, 484-492. doi: 10.1111/j.1461-0248.2011.01610.x
2.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp,
F. (2012). Impacts of climate change on the future of biodiversity.Ecol. Lett. , 15, 365-377. doi: 10.1111/j.1461-0248.2011.01736.x
3.Booth, T.H. (2017). Assessing species climatic requirements beyond the
realized niche: some lessons mainly from tree species distribution
modelling. Climatic Change , 145, 259-271. doi:
10.1007/s10584-017-2107-9
4.Booth, T.H. (2018). Why understanding the pioneering and continuing
contributions of BIOCLIM to species distribution modelling is important.Austral Ecol , 43, 852-860. doi: 10.1111/aec.12628
5.Bugmann, H. (2001). A review of forest gap models. Climatic
Change , 51, 259-305. doi: 10.1023/A:1012525626267
6.Burrows, M.T., Schoeman, D.S., Richardson, A.J., Molinos, J.G.,
Hoffmann, A., Buckley, L.B. et al. (2014). Geographical limits to
species-range shifts are suggested by climate velocity. Nature ,
507, 492-+. doi: 10.1038/nature12976
7.Carroll, C., Lawler, J.J., Roberts, D.R. & Hamann, A. (2015). Biotic
and climatic velocity identify contrasting areas of vulnerability to
climate change. Plos One , 10, e0140486. doi:
10.1371/journal.pone.0140486
8.Chia, E.L., Fobissie, K. & Kanninen, M. (2016). Exploring
Opportunities for Promoting Synergies between Climate Change Adaptation
and Mitigation in Forest Carbon Initiatives. Forests , 7. doi:
10.3390/f7010024
9.Duguma, L.A., Wambugu, S.W., Minang, P.A. & van Noordwijk, M. (2014).
A systematic analysis of enabling conditions for synergy between climate
change mitigation and adaptation measures in developing countries.Environ Sci Policy , 42, 138-148. doi:
10.1016/j.envsci.2014.06.003
10.Dyderski, M.K., Paz, S., Frelich, L.E. & Jagodzinski, A.M. (2018).
How much does climate change threaten European forest tree species
distributions? Global Change Biology , 24, 1150-1163. doi:
10.1111/gcb.13925
11.Ebersbach, J., Muellner-Riehl, A.N., Michalak, I., Tkach, N.,
Hoffmann, M.H., Roser, M. et al. (2017). In and out of the
Qinghai-Tibet Plateau: divergence time estimation and historical
biogeography of the large arctic-alpine genus Saxifraga L. J
Biogeogr , 44, 900-910. doi: 10.1111/jbi.12899
12.Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S.,
Guisan, A. et al. (2006). Novel methods improve prediction of
species’ distribution from occurrence data. Ecography , 29,
129-151. doi: 10.1111/j.2006.0906-7590.04596.x
13.Ewers, R.M. & Didham, R.K. (2007). The effect of fragment shape and
species’ sensitivity to habitat edges on animal population size.Conservation Biology , 21, 926-936. doi:
10.1111/j.1523-1739.2007.00720.x
14.Fang, J., Wang, Z. & Tang, Z. (2011). Atlas of woody plants in
China: distribution and climate. Springer Science & Business Media,
Netherlands.
15.Fielding, A.H. & Bell, J.F. (1997). A review of methods for the
assessment of prediction errors in conservation presence/absence models.Environmental Conservation , 24, 38-49. doi:
10.1017/S0376892997000088
16.Guisan, A. & Thuiller, W. (2005). Predicting species distribution:
offering more than simple habitat models. Ecol. Lett. , 8,
993-1009. doi: 10.1111/j.1461-0248.2005.00792.x
17.Gutierrez, A.G., Snell, R.S. & Bugmann, H. (2016). Using a dynamic
forest model to predict tree species distributions. Global Ecology
and Biogeography , 25, 347-358. doi: 10.1111/geb.12421
18.Heikkinen, R.K., Luoto, M., Araujo, M.B., Virkkala, R., Thuiller, W.
& Sykes, M.T. (2006). Methods and uncertainties in bioclimatic envelope
modelling under climate change. Progress in Physical Geography ,
30, 751-777. doi: 10.1177/0309133306071957
19.Hickler, T., Vohland, K., Feehan, J., Miller, P.A., Smith, B., Costa,
L. et al. (2012). Projecting the future distribution of European
potential natural vegetation zones with a generalized, tree
species-based dynamic vegetation model. Global Ecology and
Biogeography , 21, 50-63. doi: 10.1111/j.1466-8238.2010.00613.x
20.Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A.
(2005). Very high resolution interpolated climate surfaces for global
land areas. International Journal of Climatology , 25, 1965-1978.
doi: 10.1002/joc.1276
21.Holdridge, L.R. (1947). Determination of world plant formations from
simple climatic data. Science , 105, 367-368. doi:
10.1126/science.105.2727.367
22.Hou, X. (2001). Vegetation Atlas of China.Chinese Academy of Science,
The Editorial Board of VegetationMap of China. Scientific Press,
Beijing.
23.Huang, J.H., Li, G.Q., Li, J., Zhang, X.Q., Yan, M.J. & Du, S.
(2018). Projecting the Range Shifts in Climatically Suitable Habitat for
Chinese Sea Buckthorn under Climate Change Scenarios. Forests , 9.
doi: 10.3390/F9010009
24.IPCC (2013). Climate Change 2013: The Physical Science Basis.