (N1) and (N2) by finite-dimensional operator perturbations,
cf.13 for the three-dimensional case. Below we use the notations  = (u, ')⊤ and |)Ω| ∶= ∫)Ω dS.

9.1.1 Perturbation of BDIE system (N1)
Let us introduce the perturbed counterparts of the BDIE system (N1),

ℜ̂1N = N1, (146)

where
ℜ̂1 ∶= ℜ̂1 + ℜ̊1 and ℜ̊1N (y) ∶= g0(N )1(y) = 1

|)Ω| ∫
|)Ω|

'(x)dS
(

0
1

)

,

that is,

g0(N ) ∶= 1
|)Ω| ∫

)Ω

'(x)dS, 1(y) ∶=
(

0
1

)

For the functional g∗1 given by (134) in Theorem 11, g∗1(1) = |)Ω| , while g0( 0) = 1. Hence13 Theorem D.1,14 Theorem
6.14 imply the following assertion.

Theorem 13. (i) The operator ℜ̂1 ∶ H1(Ω) ×H
1
2 ()Ω)→ H1(Ω) ×H− 1

2 ()Ω) is continuous and continuously invertable.

(ii) If condition g∗1(N1) = 0 or condition (116) for N1 in form (123) is satisfied, then the unique solution of perturbed
BDIDE system (146) gives a solution of original BDIE system (N1) such that

g0( ) = 1
|)Ω| ∫

)Ω


+udS = 1
|)Ω| ∫

)Ω

'dS = 0.

9.1.2 Perturbation of BDIE system (N2)
Let us introduce the perturbed counterparts of the BDIE system (N2)

ℜ̂2 = N2, (147)

where
ℜ̂2 ∶= ℜ2 + ℜ̊2 and ℜ̊2 (y) ∶= g0( )2(y) = 1

|)Ω| ∫
|)Ω|

'(x)ds
(

b−1(y)

+b−1(y)

)

,

that is,

g0( ) ∶= 1
|)Ω| ∫

|)Ω|

'(x)ds, 2(y) ∶=
(

b−1(y)u0(y)

+[b−1u0](y)

)

.
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For the functional g∗2 given by (140) in Theorem 12, since the operator −1Δ ∶ H
1
2 ()Ω) → H− 1

2 ()Ω) is positive definite and
u0(x) = 1, there exists a positive constant C such that

g∗2(2) =
⟨

− b
+∗
(1
2
+ ′

Δ

)

−1Δ 
+u0, b−1u0
⟩

Ω
+
⟨

− b
(1
2
− ′

Δ

)

−1Δ 
+u0, 
+
(

b−1u0
)⟩

)Ω

= −⟨(1
2
+ ′

Δ)
−1
Δ 
+u0 + (1

2
− ′)−1Δ 
+u0, 
+u0⟩)Ω = −⟨−1Δ 
+u0, 
+u0⟩)Ω

≤ −C‖
+u0‖2
H

1
2 ()Ω)

≤ −C‖
+u0‖2
H

1
2 ()Ω)

= −C|)Ω|2 < 0.

(148)

Due to (148) and g0( 0) = 1,13 Theorem D.1,14 Theorem 6.14 imply the following assertion.

Theorem 14. (i) The operator ℜ̂2 ∶ H1(Ω) ×H
1
2 ()Ω)→ H1(Ω) ×H

1
2 ()Ω) is continuous and continuously invertable.

(ii) If condition g∗2(2) = 0 or condition (116) for N2 in form (124) is satisfied, then the unique solution of perturbed
BDIDE system (147) gives a solution of original BDIE system (N2) such that

g0(N ) = 1
|)Ω| ∫

)Ω


+udS = 1
|)Ω| ∫

)Ω

'dS = 0.

10 THE TWO-OPERATOR BOUNDARY-DOMAIN INTEGRAL EQUATION SYSTEMS FOR
THE MIXED BOUNDARY VALUE PROBLEM

We shall derive and investigate BDIEs for the following mixed BVP: Find a function u ∈ H1(Ω) satisfying conditions

Au = rΩf̃ in Ω, (149)

+u = '0 on )ΩD, (150)

T +(f̃ , u) =  0 on )ΩN , (151)

where'0 ∈ H
1
2 ()ΩD), 0 ∈ H

− 1
2 ()ΩN ), f̃ ∈ H̃−1(Ω) are given functions. Equation (149) is understood in distributional sense,

Eq.(150) is understood in trace sense and Eq.(151) is understood in functional sense. The following assertion is well-known and
can be proved e.g. using variational settings and the Lax-Milgram lemma.

Theorem 15. The homogeneous version of BVP (149) – (151), i.e., with (f, '0,  0) = (0, 0, 0) has only the trivial solution.
Hence the nonhomogeneous problem (149)–(151) may posses at most one solution.

Proof. The proof follows from Green’s formula (7) with v = u as a solution of the homogeneous mixed BVP (cf.5 Theorem
2.1).

Theorem 16. The mixed problem (149)–(151) is uniquely solvable inH1(Ω). The solution is u = (M )−1(f̃ , '0,  0)⊤, where
the inverse operator, (M )−1 ∶ H− 1

2 ()ΩN ) ×H
1
2 ()ΩD) × H̃−1(Ω) → H1(Ω), to the left-hand side operator, M ∶ H1(Ω) →

H− 1
2 ()ΩN ) ×H

1
2 ()ΩD) × H̃−1(Ω), of the mixed problem (149)–(151), is continuous.

11 TWO-OPERATOR BOUNDARY-DOMAIN INTEGRAL EQUATIONS

Let Φ0 ∈ H
1
2 ()Ω) and Ψ0 ∈ H− 1

2 ()Ω) be some extensions of the given data '0 ∈ H
1
2 ()ΩD) from )ΩD to )Ω and  0 ∈

H− 1
2 ()ΩN ) from )ΩN to )Ω, respectively. Let us also denote

F̃0 ∶= bf̃ + VbΨ0 −WbΦ0 in Ω.

Due to the mapping properties of the Newtonian (volume) and layer potentials (cf. Theorems 3.1 and 3.10 in5), we have the
inclusion F̃0 ∈ H1(Ω), for f̃ ∈ H̃−1(Ω), Ψ0 ∈ H

− 1
2 ()Ω) and Φ0 ∈ H

1
2 ()Ω).We shall use the following notations for product
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spaces.

X ∶= H1(Ω) × H̃− 1
2 ()ΩD) × H̃

1
2 ()ΩN ),

Y 11 ∶= H1(Ω) ×H
1
2 ()ΩD) ×H

− 1
2 ()ΩN ),

Y 22 ∶= H1(Ω) ×H− 1
2 ()ΩD) ×H

1
2 ()ΩN ),

Y 12 ∶= H1(Ω) ×H
1
2 ()Ω),

Y 21 ∶= H1(Ω) ×H− 1
2 ()Ω).

To reduce BVP(149)–(151) to one or another two-operator BDIE system, we shall use equation (44) in Ω, and restrictions of
Eq.(63) or (64) to appropriate parts of the boundary. We shall always substituteΦ0+' for 
+u andΨ0+ for T +a (f̃ , u), cf.

5,11,12,
where Φ0 ∈ H

1
2 ()Ω) and Ψ0 ∈ H

− 1
2 ()Ω) are considered as known, while  belongs to H̃− 1

2 ()ΩD) and ' to H̃
1
2 ()ΩN ) due to

the boundary conditions (150)- (151) and are to be found along with u ∈ H1(Ω). This will lead us to segregated BDIE systems
with respect to the unknown triple

 ∶= [u,  , ']⊤ ∈ X.

11.1 BDIE system (M11)
Let us use Eq. (44) in Ω, the restriction of Eq. (63) on )ΩD and the restriction of Eq. (64) on )ΩN . Then we arrive at the
following two-operator segregated system of BDIEs:

u +bu +bu − Vb +Wb' = F̃0 in Ω, (152)

+bu + 
+bu − b +b' = 
+F̃0 − '0 on )ΩD, (153)

T +a bu + T +a bu − ′
ab + +ab' = T

+
a F̃0 −  0 on )ΩN , (154)

which we call BDIE systemM11, where M stands for the mixed problem and 11 hints that the integral equations on the Dirichlet
and Neumann parts of the boundary are of the first kind. System (152)-(154) can be written in the form

11 = 11,

where

11 ∶= [F̃0, r)ΩD 

+F̃0 − '0, r)ΩN T

+
a F̃0 −  0]

⊤, (155)

11 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

I +b +b −Vb Wb

r
)ΩD

+[b +b] −r

)ΩD
b r

)ΩD
b

r
)ΩN
T +a [b +b] −r

)ΩN
 ′

ab r)ΩN
+
ab

⎤

⎥

⎥

⎥

⎥

⎦

. (156)

11.2 BDIE system (M12)
To obtain another system, we use Eq.(44) inΩ and Eq.(63) on the whole boundary )Ω, and arrive at the two-operator segregated
BDIE system M12:

u +bu +bu − Vb +Wb' = F̃0 in Ω, (157)
1
2
' + 
+bu + 
+bu − b +b' = 
+F̃0 − Φ0 on )Ω . (158)

System (157)-(158) can be written in the form
12 = 12,

where

12 ∶= [F̃0, 
+F̃0 − Φ0]⊤, (159)

12 ∶=

[

I +b +b −Vb Wb

+[b +b] −b

1
2
I +b

]

. (160)
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11.3 BDIE system (M21)
To obtain one more system, we use Eq.(44) inΩ and Eq.(64) on )Ω and arrive at the two-operator segregated BDIE systemM21:

u +bu +bu − Vb +Wb' = F̃0 in Ω, (161)
(

1 − a
2b

)

 + T +a bu + T +a bu − ′
ab + +ab' = T

+
a F̃0 − Ψ0 on )Ω. (162)

System (161)-(162) can be written in the form
21 = 21,

where

21 ∶= [F̃0, T +a F̃0 − Ψ0]
⊤, (163)

21 ∶=

[

I +b +b −Vb Wb

T +a [b +b] (1 − a
2b
)I − ′

ab +ab

]

. (164)

11.4 BDIE system (M22)
To reduce BVP (149)-(151) to a BDIE system of almost the second kind (up to the spaces), we use Eq.(44) in Ω, the restriction
of Eq.(64) to )ΩD, and the restriction of Eq.(63) to )ΩN . Then we arrive at the following two-operator segregated BDIE system
M22:

u +bu +bu − Vb +Wb' = F̃0 in Ω, (165)
(

1 − a
2b

)

 + T +a bu + T +a bu − ′
ab + +ab' = T

+
a F̃0 − Ψ0 on )ΩD, (166)

1
2
' + 
+bu + 
+bu − a +a' = 
+F̃0 − Φ0 on )ΩN . (167)

System (165)-(167) can be rewritten in the form
22 = 22,

where

22 ∶= [F̃0, r)ΩD (T
+
a F̃0 − Ψ0), r)ΩN (


+F̃0 − Φ0)]⊤, (168)

22 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

I +b +b −Vb Wb

r
)ΩD
T +a [b +b] (1 − a

2b
)I − r

)ΩD
 ′

ab r
)ΩD

+ab
r
)ΩN

+[b +b] −r

)ΩN
b

1
2
I + r

)ΩN
b

⎤

⎥

⎥

⎥

⎥

⎦

. (169)

12 EQUIVALENCE AND INVERTIBILITY

Now let us prove the equivalence of BVP (149)-(151) with the BDIE systems M11, M12, M21 and M22.

Theorem 17. Let f̃ ∈ H̃−1(Ω) and let Φ0 ∈ H
1
2 ()Ω) and Ψ0 ∈ H− 1

2 ()Ω) be some fixed extensions of '0 ∈ H
1
2 ()ΩD) and

 0 ∈ H
− 1
2 ()ΩN ), respectively.

(i) If some u ∈ H1(Ω) solves the mixed BVP (149)-(151) in Ω, then the solution is unique and the triplet (u,  , ') ∈ X,
where

 = T +a (f̃ , u) − Ψ0, ' = 
+u − Φ0 on )Ω, (170)
solves the BDIE systems M11, M12, M21 and M22.

(ii) Vise versa, if a triplet (u,  , ') ∈ X solves BDIE system M11 or M12 or M21 or M22, then the solution is unique, the
function u solves BVP (149)-(151), and relations in (170) hold.

Proof. Let u ∈ H1(Ω) be a solution to BVP (149)-(151). Then due to Theorem 15 it is unique. Set  ∶= T +a (f̃ , u)−Ψ0 , ' ∶=

+u − Φ0. Evidently,  ∈ H̃− 1

2 ()ΩD) and ' ∈ H̃
1
2 ()ΩN ). Then from Theorem 3 and relations (152)-(154) follows that the
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triplet (u,  , ') satisfies the BDIE systems M11, M12, M21 and M22 with the right-hand sides (155), (159), (163) and (168)
respectively, which completes the proof of item (i).
We give below proofs of item (ii) for the four BDIE systems M11, M12, M21 and M22 one by one.

BDIE system M11.
Let a triplet (u,  , ') ∈ H1(Ω) ×X solves BDIE system (152)-(154). Let us consider the trace of Eq.(152) on )ΩD, taking into
account the jump properties (see, Theorem 1), and subtract Eq.(153) to obtain


+u = '0 on )ΩD, (171)

i.e., u satisfies the Dirichlet condition (150). Taking the co-normal derivative T +a of Eq. (152) on )ΩN , again with account of
the jump properties, and subtracting Eq. (154), we obtain

T +a (f̃ , u) =  0, on )ΩN , (172)

i.e. u satisfies the Neumann condition (151). Taking into account that ' = 0, Φ0 = '0 on )ΩD and  = 0, Ψ0 =  0 on )ΩN ,
equations (171) and (172) imply that the first equation of (170) is satisfied on )ΩN and the second equation of (170) is satisfied
on )ΩD.
Eq.(152) and Lemma 1 with Ψ =  + Ψ0, Φ = ' + Φ0 imply that u is a solution to (52) and due to (53)

rΩVbΨ∗ − rΩWbΦ∗ = 0, in Ω,

where Ψ∗ = Ψ0 + − T +a (f̃ , u) and Φ
∗ = Φ0 +'− 
+u. Since first equation in (170) on )ΩN and the second equation in (170)

on )ΩD, already proved, we have Ψ∗ ∈ H̃
− 1
2 ()ΩD), Φ∗ ∈ H̃

1
2 ()ΩN ). Then Lemma 2 (iii) with S1 = )ΩD, S2 = )ΩN , implies

Ψ = Φ = 0, which completes the the proof of conditions (170).

BDIE system M12.
Let the triplet (u,  , ') ∈ X solve BDIE system (157)-(158). Let us consider the trace of equation (157) on )Ω, taking into
account the jump properties, and subtract it from (158) to obtain,


+u = Φ0 + ' on )Ω. (173)

This means that the second equation in (170) holds. Since ' = 0, Φ0 = '0 on )ΩD we see that the Dirichlet condition (150) is
satisfied.
Equation (157) and Lemma 1 with Ψ =  + Ψ0, Φ = ' + Φ0 imply that u is a solution to Eq. (52) and

rΩVb(Ψ0 +  − T +a (f̃ , u)) − rΩWb(Φ0 + ' − 
+u) = 0 in Ω. (174)

Due to (173), the second term in (174) vanishes, and by Lemma 2 (i) we obtain

Ψ0 +  − T +a (f̃ , u) = 0 on )Ω, (175)

i.e., the first equation in (170) is satisfied as well. Since  = 0, Ψ0 =  0 on )ΩN equation (175) implies that u satisfies the
Neumann boundary condition (151).

BDIE system M21.
Let now a triplet (u,  , ') ∈ X solve BDIE system (161)-(162). Taking the co-normal derivative of Eq.(161) on )Ω and
subtracting it from equation (162), we obtain

 + Ψ0 − T +a (f̃ , u) = 0 on )Ω. (176)

which proves the first equation in (170). Since  = 0 on )ΩN and Ψ0 =  0 on )ΩN , we see that u satisfies the Neumann
condition (151). Equation (161) and Lemma (1) with Ψ =  + Ψ0, Φ = ' + Φ0 imply that u is a solution to equation (52) and

rΩVb(Ψ0 +  − T +a (f̃ , u)) − rΩWb(Φ0 + ' − 
+u) = 0 in Ω. (177)

Due to Eq.(176) the first term vanishes in (177), and by Lemma 2 (ii) we obtain,

Φ0 + ' − 
+u = 0 on )Ω,

which means the second condition in (170) holds as well. Taking into account ' = 0 on )ΩD andΦ0 = ' on )ΩD , we conclude
that u satisfies the Dirichlet condition (150).
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BDIE system M22.
Let now a triplet (u,  , ') ∈ X solve BDIE system (165)-(167). Taking the co-normal derivative of Eq. (170) on )ΩD and
subtracting it from Eq. (166), we obtain

 = T +a (f̃ , u) − Ψ0 on )ΩD. (178)
Further, take the trace of Eq. (165) on )ΩN and subtract it from Eq. (167). We get

' = 
+u − Φ0 on )ΩN . (179)

Equations (178) and (179) imply that the first equation (170) is satisfied on )ΩD and the second equation in (170) is satisfied on
)ΩN . Eq. (165) and Lemma 1 with Ψ =  + Ψ0, Φ = ' + Φ0 imply that u is a solution to Eq. (52) and rΩVbΨ∗ − rΩWbΨ∗ =
0 in Ω, where Ψ∗ = Ψ0 +  − T +a (f̃ , u) and Φ

∗ = Φ0 + ' − 
+u. Due to (170) and (179), we have Ψ∗ ∈ H̃− 1
2 ()ΩN ),Φ∗ ∈

H̃
1
2 ()ΩD). Lemma 2 (iii) with S1 = )ΩN and S2 = )ΩD implies Ψ∗ = Φ∗ = 0 which completes the proof of conditions (170)

on the whole boundary )Ω. Taking into account that ' = 0 on )ΩD and Φ0 = '0 on )ΩD, and  = 0 on )ΩN and Ψ0 =  0 on
)ΩN , Eq. (170) imply the boundary conditions (150) and (151).
Unique solvability of the BDIE systems M11, M12, M12 and M22 then follows from the already proved relations (170) and

the unique solvability of BVP (149)-(151) stated in item (i).

The mapping properties of operators in (156), (160), (164) and (169) described in Appendix A and Theorem 17 imply the
following statement.

Corollary 2. The following operators are continuous and injective

11 ∶ X → Y 11, (180)
12 ∶ X → Y 12, (181)
21 ∶ X → Y 21, (182)
22 ∶ X → Y 22. (183)

Nowwe are in the position to analyse the invertibility of Nowwe are in the position to analyse the invertibility of the operators
11, 12, 21and22.

Theorem 18. Operators (180)-(183) are continuously invertible.

Proof. To prove the invertibility of operator (180), let us consider BDIE system M11 with an arbitrary right-hand side 11
∗ =

{11
∗1 ,

11
∗2 ,

11
∗3}

⊤ ∈ X. Taking S1 = )ΩN , S2 = )ΩD and

F = 11
∗1 , Ψ = r

)ΩN
T +a 

11
∗1 − 11

∗3 , Φ = r
)ΩD

+11

∗1 − 11
∗2

in5 Lemma 5.13, presented as Lemma 6 in the Appendix, we obtain that 11
∗ can be represented as

11
∗1 = b f̃∗ + VbΨ∗ −WbΦ∗ in Ω,

11
∗2 = r)ΩD

[


+11
∗1 − Φ∗

]

,

11
∗3 = r)ΩN

[

T +a 
11
∗1 − Ψ∗

]

,

where the triple
(f̃∗,Ψ∗,Φ∗)⊤ = )ΩN ,)ΩD 

11
∗ ∈ H̃−1(Ω) ×H− 1

2 ()Ω) ×H
1
2 ()Ω) (184)

is unique and the operator
)ΩN ,)ΩD ∶ X → H̃−1(Ω) ×H− 1

2 ()Ω) ×H
1
2 ()Ω) (185)

is linear and continuous.
Applying Theorem 17 with

f = f̃∗, Ψ0 = Ψ∗, Φ0 = Φ∗,  0 = r)ΩNΨ0, '0 = r)ΩDΦ0, (186)

we obtain that the system M11 is uniquely solvable and its solution is

1 = (ADN )−1(f̃∗, r)ΩDΦ∗, r)ΩNΨ∗)
⊤, 2 = T +a 1 − Ψ∗, 3 = 
+1 − Φ∗ (187)
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while r
)ΩN

2 = 0, r)ΩD3 = 0. Here (ADN )−1 is the continuous inverse operator to the left-hand side operator of the mixed BVP

(149)-(151), ADN ∶ H1(Ω)→ H̃−1(Ω) ×H
1
2 ()DΩ) ×H

− 1
2 ()NΩ), cf.5 Corollary 5.16. Representation (184), and continuity of

operator (185) complete the proof for11.
To prove invertibility of operator (183), we apply similar arguments. Let us consider the BDIE system M22 with an arbitrary

right-hand side 22
∗ = {22

∗1 ,
22
∗2 ,

22
∗3}

⊤ ∈ X. Taking now S1 = )ΩD, S2 = )ΩN ,

F = 22
∗1 , Ψ = r

)ΩD
T +a 

22
∗1 − 22

∗2 , Φ = r
)ΩN

+22

∗1 − 22
∗3

in5 Lemma 5.13, i.e., Lemma 6 in the Appendix, we obtain that 22
∗ can be represented as

22
∗1 = b f̃∗ + VbΨ∗ −WbΦ∗ in Ω,

22
∗2 = r)ΩD

[

T +a 22
∗1 − Ψ∗

]

,

22
∗3 = r)ΩN

[


+22
∗1 − Φ∗

]

,

where the triple
(f̃∗,Ψ∗,Φ∗)⊤ = )ΩD ,)ΩN 22

∗ ∈ H̃−1(Ω) ×H− 1
2 ()Ω) ×H

1
2 ()Ω) (188)

is unique and the operator
)ΩN ,)ΩD ∶ X → H̃−1(Ω) ×H− 1

2 ()Ω) ×H
1
2 ()Ω) (189)

is linear and continuous.
Applying now Theorem 17 with the same substitutions (186), we obtain that the system M22 is uniquely solvable and its

solution is given by (187). Representation (188), and continuity of operator (189) complete the proof for22.
To prove invertibility of operator (181), let us consider the BDIE system M12 with an arbitrary right-hand side 12

∗ =
{12

∗1 ,
12
∗2}

⊤ ∈ H1(Ω) ×H
1
2 ()Ω). Taking F = 12

∗1 , Φ = 
+12
∗1 − 12

∗2 on )Ω in Corollary 4 in the Appendix, we obtain the
representation

12
∗1 = b f̃∗ + VbΨ∗ −WbΦ∗ in Ω,

12
∗2 = 


+12
∗1 − Φ∗ on )Ω,

where the triple
(f∗,Ψ∗,Φ∗)⊤ = ̃Φ∗ ∗ ∈ H̃−1(Ω) ×H− 1

2 ()Ω) ×H
1
2 ()Ω) (190)

is unique and the operator
̃Φ∗ ∶ H̃−1(Ω) ×H

1
2 ()Ω)→ H̃−1(Ω) ×H− 1

2 ()Ω) ×H
1
2 ()Ω) (191)

is linear and continuous.
Applying Theorem 17 with substitutions (186), we obtain that the system M12 is uniquely solvable and its solution is given

by (187). Representation (190), and continuity of operator (191) complete the proof for M12.
Finally to prove invertibility of operator (182), let us consider the BDIE system M21 with an arbitrary right-hand side 21

∗ =
{21

∗1 ,
21
∗2}

⊤ ∈ H1(Ω) ×H− 1
2 ()Ω). Taking F = 21

∗1 , Ψ = T
+
a 

21
∗1 − 21

∗2 on )Ω in Corollary 3 in the Appendix, we obtain that

21
∗1 = b f̃∗ + VbΨ∗ −WbΦ∗ in Ω,

21
∗2 = T +a 

21
∗1 − Ψ∗ on )Ω.

where the triple
(f∗,Ψ∗,Φ∗)⊤ = ̃Ψ∗ ∗ ∈ H̃−1(Ω) ×H− 1

2 ()Ω) ×H
1
2 ()Ω) (192)

is unique and the operator
̃Ψ∗ ∶ H1(Ω) ×H− 1

2 ()Ω)→ H̃−1(Ω) ×H− 1
2 ()Ω) ×H

1
2 ()Ω) (193)

is linear and continuous. Applying Theorem 17 with substitutions (186), we obtain that the system M21 is uniquely solvable
and its solution is given by (187). Representation (192), and continuity of operator (193) complete the proof for M21.
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APPENDIX

A MAPPING AND JUMP PROPERTIES OF THE VOLUME AND SURFACE POTENTIALS

The mapping properties of the parametrix-based volume and surface potentials formulated in Appendix A are proved or
immediately follow from5,11,12 (see also4).



28 T. G. Ayele

Theorem 19. Let Ω be a bounded open three-dimensional region of ℝ3 with a simply connected, closed, infinitely smooth
boundary )Ω. The operators

b ∶ H̃s(Ω)→ Hs+2(Ω), s ∈ ℝ (A1)

∶ Hs(Ω)→ Hs+2(Ω), s > −1
2
, (A2)

∶ Hs(Ω)→ Hs+2,0(Ω;La), s ≥ 0, (A3)
b,b

∗ ∶ H̃
s(Ω)→ Hs+1(Ω), s ∈ ℝ, (A4)

∶ Hs(Ω)→ Hs+1(Ω), s > −1
2
, (A5)

∶ Hs(Ω)→ Hs+1,0(Ω;La), s ≥ 1, (A6)


+b ∶ H̃s(Ω)→ Hs+ 3
2 ()Ω), s > −3

2
, (A7)

∶ Hs(Ω)→ Hs+ 3
2 ()Ω), s > −1

2
, (A8)


+b ∶ H̃s(Ω)→ Hs+ 1
2 ()Ω), s > −1

2
, (A9)

∶ Hs(Ω)→ Hs+ 1
2 ()Ω), s > −1

2
, (A10)

T +a b ∶ H̃
s(Ω)→ Hs+ 1

2 ()Ω), s > −1
2
, (A11)

∶ Hs(Ω)→ Hs+ 1
2 ()Ω), s > −1

2
, (A12)

T +a b ∶ H̃s(Ω)→ Hs− 1
2 ()Ω), s > 1

2
, (A13)

∶ Hs(Ω)→ Hs− 1
2 ()Ω), s > 1

2
(A14)

are continuous and the operators

b ∶ Hs(Ω)→ Hs(Ω), s > −1
2
, (A15)

∶ Hs(Ω)→ Hs,0(Ω;A), s > 1, (A16)


+b ∶ Hs(Ω)→ Hs− 1
2 ()Ω), s > −1

2
, (A17)

T +a b ∶ Hs(Ω)→ Hs− 3
2 ()Ω), s > 1

2
(A18)

are compact for any non-empty, open sub-manifold S1 of )Ω with an infinitely smooth boundary.

Proof. For a = b, the mapping properties are stated and proved in Theorem 3.8 in5 and Corollary B.3 in4. The case a ≠ b then
follows by taking into account the relation T +a =

a
b
T +b , for (A11)-(A14) and (A18).

Theorem 20. The following operators are continuous

Vb ∶ Hs()Ω)→ Hs+ 3
2 (Ω), s ∈ ℝ, (A19)

Wb ∶ Hs()Ω)→ Hs+ 1
2 (Ω), s ∈ ℝ, (A20)

Vb ∶ Hs()Ω)→ Hs+ 3
2
,0(Ω, A), s ≥ −1

2
, (A21)

Wb ∶ Hs()Ω)→ Hs+ 1
2
,0(Ω, A), s ≥ 1

2
. (A22)

Theorem 21. The operators

b ∶ Hs(Ω)→ Hs(Ω), s ≥ 1 (A23)

̂b ∶ Hs(Ω)→ Hs,− 1
2 (Ω;B), s > −1

2
(A24)

are continuous.

Proof. The proof follows from Theorems 19 and 20.
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Theorem 22. Let s ∈ ℝ. The following pseudodifferential operators are continuous

b ∶ Hs()Ω)→ Hs+1()Ω)
b ∶ Hs()Ω)→ Hs+1()Ω)
 ′

ab ∶ H
s()Ω)→ Hs+1()Ω)

±ab ∶ H
s()Ω)→ Hs−1()Ω).

Due to the Rellich compact embedding theorem, Theorem 22 implies the following assertion.

Theorem 23. Let s ∈ ℝ. Let S1 and S2 with )S1, )S2 ∈ C∞ be nonempty open submanifolds of )Ω. The operators

r
S2
b ∶ H̃s()Ω)→ Hs()Ω)

r
S2
b ∶ H̃s()Ω)→ Hs()Ω)

r
S2
 ′

ab ∶ H̃
s()Ω)→ Hs()Ω)

are compact.

Theorems 21, 22, 1, 23 and the Rellich embedding theorem imply the following assertion.

Theorem 24. The operator
b ∶ H̃s−1()Ω)→ Hs()Ω)

is continuously invertible for all s ∈ ℝ.

B REPRESENTATION LEMMAS

To prove invertibility of the BDIE operators we need the following representation statements.

Lemma 6 (5, Lemma 5.13). Let )Ω = S̄1∪S̄2, where S1 and S2 are nonintersecting simply connected nonempty sub-manifolds
of )Ω with infinitely smooth boundaries. For any triplet

∗ = (F ,Ψ,Φ)⊤ ∈ H1(Ω) ×H− 1
2 (S1) ×H

1
2 (S2)

there exists a unique triplet
(f∗,Ψ∗,Φ∗)⊤ = ̃S1,S2 ∗ ∈ H̃

−1(Ω) ×H− 1
2 ()Ω) ×H

1
2 ()Ω)

such that

b f∗ + VbΨ∗ −WbΦ∗ = F in Ω,
r
S1
Ψ∗ = Ψ ,

r
S2
Φ∗ = Φ .

Moreover, the operator

̃S1,S2 ∶ H̃
−1(Ω) ×H− 1

2 (S1) ×H
1
2 (S2)→ H1(Ω) ×H− 1

2 ()Ω) ×H
1
2 ()Ω)

is linear and continuous.

The cases when S1 = ∅ or S2 = ∅ need to be considered separately. The following assertion is3 Lemma 19 generalized to a
wider space.

Lemma 7. For any function Φ∗ ∈ H
1(Ω) there exists a unique couple (f̃∗,Φ∗) = ΦΦ∗ ∈ H̃

−1(Ω) ×H
1
2 ()Ω) such that

Φ∗ = bf̃∗ −WbΦ∗ in Ω, (B25)
T +a Φ∗ = T

+
a

(

f̃∗ − E̊∇ ⋅ (Φ∗∇b),Φ∗
)

on )Ω. (B26)

Moreover, (f̃∗,Φ∗) = Φ∗Φ∗ and Φ∗ ∶ H
1(Ω)→ H̃−1(Ω) ×H

1
2 ()Ω) is a linear and bounded operator given by

f̃∗ = Δ̌(bΦ∗) + 

∗(T +b Φ∗ − (


+Φ∗))nb) (B27)

Φ∗ =
1
b

(

− 1
2
I +Δ

)−1

+
{

− bΦ∗ + Δ
[

Δ̌(bΦ∗) + 

∗(T +b Φ∗ − (


+Φ∗))nb
)]}

(B28)
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where Δ̌(bΦ∗) = ∇ ⋅ Ě∇(bΦ∗).

Proof. Let us first assume that there exist (f̃∗,Φ∗) ∈ H̃−1(Ω) ×H
1
2 ()Ω) satisfying equation (B27) and find their expression

in terms of Φ∗ . Let us rewrite (B27) as

Φ∗ − bf̃∗ = −WbΦ∗ in Ω. (B29)

Multiplying (B29) by b and applying Laplacian to it, we obtain,

Δ(bΦ∗ − Δf̃∗) = Δ(bΦ∗) − f̃∗ = −Δ(WΔ(bΦ∗)) = 0 in Ω, (B30)

which means

Δ(bΦ∗) = rΩf̃∗ in Ω, (B31)

and bΦ∗ − Δf̃∗ ∈ H1,0(Ω,Δ) and hence Φ∗ − bf̃∗ ∈ H1,0(Ω, B) = H1,0(Ω, A). The latter imply that the canonical co-
normal derivatives T +b (Φ∗ − bf̃∗) and T +a (Φ∗ − bf̃∗) are well defined and can be also written in terms of their generalized
co-normal derivatives

b
a
T +a (Φ∗ − bf̃∗) = T +b (Φ∗ − bf̃∗) = T +b (B̃(Φ∗ − bf̃∗),Φ∗ − bf̃∗)

= T +b (E̊∇ ⋅ (b∇(Φ∗ − bf̃∗)),Φ∗ − bf̃∗)
= T +b (E̊Δ(bΦ∗ − Δf̃∗) − E̊∇ ⋅ ((Φ∗ − bf̃∗)∇b),Φ∗ − bf̃∗)
= T +b (−E̊∇ ⋅ (Φ∗∇b) − E̊

b
∗f̃∗,Φ∗ − bf̃∗)

where (59) and (B31) were taken into account. Hence,

T +a (Φ∗ − bf̃∗) = T +a (−E̊∇ ⋅ (Φ∗∇b) − E̊
b
∗f̃∗, Φ∗ − bf̃∗), (B32)

and using (8) Eq.(B32) can be written as

T +a (Φ∗ − bf̃∗) = T +a (f̃∗ − E̊∇ ⋅ (Φ∗∇b),Φ∗) − T
+
a (f̃∗ + E̊

b
∗f̃∗,bf̃∗). (B33)

Indeed,
T +a (Φ∗ − bf̃∗) = T +a (−E̊∇ ⋅ (Φ∗∇b) − E̊

b
∗f̃∗, Φ∗ − bf̃∗)

= T +a (f̃∗ − E̊∇ ⋅ (Φ∗∇b) − f̃∗ − E̊
b
∗f̃∗, Φ∗ − bf̃∗)

= T +a (f̃∗ − E̊∇ ⋅ (Φ∗∇b),Φ∗) − T
+
a (f̃∗ + E̊

b
∗f̃∗,bf̃∗)

which is (B33).
Applying the co-normal derivative operator T +a to both sides of equation (B29) and substituting their (B33), we obtain,

T +a (f̃∗ − E̊∇ ⋅ (Φ∗∇b), Φ∗) − T
+
a (f̃∗ + E̊

b
∗f̃∗,bf̃∗) = −

+
abΦ∗, on )Ω, (B34)

and

T +a Φ∗ = T
+
a (f̃∗,Φ∗) = T

+
a

(

f̃∗ − E̊∇ ⋅ (Φ∗∇b),Φ∗
)

on )Ω, (B35)

which is (B26). Due to (B31), we can represent

f̃∗ = Δ̌(bΦ∗) + f̃1∗ = ∇ ⋅ E̊∇(bΦ∗) − 

∗Ψ∗∗ (B36)

where f̃1∗ ∈ H−1
)Ω defined in (2) and hence, due to e.g.15 Theorem 2.10 can be in turn represented as f̃1∗ = −
∗Ψ∗∗, with some

Ψ∗∗ ∈ H
− 1
2 ()Ω). Then (B31) is satisfied and hence (B35) reduces to

Ψ∗∗ = −
b
a
T +a Φ∗ − (


+Φ∗))nb = T
+
b Φ∗ − (


+Φ∗))nb, (B37)

and (B36) to (B27).
Now Eq. (B29) can be written in the form

WΔ(bΦ∗) = Δ in Ω, (B38)

where

Δ ∶= −bΦ∗ + Δf̃∗ = −bΦ∗ + Δ
[

Δ̌(bΦ∗) + 

∗(T +b Φ∗ − (


+Φ∗))nb
)]

(B39)
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is harmonic function in Ω due to (B30). The trace of equation (B38) gives

−1
2
bΦ∗ +Δ(bΦ∗) = 
+Δ on )Ω. (B40)

Since the operator − 1
2
I +Δ ∶ H

1
2 ()Ω)→ H− 1

2 ()Ω) is an isomorphism (see e.g.19 Ch.XI, Part B, §2, Remark 8 this implies

Φ∗ =
1
b

(

− 1
2
I +Δ

)−1

+Δ

= 1
b

(

− 1
2
I +Δ

)−1

+
{

− bΦ∗ + Δ
[

Δ̌(bΦ∗) + 

∗(T +b Φ∗ − (


+Φ∗))nb
)]}

,

which is Eq. (B27). Evidently f̃∗ and Φ∗ chosen in this manner satisfy Eqs. (B25) and (B26).
Considering a couple (F ,Ψ)⊤ ∈ H1(Ω) ×H− 1

2 ()Ω) and employing Lemma 7 for Φ∗ = F − VbΨ ∈ H1(Ω), we arrive at the
following statement.

Corollary 3. For any couple
(F ,Ψ)⊤ = ∗ ∈ H1(Ω) ×H− 1

2 ()Ω)
there exists a unique triplet

(f̃∗,Ψ∗,Φ∗)⊤ = ̃Ψ∗ ∗ ∈ H̃−1(Ω) ×H− 1
2 ()Ω) ×H

1
2 ()Ω)

such that

b f̃∗ + VbΨ∗ −WbΦ∗ = F in Ω, Ψ∗ = Ψ on )Ω.

Moreover, the operator ̃Ψ∗ ∶ H1(Ω) ×H− 1
2 ()Ω)→ H̃−1(Ω) ×H− 1

2 ()Ω) ×H
1
2 ()Ω) is linear and continuous.

Let us first present a generalized version of Lemma 5.5 in4 to a wider space.

Lemma 8. For any function Ψ∗ ∈ H1(Ω), there exists a couple (f̃∗,Ψ∗) = Ψ∗Ψ∗ ∈ H̃
−1(Ω) ×H− 1

2 ()Ω) such that

Ψ∗ = bf̃∗ + VbΨ∗, in Ω, (B41)
T +a Ψ∗ = T

+
a (f̃∗,Ψ∗) = T

+
a

(

f̃∗ − E̊∇ ⋅ (Ψ∗∇b),Ψ∗
)

on )Ω. (B42)

Moreover, (f̃∗,Φ∗) = Ψ∗Ψ∗ and Ψ∗ ∶ H
1(Ω)→ H̃−1(Ω) ×H

1
2 ()Ω) is a linear and bounded operator given by

f̃∗ = Δ̌(bΨ∗) + 

∗(T +b Ψ∗ − (


+Ψ∗))nb) (B43)
Ψ∗ = −1Δ 
+

{

− bΨ∗ + Δ
{

Δ̌(bΨ∗) + 

∗(T +b Ψ∗ − (


+Ψ∗))nb
)}

on )Ω, (B44)

where Δ̌(bΨ∗) = ∇ ⋅ Ě∇(bΨ∗).

Proof. Let us first assume that there exist (f̃∗,Ψ∗) ∈ H̃−1(Ω)×H− 1
2 ()Ω) satisfying Eq. (B41) and find their expression in terms

of Ψ∗ . Let us rewrite (B41) as

Ψ∗ − bf̃∗ = VbΨ∗ in Ω. (B45)

Multiplying (B45) by b and applying Laplacian to it, we obtain,

Δ(bΨ∗ − Δf̃∗) = Δ(bΨ∗) − f̃∗ = Δ(VΔΨ∗) = 0 in Ω, (B46)

which means

Δ(bΨ∗) = rΩf̃∗ in Ω, (B47)

and bΨ∗ − Δf̃∗ ∈ H1,0(Ω,Δ) and hence Ψ∗ − bf̃∗ ∈ H1,0(Ω, B) = H1,0(Ω, A). The latter imply that the canonical co-
normal derivatives T +b (Ψ∗ − bf̃∗) and T +a (Ψ∗ − bf̃∗) are well defined and can be also written in terms of their generalized
co-normal derivatives

b
a
T +a (Ψ∗ − bf̃∗) = T +b (Ψ∗ − bf̃∗) = T +b (B̃(Ψ∗ − bf̃∗),Ψ∗ − bf̃∗)

= T +b (E̊∇ ⋅ (b∇(Ψ∗ − bf̃∗)),Ψ∗ − bf̃∗)
= T +b (E̊Δ(bΨ∗ − Δf̃∗) − E̊∇ ⋅ ((Ψ∗ − bf̃∗)∇b),Ψ∗ − bf̃∗)
= T +b (−E̊∇ ⋅ (Ψ∗∇b) − E̊

b
∗f̃∗,Ψ∗ − bf̃∗)
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where (59) and (B47) were taken into account. Hence,

T +a (Ψ∗ − bf̃∗) = T +a (−E̊∇ ⋅ (Ψ∗∇b) − E̊
b
∗f̃∗, Ψ∗ − bf̃∗), (B48)

and using (8) Eq.(B48) can be written as

T +a (Ψ∗ − bf̃∗) = T +a (f̃∗ − E̊∇ ⋅ (Ψ∗∇b),Ψ∗) − T
+
a (f̃∗ + E̊

b
∗f̃∗,bf̃∗). (B49)

Indeed,
T +a (Ψ∗ − bf̃∗) = T +a (−E̊∇ ⋅ (Ψ∗∇b) − E̊

b
∗f̃∗, Ψ∗ − bf̃∗)

= T +a (f̃∗ − E̊∇ ⋅ (Ψ∗∇b) − f̃∗ − E̊
b
∗f̃∗, Ψ∗ − bf̃∗)

= T +a (f̃∗ − E̊∇ ⋅ (Ψ∗∇b),Ψ∗) − T
+
a (f̃∗ + E̊

b
∗f̃∗,bf̃∗)

which is (B49).
Applying the co-normal derivative operator T +a to both sides of equation (B45) and substituting their (B49), we obtain,

T +a (f̃∗ − E̊∇ ⋅ (Ψ∗∇b), Ψ∗) − T
+
a (f̃∗ + E̊

b
∗f̃∗,bf̃∗) =

a
2b
Ψ∗ + ′

abΨ∗, on )Ω, (B50)

and

T +a Ψ∗ = T
+
a (f̃∗,Ψ∗) = T

+
a

(

f̃∗ − E̊∇ ⋅ (Ψ∗∇b),Ψ∗
)

on )Ω, (B51)

which is (B42). Due to (B47), we can represent

f̃∗ = Δ̌(bΨ∗) + f̃1∗ = ∇ ⋅ E̊∇(bΨ∗) − 

∗Ψ∗∗ (B52)

where f̃1∗ ∈ H−1
)Ω defined in (2) and hence, due to e.g.15 Theorem 2.10 can be in turn represented as f̃1∗ = −
∗Ψ∗∗, with some

Ψ∗∗ ∈ H
− 1
2 ()Ω). Then (B47) is satisfied and hence due to Lemma 3, Eq. (B51) reduces to

Ψ∗∗ = −
b
a
T +a Ψ∗ − (


+Ψ∗))nb = T
+
b Ψ∗ − (


+Ψ∗))nb (B53)

and (B52) to (B41). Now Eq. (B45) can be written in the form

VΔΨ∗ = Δ in Ω, (B54)

where

Δ ∶= −bΨ∗ + Δf̃∗ = −bΨ∗ + Δ
[

Δ̌(bΨ∗) + 

∗(T +b Ψ∗ − (


+Ψ∗))nb
)]

(B55)

is harmonic function in Ω due to (B46). The trace of equation (B54) gives

ΔΨ∗ = 
+Δ on )Ω. (B56)

Since Δ is an isomorphism inH− 1
2 ()Ω),

Ψ∗ = −1Δ 
+Δ

= −1Δ 
+
{

− bΨ∗ + Δ
{

Δ̌(bΨ∗) + 

∗(T +b Ψ∗ − (


+Ψ∗))nb
)}

on )Ω,

which is (B44). Now we have to prove thatΨ∗ given by (B44) withΔ in (B55) and f̃∗ by (B43) do satisfy (B41). The potential
VΔΨ∗ with Ψ∗ given by (B44) is a harmonic function, and one can check thatΔ given by (B55) is also harmonic. Since (B56)
implies that they coincide on the boundary, the two harmonic functions should coincide also in the domain, i.e. (B54) holds
true, which implies (B41).

Considering a couple (F ,Φ)⊤ ∈ H1(Ω) ×H
1
2 ()Ω) and employing Lemma 8 for Ψ∗ = F +WbΦ ∈ H1(Ω), we arrive at the

following statement.

Corollary 4. For any couple
(F ,Φ)⊤ = ∗ ∈ H1(Ω) ×H

1
2 ()Ω)

there exists a triple
(f̃∗,Ψ∗,Φ∗)⊤ = ̃Φ∗ ∗ ∈ H̃−1(Ω) ×H− 1

2 ()Ω) ×H
1
2 ()Ω)

such that

b f̃∗ + VbΨ∗ −WbΦ∗ = F in Ω+, Φ∗ = Φ on )Ω.
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Moreover, the operator ̃Φ∗ ∶ H1(Ω) ×H
1
2 ()Ω)→ H̃−1(Ω) ×H− 1

2 ()Ω) ×H
1
2 ()Ω) is linear and continuous.
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