REFERENCES
Billon, P., Bryant, E. E., Joseph, S. A., Nambiar, T. S., Hayward, S. B., Rothstein, R., & Ciccia, A. (2017). CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Molecular Cell, 67 (6), 1068-1079. e1064.
Davis, A. J., & Chen, D. J. (2013). DNA double strand break repair via non-homologous end-joining.Translational cancer research, 2 (3), 130.
Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature, 551 (7681), 464.
Kim, D., Lim, K., Kim, S.-T., Yoon, S.-h., Kim, K., Ryu, S.-M., & Kim, J.-S. (2017). Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nature Biotechnology, 35 (5), 475.
Kim, K., Ryu, S.-M., Kim, S.-T., Baek, G., Kim, D., Lim, K., . . . Kim, J.-S. (2017). Highly efficient RNA-guided base editing in mouse embryos. Nature Biotechnology, 35 (5), 435.
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533 (7603), 420.
Komor, A. C., Zhao, K. T., Packer, M. S., Gaudelli, N. M., Waterbury, A. L., Koblan, L. W., . . . Liu, D. R. (2017). Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C: G-to-T: A base editors with higher efficiency and product purity. Science Advances, 3 (8), eaao4774.
Kuscu, C., Parlak, M., Tufan, T., Yang, J., Szlachta, K., Wei, X., . . . Adli, M. (2017). CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations.Nature Methods, 14 (7), 710.
Li, G., Liu, Y., Zeng, Y., Li, J., Wang, L., Yang, G., . . . Huang, X. (2017). Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein & Cell, 8 (10), 776-779.
Liu, Z., Chen, M., Chen, S., Deng, J., Song, Y., Lai, L., & Li, Z. (2018). Highly efficient RNA-guided base editing in rabbit. Nature Communications, 9 (1), 2717.
Liu, Z., Lu, Z., Yang, G., Huang, S., Li, G., Feng, S., . . . Zhang, Y. (2018). Efficient generation of mouse models of human diseases via ABE-and BE-mediated base editing.Nature Communications, 9 (1), 2338.
Ma, Y., Zhang, J., Yin, W., Zhang, Z., Song, Y., & Chang, X. (2016). Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells.Nature Methods, 13 (12), 1029.
Malumbres, M., Mangues, R., Ferrer, N., Lu, S., & Pellicer, A. (1997). Isolation of high molecular weight DNA for reliable genotyping of transgenic mice. Biotechniques, 22 (6), 1114-1119.
Nishida, K., Arazoe, T., Yachie, N., Banno, S., Kakimoto, M., Tabata, M., . . . Hara, K. Y. (2016). Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 353 (6305), aaf8729.
Rath, D., Amlinger, L., Rath, A., & Lundgren, M. (2015). The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie, 117 , 119-128.
Sontheimer, E. J., & Barrangou, R. (2015). The bacterial origins of the CRISPR genome-editing revolution.Human Gene Therapy, 26 (7), 413-424.
Wu, H., Liu, Q., Shi, H., Xie, J., Zhang, Q., Ouyang, Z., . . . Zhao, Y. (2018). Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems.Cellular and Molecular Life Sciences, 75 (19), 3593-3607.
Xie, J., Ge, W., Li, N., Liu, Q., Chen, F., Yang, X., . . . Zhao, Y. (2019). Efficient base editing for multiple genes and loci in pigs using base editors. Nature Communications, 10 (1), 2852.
Yang, G., Zhu, T., Lu, Z., Li, G., Zhang, H., Feng, S., . . . Chen, J. (2018). Generation of isogenic single and multiplex gene knockout mice by base editing-induced STOP.Science Bulletin, 63 (17), 1101-1107.
Yang, L., Guell, M., Byrne, S., Yang, J. L., De Los Angeles, A., Mali, P., . . . Rios, X. (2013). Optimization of scarless human stem cell genome editing. Nucleic Acids Research, 41 (19), 9049-9061.
Yang, Y., Wang, K., Wu, H., Jin, Q., Ruan, D., Ouyang, Z., . . . Zhang, Q. (2016). Genetically humanized pigs exclusively expressing human insulin are generated through custom endonuclease-mediated seamless engineering. Journal of Molecular Cell Biology, 8 (2), 174-177.
Yin, H., Xue, W., Chen, S., Bogorad, R. L., Benedetti, E., Grompe, M., . . . Anderson, D. G. (2014). Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology, 32 (6), 551.
Zhang, Y., Qin, W., Lu, X., Xu, J., Huang, H., Bai, H., . . . Lin, S. (2017). Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nature Communications, 8 (1), 118.
Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., . . . Gao, C. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology, 35 (5), 438.