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Abstract 18 

We propose a machine learning-based approach to estimate the flood defense standard 19 

(FDS) for ungauged sites. We adopted random forest regression (RFR) to characterize 20 

the relationship between the observed FDS and ten explanatory factors contained in 21 

publicly available datasets. We compared RFR with multiple linear regression (MLR) 22 

and demonstrated the proposed approach in the conterminous United States (CONUS) 23 

and England, respectively. The results showed the following: (1) RFR performed better 24 

than MLR, with a Nash–Sutcliffe efficiency (NSE) of 0.82 in the CONUS and 0.73 in 25 

England. A negative NSE when using MLR indicated that the relationship between the 26 

FDS and each explanatory factor did not obey an explicit linear function. (2) River 27 

flood factors had higher importance than physical and socio-economic factors in the 28 

FDS estimation. The proposed approach achieved the highest performance using all 29 

factors for prediction and could not provide satisfactory predictions (NSE < 0.6) using 30 

physical or socio-economic factors individually. (3) We estimated the FDS for all 31 

ungauged sites in the CONUS and England. Approximately 80% and 29% of sites were 32 

identified as high or highest standard (> 100-year return period) in the CONUS and 33 

England, respectively. (4) We incorporated the estimated FDS in large-scale flood 34 

modeling and compared the model results with official flood hazard maps in three case 35 

studies. We identified obvious overestimations in protected areas when flood defenses 36 

were not taken into account; and flood defenses were successfully represented using 37 

the proposed approach.  38 

1 Introduction 39 

Floods are the most frequent type of natural hazards worldwide, and have caused 40 

significant loss of life and severe economic impacts for populations and property during 41 

the past two decades (CRED and UNDRR, 2020). To reduce the negative impact of 42 

floods, numerous types of flood defenses, such as levee systems, have been built to 43 

protect cities, towns, and farms in almost every country (Ubilla et al., 2008; Z. Wang 44 

& Liu, 2019). According to a report by the United States (U.S.) Army Corps of 45 

Engineers (USACE), approximately 11 million people and $1.3 trillion of property 46 

value existed in flood-defended areas in the U.S. as of 2018 (USACE, 2018). The 47 

number and standard of flood defenses continuously improves over time to meet 48 

societal needs and keep pace with rapid urbanization in floodplains (Leonard, 2008; T. 49 

Zhu et al., 2007). Flood defenses have significantly changed the regional flooding 50 
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distribution and also residents’ exposure (Di Baldassarre et al., 2009; Ludy & Kondolf, 51 

2012), and this needs to be considered in flood hazard assessment.  52 

With the increase of computing power and advances in remote sensing techniques, it is 53 

now possible to map flood hazards on a large scale at high resolution (< 100 m) (Ward 54 

et al., 2015). Fine resolution global hydrography datasets, such as MERIT Hydro 55 

(Yamazaki et al., 2019) and HydroBASINS (Bernhard Lehner & Grill, 2013) have been 56 

released; however, information on detailed flood defenses for most rivers in the world 57 

is severely limited (Aerts et al., 2020; Sampson et al., 2015). Existing state-of-the-art 58 

global flood hazard models either assume a simplified high flood defense standard 59 

(FDS) or assume no protection when applied (Aerts et al., 2020; Scussolini et al., 2016; 60 

Ward et al., 2015). This assumption causes the overestimation of flood hazards when 61 

the flooded areas are actually protected by existing flood defenses, and therefore 62 

induces a distorted flood hazard and risk assessment. The first global flood defense 63 

database (called FLOPROS) was built by collecting FDS data worldwide at the sub-64 

country scale (Scussolini et al., 2016). FLOPROS assumes that the FDSs in a vast area 65 

are the same (i.e., most states in the US or all of Australia have the same defense 66 

standard) and ignores the heterogeneity of FDSs between rivers. The coarse resolution 67 

of the FDS data in FLOPROS cannot meet the requirement of large-scale flood hazard 68 

modelling at high resolution.  69 

To accurately represent the effect of flood defenses in large-scale flood modelling, the 70 

modeler requires the location and standard of the flood defenses. In recent decades, 71 

national flood defense inventories, such as the U.S. national levee database (USNLD) 72 

(USACE, 2021), AIMS Spatial Flood Defenses database (UK Environment Agency, 73 

2021), and openDELvE (O’Dell et al., 2021), have been published and adopted for 74 

flood hazard modelling. As these inventories are collected by a variety of agencies for 75 

different purposes, the coverage and consistency of the FDS data remains inadequate 76 

worldwide. Remote sensing techniques provide a low-cost method for the identification 77 

of flood defenses (Choung, 2014; Özer et al., 2019). In several studies, satellite images 78 

and advanced algorithms have been adopted successfully to extract flood defense 79 

locations at the regional to national scale (Maguya et al., 2014; Steinfeld et al., 2013; 80 

Wood et al., 2021). Compared with location data, FDS data are more difficult to obtain. 81 

An example can be found in the USNLD, which records the locations of more than 82 

9,000 levee systems in the U.S.; however, only 20% of them have detailed levee 83 
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parameters relating to the FDS. Recently, LiDAR-based digital terrain data have been 84 

introduced to extract the parameters of hydraulic structures (Sofia et al., 2011), which 85 

is also promising in FDS estimation. For example, Wing et al. (2019) developed an 86 

automated method to identify levee locations and extract the levee crest height from 87 

LiDAR-based digital terrain data and successfully incorporated the extracted crest 88 

height into large-scale flood hazard modelling. This method requires high-quality, high-89 

resolution terrain data, and one sensitive parameter for this method (called the 90 

extraction rate threshold) still needs to be defined based on visual inspection. These 91 

deficiencies make this method difficult to apply in large-scale studies, particularly for 92 

data-sparse areas without high-resolution terrain data.  93 

Because of the spatial resolution and geodetic datum conflicts between flood defense 94 

metadata and terrain data, the FDS in large-scale studies is typically described by the 95 

overtopping annual exceedance probability (overtopping AEP) rather than real 96 

structural parameters, such as the levee crest height. The overtopping AEP defines the 97 

return period of a flood exceeding the designed FDS (i.e., overtopping the levee and 98 

causing flooding in protected areas). This definition can easily be incorporated into 99 

large-scale flood hazard modelling that evaluates the flood hazard based on return 100 

period floods (AEP is the inverse of the return period). For example, the CIMA-UNEP 101 

global flood model does not incorporate flood defenses explicitly but simply identifies 102 

protected areas around large cities (Herold and Rudari, 2013; Rudari and Silvestro, 103 

2015). The simulation is therefore of the undefended state, but any flooding predicted 104 

to occur in the identified protected areas is removed during model post-processing until 105 

the model-driven flood exceeds the overtopping AEP (Aerts et al., 2020). Another 106 

useful strategy is adopted in the Fathom global flood model, which considers the FDS 107 

during model pre-processing. The Fathom strategy links the FDS with the channel 108 

conveyance by determining the bankfull height of channels for different overtopping 109 

AEPs using flood frequency analysis (Sampson et al., 2015; Smith et al., 2015; Wing 110 

et al., 2017). As overtopping AEP data are insufficient, even in some data-rich countries, 111 

the FDS is regressed in both of the above models with respect to social-economic 112 

factors in protected areas. Specifically, the overtopping AEP in the CIMA-UNEP 113 

model is assumed to obey a linear function of the gross domestic product (GDP) value 114 

in urban areas (Herold & Rudari, 2013) and the Fathom model also assumes that the 115 

FDS increases as protected areas become more urbanized (Quinn et al., 2019). Both 116 



manuscript submitted to Water Resources Research 

 

assumptions are derived from empirical data from particular case studies without 117 

comprehensive validation, and therefore induce a distorted flood hazard and risk 118 

assessment. As a result, estimating the FDS for ungauged sites has been highlighted as 119 

a key issue in flood hazard modelling (Bates et al., 2018; Ward et al., 2015) which we 120 

seek to address in this study.  121 

We attempt to estimate the FDS considering three improvements:  122 

a) In previous studies, FDS was mainly estimated considering the social-economic 123 

conditions in protected areas (Herold & Rudari, 2013; Quinn et al., 2019). However, 124 

Wing et al. (2019)  proved that social-economic factors are inappropriate for use in 125 

the FDS estimation by comparing urbanity, wealth, and spending between protected 126 

and unprotected areas in the CONUS. This result is expected because the FDS 127 

should be designed to consider the overall flood hazard, and physical and social-128 

economic conditions (Bašić et al., 2018) which, in theory, cannot be predicted using 129 

any individual factor. In this study, we consider ten factors that cover the river flood 130 

hazard, and physical and social-economic conditions of surrounding areas for 131 

regression. We further evaluate the factor importance that contributes to FDS 132 

estimation.  133 

b) In a real application it is very difficult to derive the extent of protected areas, 134 

particularly for flood defenses without detailed records. This difficulty can typically 135 

be simplified using the average value of an explanatory factor of the entire 136 

catchment/administration unit for model development, and thereby ignoring the 137 

heterogeneity of the FDS at the reach or local level (Scussolini et al., 2016; D. Wang 138 

et al., 2021). In this study, we regress the at-site FDS with respect to the explanatory 139 

factors of surrounding areas by defining an impact width and develop the estimation 140 

model at the grid level. The results of this study reflect the heterogeneity of the FDS 141 

between rivers. 142 

c) FDS estimation in most previous studies was assumed to obey one explicit linear 143 

relationship with specific explanatory factors. This assumption may not always be 144 

appropriate for a large-scale study because the design criteria for flood defenses 145 

may change significantly over a study area as a result of different hydrological and 146 

social-economic conditions. Recently, machine learning models have demonstrated 147 

advantages over ordinary regression models in processing complicated nonlinear 148 
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problems in flood hydrology (Lange & Sippel, 2020; Mosavi et al., 2018; Shen et 149 

al., 2021). In this study, we test a widely used machine learning model, called 150 

random forest regression (RFR) (Breiman, 2001; Tyralis et al., 2019), for the first 151 

time in FDS estimation using publicly available datasets.  152 

The objective of this study is therefore to develop a robust approach for FDS estimation 153 

and incorporate the estimated FDS into large-scale flood hazard modelling. Specifically, 154 

we use an RFR to develop the relationship between the observed FDS (overtopping 155 

AEP) and ten global coverage explanatory factors at grid level in both the CONUS and 156 

England. We compare the proposed RFR with multiple linear regression (MLR) and 157 

validate this approach using a 5-fold cross-validation strategy. We then couple the 158 

estimated FDS with the Fathom global flood model and test flood hazard mapping in 159 

three case studies. We validate the simulated flood hazard maps from the Fathom model 160 

either using or not using the proposed approach against official flood hazard maps from 161 

regional agencies.  162 

2 Study area and data preparation  163 

2.1 Study area and flood defense data 164 

The study area included the CONUS and England, which both have well documented 165 

flood defense data. The flood defense data in the CONUS were obtained from the US 166 

National Levee Database or USNLD. The USNLD is an official repository that is 167 

maintained and updated by the US Army Corps of Engineers. To date, the USNLD has 168 

recorded the location of 9,068 levee systems, approximately 20% of them with detailed 169 

levee attributes (e.g., levee height and overtopping AEP). The flood defense data in 170 

England were collected from the AIMS Spatial Flood Defenses database. This database 171 

includes both natural and man-made flood defenses managed by the UK Environment 172 

Agency or a private manager. In this study, only man-made flood defenses in the AIMS 173 

Spatial Flood Defenses database were selected for analysis. Natural flood defense 174 

structures (e.g., beaches, cliffs, or high land) and tidal defenses were not considered. 175 

The distribution of flood defenses in the CONUS and England is presented in Figure 1 176 

(a) and (b), respectively. Details of how to obtain the flood defense data are given at 177 

the end of the paper. 178 

Figure 1 shows that there are large differences in the distribution of FDS in the CONUS 179 

and England. If only the flood defenses with observed overtopping AEP data are 180 
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considered, the FDS for most sites in the CONUS was larger than the 100-year return 181 

period (overtopping AEP < 0.01), accounting for 78.6% of the total number of levee 182 

sites. However, high or highest-standard defenses (overtopping AEP < 0.01) in England 183 

only accounted for 32.7% of the total sites, and these defenses were mainly located in 184 

London and the East Midlands (downstream of the rivers Nene and Witham). The pie 185 

chart in Figure 1 (c) shows that 44.7% of the sites in USNLD and 12.9% of the sites in 186 

the AIMS Spatial Flood Defenses database had no observed overtopping AEP data.  187 

 188 

Figure 1 Location and standard of flood defenses (a) in the CONUS and (b) England. 189 

Panel (c) shows the proportion of sites in different FDS classes (return period) for the 190 

two territories. 191 
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2.2 Explanatory factors 192 

From a review of existing publications, ten explanatory factors that reflect the 193 

hydrological conditions of river networks and physical-social conditions of the 194 

surrounding land areas were selected for this study. These factors were all derived from 195 

publicly available datasets with global coverage. The data sources of these factors are 196 

presented in Table 1.  197 

Table 1 Explanatory factors used for model development   198 

Aspects N
o 

Factor name 
(Abbreviation) 

Data source Data 
intrinsic 

resolution 

 

 

River 
flood 

factors 

1 Catchment area (CA) MERIT Hydro (Yamazaki et al., 2019) 90 meters 

2 Annual precipitation (AP) WorldClim (Fick & Hijmans, 2017) 30 seconds 

3 Curve number (CN) NRCS CN dataset (Zeng et al., 2017) 0.1 degree 

4 Dam capacity (DC) GRanD V1.3 (B. Lehner et al., 2011) Points 

5 Bankfull discharge (BD) Global RFFA (Zhao, Bates, et al., 
2021) 

30 seconds 

 

 

Land 
area 

factors 

6 Elevation (EL) MERIT DEM (Yamazaki et al., 2017) 90 meters 

7 Slope (SL) MERIT DEM (Yamazaki et al., 2017) 90 meters 

8 Population density (PD) GPW (Doxsey-Whitfield et al., 2015)  30 seconds 

9 Crop density (CD) Global Cropland Extent (Pittman et al., 
2010) 

250 meters 

10 Gross domestic product 
(GDP) 

Gridded global GDP (Kummu et al., 
2018) 

30 seconds 

These explanatory factors can be classified into two categories as follows:  199 

The first category are river flood factors selected to determine the likelihood and 200 

magnitude of flood hazards along river networks. The catchment area (CA) reflects the 201 

size of upstream catchments and was derived from the flow accumulation map in the 202 

MERIT Hydro dataset (Yamazaki et al., 2019). Annual precipitation (AP) describes the 203 

average AP of the upstream catchment, and was obtained from the WorldClim V2 204 

dataset (Fick & Hijmans, 2017). The curve number (CN) is an empirical metric that 205 

describes the runoff potential for different land uses/land cover, and hydrologic soil 206 

group classifications. The CN map was obtained from the study of Zeng et al. (2017) 207 
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used global coverage Moderate Resolution Imaging Spectroradiometer (MODIS) land 208 

cover and HWSD soil data (FAO et al., 2012) to estimate CN values. In theory, 209 

increasing CA, AP, and CN could produce a large increase in runoff, and consequently 210 

enlarge the risk of flood hazards. The dam capacity (DC) was calculated by 211 

accumulating the maximum reservoir storage capacity of dams in the upstream 212 

catchment. The maximum reservoir storage capacity was collected from the GRanD 213 

V1.3 dataset (B. Lehner et al., 2011) and this factor has been widely used to evaluate 214 

dam attenuation effects on downstream discharge (Volpi et al., 2018; Xiong et al., 2019). 215 

Bankfull discharge (BD) describes the channel conveyance by which floodwater just 216 

fills the channel without overtopping the banks (Wu et al., 2008). As the real BD is very 217 

difficult to observe on a large scale, BD is typically set using a particular return period 218 

flood in real applications (Ahilan et al., 2013; Clark et al., 2014). In this study, the 2-219 

year return period flood, which was obtained from regional flood frequency analysis at 220 

the global scale (Zhao et al., 2021) was used to represent the BD along river networks.  221 

The second category are land area factors that include the physical and social-economic 222 

conditions of surrounding land areas. Physical factors include elevation (EL) and slope 223 

(SL), which describe basic terrain characteristics. EL was obtained directly from the 224 

MERIT DEM dataset (Yamazaki et al., 2017) and SL was calculated as the maximum 225 

rate of change in EL from the grid to its surrounding eight neighbors. Social-economic 226 

factors comprised population density (PD), crop density (CD), and Gross Domestic 227 

Product (GDP). PD and CD were adopted to describe the density of two main flood 228 

exposures, urban areas and farmland, respectively. PD was obtained from the Gridded 229 

Population of the World dataset (GWP) (Doxsey-Whitfield et al., 2015) , and represents 230 

the average percentage of PD over the past two decades. CD contained a 0–100% 231 

cropland probability for each pixel, which was estimated by Pittman et al. (2010) using 232 

multi-year MODIS image data. GDP is a widely used metric in FDS estimation that 233 

measures the total monetary value of final goods and services in a specific time period 234 

(Scussolini et al., 2016). The adopted gridded global GDP product was developed by 235 

Kummu et al. (2018), who collected lumped GDP data from regional and national 236 

reports and distributed them to each grid cell according to the PD.  237 

3 Methods 238 

The research framework is presented in Figure 2 and can be divided into four parts. Part 239 

(1) describes the sample preparation procedure (section 3.1). Part (2) describes the 240 
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regression model development and comparison procedures (section 3.2). Within this 241 

part, the results of RFR and MLR are compared using a 5-fold cross-validation strategy. 242 

Part (3) describes the FDS estimation for unlabeled samples in the CONUS and England 243 

using the optimal RFR in Part (2). The estimated FDS is incorporated into a large-scale 244 

flood hazard model using an enhanced flood defense module (section 3.3). As shown 245 

in Part (4), the proposed approach was demonstrated for flood hazard mapping in three 246 

case studies by comparing the obtained flood hazard maps with equivalent results from 247 

official agencies in section 5. Evaluation metrics for FDS estimation and flood hazard 248 

mapping were presented in section 3.4.  249 

 250 

Figure 2 Model framework of this research. 251 

3.1 Sample preparation  252 

The polylines of flood defenses in the CONUS and England were converted into a 1 × 1 253 

km grid layer using ArcGIS software. If there was more than one flood defense in a 254 

grid, the longest flood defense in that grid determined the grid value. After conversion, 255 

53,955 and 11,395 grids in the CONUS and England, respectively, were identified as 256 

designated sites (sites with flood defenses). Among them, 29,835 grids in the CONUS 257 

and 9,921 grids in England had observed FDS data (overtopping AEP), and these grids 258 

were selected for model development.  259 

All the explanatory factors were resampled to the same resolution as the FDS layer. 260 

Each grid represented the value of that factor within the area of 1 km2. As the protected 261 

areas for some flood defenses were larger than 1 km2, the factor value within one cell 262 
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could not accurately describe the relevant physical-social conditions. Therefore, an 263 

impact width (iw) was defined to address this problem. For each labeled sample, the 264 

regression target was the gridded FDS, and the predictors were the explanatory factor 265 

conditions of the surrounding iw × iw km2. The mean value of explanatory factors of 266 

the surrounding iw  × iw km2 were adopted as predictors. As iw increased, the 267 

surrounding information considered for model development increased.  268 

3.2 Regression models 269 

Two regression models, RFR and MLR, were adopted for comparison.  270 

(a) Random forest regression  271 

The RFR algorithm can be described using the following three steps:  272 

Step 1: Draw ntree subsets from all the training samples using the bootstrapping method 273 

(Zhu, 1997), where ntree is the number of subsets. The samples that are not selected by 274 

the bootstrapping method are called out-of-bag (OOB) samples.  275 

Step 2: Grow the ntree regression tree model (Lewis, 2000) using the bootstrapped 276 

subsets. For each regression tree, use mtry factors randomly for model development to 277 

reduce the correlation between the trees. Measure the best split of the tree node using 278 

the optimal residual sum of squares (RSS) in eq. (4-1) according the research of 279 

Breiman, (2001): 280 

 𝑅𝑆𝑆 = ∑(𝑦̅𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

,  (4-1) 

where 𝑦̅𝑖 is the actual value and 𝑦𝑖 is the predicted value from the model.  281 

Step 3: Select these two parameters (ntree and mtry) using a trial method that considers 282 

the OOB error changes within the training dataset. The result of the RFR model is the 283 

average of the results from the ntree regression trees.  284 

RFR was chosen because it can handle categorical and continuous samples, avoids 285 

overfitting, and has demonstrated advantages in solving complicated nonlinear 286 

problems in hydrology. The factor importance can be evaluated during regression tree 287 

development by computing the sum of the reduction of the RSS when a factor is chosen 288 

to split a tree node. The larger the average decrease in the RSS of a factor, the more 289 
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important the factor is to FDS estimation. More detailed information about RFR can be 290 

found in the study by Breiman, (2001).  291 

(b) Multiple linear regression 292 

MLR attempts to develop a simple linear relationship between the explanatory factors 293 

and observed FDS as follows: 294 

𝑦 = 𝑘0 + 𝑘1𝑥1 + 𝑘2𝑥2 + ⋯ + 𝑘𝑁𝑥𝑁 ± 𝜖,                          (4-2) 295 

where y is the regression target, N is the number of explanatory factors, k is the weight 296 

of each factor, and 𝜖 is the error term.  297 

3.3 Fathom global flood hazard model 298 

The Fathom model was used to predict floodplain inundation as can estimate flood 299 

hazards anywhere along global river networks. This model consists of four parts: terrain 300 

data pre-processing, boundary condition pre-processing, channel bathymetry pre-301 

processing, and hydraulic model execution (Sampson et al., 2015). The terrain data in 302 

this model were obtained from a global coverage Merit DEM at 90 m resolution that 303 

improved flood hazard mapping by reducing the stripe noise, speckle noise, absolute 304 

bias, and tree height bias (Yamazaki et al., 2017). The boundary conditions adopted 305 

different return period floods and were derived based on a newly developed regional 306 

flood frequency analysis approach (Zhao et al., 2021). Because of the shortage of 307 

channel bathymetry data on a large scale, the Fathom model simplified the channel 308 

shape as a rectangle whose width and bankfull height controlled the channel 309 

conveyance (Neal et al., 2012). In the present study, the river width was obtained from 310 

the Merit Hydro datasets and the bankfull height was calculated using a gradually varied 311 

flow (GVF) method (Neal et al., 2021) according to the bankfull discharge. The 312 

LISFLOOD-FP model (Bates et al., 2010; Neal et al., 2012) designed for large-scale 313 

flood modelling was selected for hydraulic model execution. To date, the Fathom model 314 

has been successfully applied to high-resolution flood hazard mapping worldwide, 315 

including in the CONUS and England (Sampson et al., 2015; Wing et al., 2017).  316 

The Fathom model considers the flood defense in one-dimensional flood routing by 317 

linking the channel conveyance with the FDS using flood frequency analysis. For a 318 

channel without levees, the bankfull height (Hbf) can be estimated using the GVF 319 

method by assuming a bankfull discharge return period of approximately 2 years (see 320 
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Figure 3 (a)) as suggested by classical geomorphologic theory. As a proof of concept, 321 

it is possible to incorporate a flood defense by increasing the channel height according 322 

to the FDS. As shown in Figure 3 (b), the new channel height is estimated according to 323 

a high FDS (i.e., 100-year return period flood). The levee height (Hfd) is then 324 

represented by a deeper channel height than that estimated by 2-year return period flood. 325 

This strategy avoids the problem of gross mismatches between the discharge and 326 

channel conveyance and can represent flood defenses using only the FDS data. 327 

However, it is difficult for this strategy to represent the different FDSs between the left 328 

and right sides of a channel,  and it also ignores the lateral floodwater storage between 329 

the channel and levees (Wing et al., 2019). In this study, the flood defense was 330 

considered in terrain data by adding the estimated the levee height Hfd to the terrain data 331 

at levee sites (see Figure 3 (c)). This module can be used for a site knowing location 332 

and standard of flood defenses.  333 

 334 

Figure 3 Representing levees in the Fathom model (a) without levees, (b) considering 335 

in channel bathymetry, and (c) considering in terrain data (where Hfd: levee height; 336 

Hbf: bank full height; Ebank: river bank elevation; Ebed: river bed elevation) 337 

3.4 Evaluation metrics 338 

The evaluation procedures focused on two aspects: FDS estimation and flood hazard 339 

mapping. For FDS estimation, a 5-fold cross-validation strategy was adopted (Wong & 340 

Yeh, 2020). Five models were developed in each study area, and 80% and 20% of the 341 

samples were used for training and testing, respectively, in each model. Using this 342 

strategy, each sample in the dataset was used for testing once, and model performance 343 

was described using the mean value of the evaluation metrics from the five testing 344 

datasets. Three evaluation metrics were used for the evaluation of FDS estimation: 345 

percent bias (PBIAS), Nash–Sutcliffe efficiency (NSE), and Pearson correlation 346 

coefficient (PCC), (see Table 2). 347 
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For flood hazard mapping, the simulated results from the Fathom model were compared 348 

with the official flood hazard maps from two national agencies for the scenario of a 349 

100-year return period event. In the CONUS, the 100-year floodplain zone from the 350 

Federal Emergency Management Agency (FEMA) was adopted as the benchmark map 351 

(Bellomo & Ryon, 2010). This FEMA map was collected from simulated flood layers 352 

from numerous local models and incorporated the influence of levees in flood hazard 353 

modelling. For England, the defended flooded layer from the UK Environment Agency 354 

was used. This layer was derived by removing the areas that benefited from defenses 355 

from the undefended 100-year flood hazard map created from a similar patchwork of 356 

local models as in the US. Two metrics, the Critical Success Index (CSI) and Frequency 357 

Bias Index (FBI), were adopted for comparison (see Table 2). 358 

Table 2 Evaluation metrics used for FDS estimation (Nos. 1–3) and flood hazard 359 

mapping (Nos. 4–5) 360 

No. Name Function Optimal value 

1 Percent bias 
𝑃𝐵𝐼𝐴𝑆 =

∑ (𝑦𝑖
𝑜 − 𝑦𝑖

𝑠)𝑁
𝑖=1

∑ (𝑦𝑖
𝑜)𝑁

𝑖=1

× 100% 
0% 

2 Nash-Sutcliffe efficiency 
𝑁𝑆𝐸 = 1 −

∑ (𝑦𝑖
𝑜 − 𝑦𝑖

𝑠)2𝑁
𝑖=1

∑ (𝑦𝑜̅̅ ̅ − 𝑦𝑖
𝑠)2𝑁

𝑖=1

 
1 

3 Pearson correlation 

coefficient 𝑃𝐶𝐶 =
∑ (𝑦𝑖

𝑠 − 𝑦𝑠̅̅ ̅)(𝑦𝑖
𝑜 − 𝑦𝑜̅̅ ̅)𝑁

𝑛=1

√∑ (𝑦𝑖
𝑠 − 𝑦𝑠̅̅ ̅)2𝑁

𝑖=1 √∑ (𝑦𝑖
𝑜 − 𝑦𝑜̅̅ ̅)2𝑁

𝑖=1

 
1 

4 Critical success index 
𝐶𝑆𝐼 =

𝑆1𝑂1

𝑆1𝑂1 + 𝑆0𝑂1 + 𝑆1𝑂0

 
1 

5 Frequency bias index 
𝐹𝐵𝐼 =

𝑆1𝑂1 + 𝑆1𝑂0

𝑆1𝑂1 + 𝑆0𝑂1

 
1 

Table note: N is the total number of samples, 𝑦𝑖
𝑜 is the observed overtopping AEP for sample 361 

i, 𝑦𝑖
𝑠  is the simulated overtopping AEP for sample i, 𝑦𝑜̅̅ ̅ and 𝑦𝑠̅̅ ̅ are the mean values of all 362 

observed and simulated overtopping AEPs, respectively, 𝑆1𝑂1 is the area that is flooded in both 363 

the modeled and benchmark maps, 𝑆1𝑂0 is the area that is flooded in the modeled map but non-364 

flooded in the benchmark map, 𝑆0𝑂1 is the area that is non-flooded in modeled map but flooded 365 

in benchmark map, and 𝑆0𝑂0 is the area that is non-flooded in both the modeled and benchmark 366 

maps. 367 

https://data.gov.uk/dataset/eaa328e7-2eea-4cbf-bd6b-c66121981ba1/flood-map-for-planning-rivers-and-sea-areas-benefiting-from-defences
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4 Flood defense standard estimation results  368 

4.1 Model evaluation 369 

First, the influences of iw on the cross-validation results of the RFR model were tested. 370 

As shown in Figure 4, the cross-validation results of the RFR model showed a similar 371 

trend both in the CONUS and England. RFR achieved low performance at the start (iw 372 

= 1 km), with a mean NSE of 0.1 and 0.0 in the CONUS and England, respectively. 373 

The low performance of these 1-iw models in the two study areas demonstrated that 374 

factors that only described the surrounding 1 km2 area were insufficient for model 375 

development. This is mainly because 1 km2 could not cover the protected areas for large 376 

levees. Model performance became stable when iw was larger than 20 km. The optimal 377 

iw was therefore selected as 20 according to the highest mean NSE among all testing 378 

results. For this value, the predictors reflected the average condition of the explanatory 379 

factors around a distance of 10 km. The range of NSE in Figure 4 reflects the 380 

generalization ability in terms of different model inputs. The NSE of the 20-iw models 381 

in 5-folds cross-validation ranged from 0.76 to 0.84, and 0.70 to 0.74 respectively in 382 

the CONUS and England, which demonstrated that the RFR model provided stable 383 

results for unseen data.  384 

 385 

Figure 4 Five-fold cross-validation performance under different impact widths 386 

(a: CONUS; b: England). 387 

The cross-validation results of the two regression models (RFR and MLR) were further 388 

compared using the optimal iw; the results are presented in Figure 5. From the 389 

evaluation metrics, RFR achieved better performance than MLR, with an average NSE 390 

in the 5-fold validation of 0.82 in the CONUS and 0.73 in England. The MLR resulted 391 
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in a negative NSE for both test sites, which demonstrated that the relationship between 392 

FDS and the explanatory factors did not obey a linear function. The PCC and PBIAS 393 

metrics gave similar results to NSE, with both suggesting that RFR is a reliable 394 

approach for FDS estimation. From a comparison of the two study areas, the FDS was 395 

better estimated in the CONUS than England. This was mainly because the FDS data 396 

in the CONUS were more consistent than those in England. The FDS in the CONUS 397 

only recorded artificial levee systems along rivers. However, the FDS data in England 398 

included multiple levee structures designed for both fluvial and coastal floods which 399 

typically have different defense standards over this territory. The positive PBIAS for 400 

RFR indicated that the average tendency of the simulated FDS was smaller than the 401 

observed FDS. Overall underestimations of 14% and 21% were found in the CONUS 402 

and England, respectively.  403 

 404 

Figure 5 Violin plot of the simulated FDS for each observed FDS magnitude ((a) MLR 405 

in the CONUS, (b) RFR in the CONUS, (c) MLR in England, and (d) RFR in England). 406 
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The violin plot in Figure 5 describes the probability density of the simulated FDS in 407 

each observed FDS bin. As shown in Figure 5 (a) and (c), the mean value of the 408 

simulated FDS on the Y-axis remained stable as the observed FDS increased on the X-409 

axis. This demonstrated that MLR did not have prediction ability for every FDS 410 

magnitude. Figure 5 (b) and (c) show that the mean value of the simulated FDS 411 

increased as that of the observed FDS magnitude increased. The variation of the 412 

probability density reflected the range of model errors for each FDS magnitude. 413 

Although some large error sites were found for each FDS magnitude, most FDSs both 414 

in the CONUS and England were correctly simulated and the simulated FDSs 415 

concentrated along the corresponding bin value on the X-axis. RFR slightly 416 

overestimated the FDS at low return periods both in the CONUS and England, and 417 

largely underestimated the FDS at the 200-1000 year return period in England. 418 

4.2 Factor importance 419 

Figure 6 (a) and (b) show the factor importance for FDS estimation in the CONUS and 420 

England, respectively. Although regression targets were collected from different 421 

databases, AP, CA, and BD were the top three important factors for FDS estimation at 422 

both sites. These factors determined the basic hydrological conditions of the upstream 423 

catchment directly affecting the risk of flooding. This high ranking is easy to understand 424 

because the aim of levees is to reduce the regional flood hazard, and some levee 425 

parameters are also designed based on these hydrological factors. Due to the limited 426 

resources for flood risk management, a cost-benefit analysis (CBA) is typically required 427 

in deciding the FDS considering the trade-off between the costs over the appraisal 428 

period and socio-economic benefits in the protected area (Hallegatte, 2006; Hudson & 429 

Botzen, 2019; Ward et al., 2017). Socio-economic factors are commonly applied in 430 

CBA and are regarded as key factors in deciding FDS investments in several studies 431 

(Fadel et al., 2018; Hudson & Botzen, 2019; Scussolini et al., 2016; Ward et al., 2017). 432 

However, three socio-economic factors (i.e., GDP, PD, and CD) had the lowest 433 

importance among all factors in the CONUS (Fig. 6(a)). This result is similar to that of 434 

Wing et al. (2019), who also did not identify connections between the FDS and socio-435 

economic variables in the CONUS. Figure 1 (c) shows that the medium, low, or lowest 436 

samples only accounted for less than 5% of the total number of samples in the CONUS. 437 

As the factor importance was evaluated based on learning targets, these limited low-438 

standard samples in the CONUS may make it difficult to provide a fair evaluation of 439 
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factor importance. By contrast, GDP and PD played a more important role in England 440 

when the FDS data were more representative for each FDS magnitude (Figure 6 (b)). 441 

Both results in the CONUS and England demonstrated that CD had the lowest 442 

importance among all socio-economic factors. This mainly because croplands are 443 

typically assigned a lower weight than urban areas in any CBA.   444 

 445 

 Figure 6 Factor importance evaluated using RFR in (a) the CONUS and (b) England.  446 

Table 3 Validation accuracy of RFR using different aspects of factors 447 

Aspects CONUS England 

PBIAS NSE PCC PBIAS NSE PCC 

All factors 14% 0.82 0.91 21% 0.73 0.87 

River flood factors 24% 0.72 0.88 38% 0.52 0.77 

Physical factors 27% 0.58 0.77 37% 0.48 0.73 

Social-economic factors 51% 0.44 0.73 63% -0.01 0.41 

Table 3 presents the cross-validation results of the RFR model using different aspects 448 

of factors. RFR provided the highest performance when all factors were used for model 449 

development both in the CONUS and England. RFR achieved satisfactory performance 450 

(NSE = 0.72) in the CONUS, but low performance (NSE < 0.60) in England when only 451 

river flood factors were used for regression. RFR achieved low performance when 452 

either physical or social-economic factors only were used for FDS estimation. This 453 

demonstrates that social-economic factors alone are inadequate for FDS estimation in 454 

the CONUS and England, which conflicts with the results of some studies (Aerts et al., 455 
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2020; Herold & Rudari, 2013; Nicholls, 2002; Quinn et al., 2019). Combining the factor 456 

importance shown in Figure 6 and the accuracy shown in Table 3, river flood factors 457 

were more important than physical factors and social-economic factors in FDS 458 

estimation.  459 

4.3 Levee standard estimation 460 

 461 

Figure 7 FDS from this study and FLOPROS in (a) the CONUS and (b) England, and 462 

(c) proportion of FDS in different classes. 463 
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The FDS was estimated for all designated sites using the optimal RFR in the two study 464 

areas (Figure 7 (a) and (b)) and the results were compared with the FDS data from the 465 

merged layer of FLOPROS. The FDS was divided into five classes (lowest: < 20 year 466 

return period, low: 20–49 year, medium: 50–99 year, high: 100–499 year, and 467 

highest: >= 500 year). The percentage of samples in each class is shown in Figure 7 (c). 468 

As the FDS in FLOPROS was processed based on administrative units (state in the 469 

CONUS and county in England), the heterogeneity of FDS cannot be reflected 470 

accurately. All administrative units were identified as high or highest classes (FDS >= 471 

100 year) in the FLOPROS dataset, and this underestimated the flood hazard for reaches 472 

with low FDS. By contrast, in this study, FDS was estimated at 1 km resolution and the 473 

heterogeneity of FDS between rivers was considered. Only a small proportion of 474 

samples in the CONUS were estimated as the low or lowest levels, and these levees 475 

were mainly concentrated in the State of Missouri. In England, the highest-standard 476 

levees were mainly located around the city of London, and were also identified as the 477 

highest standard in FLOPROS and the research of Hall et al., (2019).  478 

The average FDS was calculated for each hydrological unit. The results are shown in 479 

Figure S1 in Supplementary information 1. Figure S-1 (a) shows that the FDS for most 480 

hydrological units in the CONUS was larger than that of 100-year return period, 481 

accounting for approximately 64% of the total study area. Only 5.9% samples were 482 

identified as the lowest standard in the CONUS, but the areas of hydrological units 483 

identified as the lowest standard accounted for approximately 30% of the total areas. 484 

This is mainly because some hydrological units without observed flood defenses were 485 

also classified as the lowest level. As shown in Figure S1(b), the FDS for most 486 

hydrological units was lower than 100-year return period in England, accounting for 487 

85% of the total area. 488 

The river size and economic condition were further analyzed for hydrological units in 489 

different FDS classes. The river size and economic condition were reflected by the 490 

maximum value of flow accumulation (Max FA) and sum value of GDP (Sum GDP) in 491 

hydrological units, respectively. Figure 8 (a) and (b) describe the range of max FA in 492 

the CONUS and England, respectively. The median and mean values of max FA 493 

between the low and lowest return period levels were difficult to distinguish visually, 494 

and these two metrics gradually increased as the FDS increased from the medium to 495 

highest standard. Similar trends are also shown in Figure 8 (c) and (d), where the mean 496 
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value of Sum GDP in the high and highest classes are clearly larger than that in the low 497 

and lower classes. This agrees with our experience that high flood hazard and exposure 498 

areas typically have correspondingly large FDS. However, a wide range of Max FA and 499 

Sum GDP were also found in each class. This means that this identified trend was not 500 

valid for a certain number of hydrological units, and reliable FDS estimation could not 501 

be provided for all hydrological units only considering river size or economic condition.  502 

 503 

Figure 8 Max FA for hydrological units for different FDS classes in (a) the CONUS 504 

and (b) England. Sum GDP for hydrological units for different FDS classes in (c) the 505 

CONUS and (d) England. 506 

5 Flood hazard modelling 507 

5.1 Case study descriptions 508 

Three case studies were selected to test the representation of flood defenses in flood 509 

hazard mapping using the proposed approach. As the flood hazard was simulated based 510 

on the scenario of a 100-year return period, the proposed approach was tested to 511 

determine whether it could correctly identify the FDS of levees exceeding 100-year 512 

return period.  513 

Figure 9 (a) shows that case study 1 (C1) was located in the upper Mississippi river, 514 

and this area involved eight levee systems. The Sny Island levees are mainly distributed 515 

along the east side of the river, and were correctly simulated as being of high or highest 516 

standards (>100-year) when the proposed approach was used. Although the protected 517 
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area of the Sny Island levees is rural, it prevents at least $51.1 million in flood damages 518 

each year. Other medium or low-standard levees were mainly distributed downstream 519 

of reach A, which were also correctly simulated.  520 

 521 

Figure 9 Observed and simulated FDSs in the three case studies: (a) case study 1 (in 522 

the CONUS), (b) case study 2 (in the CONUS), and (c) case study 3 (in England). 523 

Unlike C1, levee systems in case study 2 (C2) were located in the middle Missouri 524 

River and were built to protect Omaha (the largest city in the U.S. state of Nebraska). 525 

Because of the high flood exposure in Omaha city, all levees in C2 were designed to a 526 

high standard. Figure 9 (b) shows that most levees in C2 were correctly identified, 527 

except for the levees along reach B. Case study 3 (C3) was located at the confluence 528 

zone of the River Trent and River Dove in England (Figure 9 (c)).  529 

Compared with the rivers in C1 and C2, River Trent and River Dove are smaller river 530 

systems and some levee systems in C3 were located in the same grid. The heterogeneity 531 

of the FDS of some levees in C3 was therefore difficult to represent at 1 km resolution, 532 

and thereby induced both over and underestimations. The high-standard levees in C3 533 

were mainly located to protect urban areas, such as the town of Burton and the village 534 

of Hatton, and were still correctly identified using the proposed method.  535 

5.2 Validation results  536 
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Figure 10 shows the validation results in the three case studies (C1, C2, and C3), 537 

considering or not considering flood defenses. Overall, the CSI ranged from 0.47 to 538 

0.51 for the three case studies where flood defenses were not taken into account. The 539 

global method thus achieved CSI values similar to those of previous large-scale 540 

modelling results in the study areas (Sampson et al., 2015; Wing et al., 2017). Mapping 541 

performance clearly improved when the proposed approach was used, and the CSI 542 

ranged from 0.62 to 0.75 in the three case studies.  543 

Figure 10 (C1a) and (C1b) show a comparison of the flood hazard map in C1. As shown 544 

in Figure 10 (C1b), the protected areas of the Sny Island levees were almost completely 545 

flooded when the levee effects were not considered. The overestimation was corrected 546 

(Figure 10 (C1a)) and the mapping performance as determined by the CSI metric 547 

improved from 0.47 to 0.75 when the proposed method was used. Some 548 

underestimation was found in small reaches in Figure 10 (C1a) and (C1b) because only 549 

flooding of the main reaches was simulated.  550 

Figure 10 (C2a) and (C2b) show a comparison of the flood hazard maps in C2. The CSI 551 

increased from 0.51 to 0.69 when levee effects were considered, and this improvement 552 

was mainly around the urban area of Omaha. The FBI reduced from 1.23 to 1.06, which 553 

means that the overestimation was corrected when the proposed approach was used. An 554 

obvious overestimation was still found downstream of the reach in C2. This is mainly 555 

because the FDS in the area of B was incorrectly estimated by the proposed method, 556 

and therefore caused the overestimation of the flood hazard.  557 

Figure 10 (C3a) and (C3b) show a comparison of the flood hazard maps for case study 558 

C3. As shown in Figure 10 (C3a), two protected areas in C3 were both flooded when 559 

the levee effects were not considered. Although some levees could not be reflected at 1 560 

km resolution, the two defended areas in C3 were still represented (see Figure 10 (C1a)) 561 

and a satisfactory CSI of 0.62 was achieved. After the improvement, the flood hazard 562 

model still showed some errors compared with the benchmark flood maps. This is 563 

mainly because, in this study, the flood hazard was mapped based on open access flood 564 

and terrain data with global coverage whereas the local models that underpin the official 565 

maps use high resolution airborne LiDAR terrain information and river gauge 566 

information. Although several efforts were made to reduce data errors, it remained 567 

difficult to achieve similar results to local and regional models that adopt observed 568 

flood and high-resolution terrain data.  569 
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 570 

Figure 10 Validation of simulated results from Fathom model against with official flood hazard maps (a: considering and b: not considering the 571 

flood defenses in C1, C2, and C3). 572 
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6 Discussion and future work 573 

The impact of sample selection on model performance was analysed by considering some 574 

scenarios. Scenario 1 (S1) manually reduced the size of training samples from 100%, to 75%, 25% 575 

and 10% respectively, and left the validation samples unchanged. As shown in Figure 11 (a), model 576 

performance reduced as the training sample size decreased both in the CONUS and England. The 577 

model provided satisfactory results (NSE > 0.7) when only a small number of samples were 578 

removed. However, the RFR model achieved low performance in the two study areas when a large 579 

number of samples were removed. This demonstrated that model performance was highly 580 

dependent on the representativeness of training samples, and the proposed method should not be 581 

applied to a study area that does not have a large amount of flood defense data.  582 

As shown in the Figure 11 (a), the learning samples in the CONUS were unbalanced in terms of 583 

spatial distribution, and the highest-standard levees were located mainly along the reaches of the 584 

Mississippi River. In scenario 2 (S2), the levee samples in the Mississippi River were eliminated 585 

and a new RFR was developed using the retained samples. The model in S2 obtained good results 586 

(NSE = 0.81) similar to those of the model trained using all the samples. Figure 11 (b) shows the 587 

factor importance evaluated using the new RFR. Although some rankings changed slightly 588 

compared with the factor importance in Figure 6(a), the river flood factors still had higher 589 

importance than the physical and socio-economic factors. This demonstrated that the unbalanced 590 

FDS samples in the CONUS did not significantly impact the RFR results.  591 

 592 

Figure 11 (a) Cross-validation results of RFR in different scenarios and (b) factor importance 593 

evaluated using RFR in scenario 2 (S2). 594 
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Some deficiencies were found during the study and could be improved in future work. Firstly, in 595 

scenario 3 (S3), RFR developed in the CONUS was used in England, and vice versa. As shown in 596 

Figure 11 (a), low performance in S3 (NSE < 0) demonstrated that a model developed in one study 597 

area cannot easily be applied to another. This result was expected because there were large 598 

differences in the FDS characteristics between the CONUS and England, and machine learning 599 

typically achieves low prediction performance outside the training domain. Recently, the transfer 600 

learning technique has been introduced into hydrology to improve the extrapolation ability of 601 

machine learning models (Ma et al., 2021; Zhao, Pang, et al., 2021). This provides a potential 602 

solution to the application of the proposed approach in data-sparse areas. Secondly, the predictors 603 

were derived using the mean value of the image-based explanatory factors, and this calculation 604 

lost the topological information of images. Meanwhile, the width of images (impact width) in 605 

theory should vary in space in terms of different river sizes. During the experiments, RFR was 606 

compared with some ordinary machine learning models, such as the support vector machine 607 

method, and RFR achieved the best results. However, it is difficult to handle image-based inputs 608 

for traditional machine learning models. In some studies, advances in machine learning techniques, 609 

such as convolutional neural networks, have shown advantages when considering unstructured 610 

image inputs (Shen et al., 2021; Zhang et al., 2020). In future work, deep learning techniques will 611 

be used to further improve the estimation results considering the variability of impact width in 612 

space. Finally, the flood defenses in this study focused on artificial levee systems. Other flood 613 

protection structures, such as dams or diversion canals, were not considered, and this led to an 614 

underestimation of the FDS for some hydrological units which are also protected by other flood 615 

defenses. In previous studies, the impact of dams on extreme flow and inundation simulation in 616 

national-scale flood modelling were considered (Zhao et al., 2020). As a next step, FDS estimation 617 

will be improved by considering multiple types of flood protection structures and attempting to 618 

incorporate compound defenses in flood hazard modelling.  619 

7 Conclusions 620 

In this study, we proposed an RFR-based approach to estimate FDS using publicly available 621 

datasets. We compared RFR with MLR and demonstrated this approach in the CONUS and 622 

England, respectively. We incorporated the results of the proposed approach into hydraulic 623 

modelling and improved the representation of flood defenses in large-scale flood hazard mapping.  624 
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The main conclusions are summarized as follows: 625 

1. The RFR-based approach successfully estimated the FDS (i.e., overtopping AEP) using the 626 

explanatory factors contained in publicly available datasets. The RFR results are sensitive to 627 

the impact width (iw) parameter sensitive. RFR achieved low performance (NSE < 0.1) when 628 

iw was set to 1 km and achieved good performance (NSE > 0.7) when iw was larger than 20 629 

km.  630 

2. RFR performed better than MLR, with an NSE of 0.82 in the CONUS and 0.73 in England. 631 

The MLR achieved a negative NSE, which demonstrates that the FDS and explanatory factors 632 

do not obey a simple linear relationship. RFR overestimated the FDS at the low return periods 633 

both in the CONUS and England, and largely underestimated the FDS in the 200–1000 return 634 

period in England. 635 

3. The factor importance for FDS estimation in the CONUS and England was evaluated using 636 

RFR. River flood factors (annual precipitation, catchment area, and bankfull discharge) had 637 

higher importance than physical and social-economic factors both in the CONUS and England. 638 

In the CONUS, three socio-economic factors (gross domestic product, population density, and 639 

crop density) had the lowest importance among all factors. By contrast, gross domestic product 640 

and population density played more important roles in England.  641 

4. The FDS for all ungauged sites and hydrological units in the CONUS and England were 642 

estimated based on the proposed approach. Compared with the results of FLOPROS, in this 643 

study, the heterogeneity of FDS between rivers was considered. The FDSs of most 644 

hydrological units in the CONUS were larger than that of the 100-year return period. However, 645 

most hydrological units were lower than the 100-year return period in England. 646 

5. The results of this study were incorporated into large-scale flood hazard mapping and the 647 

mapping results were validated in three case studies. The CSI ranged between 0.47 and 0.51 648 

in the three case studies, without considering flood defense effects. The function of flood 649 

defenses was successfully simulated using the proposed approach, with an improved CSI 650 

ranging from 0.62 to 0.75 in the three case studies.  651 
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Data and Software 652 

The data source of all explanatory factors is described in Table 1. The US National Levee Database 653 

is available from https://levees.sec.usace.army.mil/. Benchmark flood hazard maps in the CONUS 654 

are available from the FEMA Flood Map Service Center (https://msc.fema.gov/portal/home). The 655 

AIMS Spatial Flood Defenses Database and benchmark flood hazard maps in the England can be 656 

downloaded from https://data.gov.uk/. The Fathom global flood hazard model is available for 657 

academic research use by contacting info@fathom.global. The Random Forest regression is 658 

implemented based on the package ‘randomForest’ under R software environment.   659 
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