III. REFERENCES
  1. Asadi-Aghbolaghi, M., Chuang, M. H., & Yeh, H. D. (2012). Groundwater response to tidal fluctuation in a sloping leaky aquifer system.Applied Mathematical Modelling , 36, 4750–4759. https://doi.org/10.1016/j.apm.2011.12.009
  2. Ataie-Ashtiani, B., Volker, R. E., & Lockington, D. A. (2001). Tidal effects on groundwater dynamics in unconfined aquifers.Hydrological Processes , 15, 655–669. https://doi.org/10.1002/hyp.183
  3. Central Geology Survey of the Ministry of Economic Affairs, Engineering Geological Investigation Data Bank. Available online: https://geotech.moeacgs.gov.tw/geo/frame/gsb88.cfm (accessed on 01 June 2019) (in Chinese).
  4. Chang, C. W. (2016). A new meshless method for solving steady-state nonlinear heat conduction problems in arbitrary plane domain.Engineering Analysis with Boundary Elements , 70, 56–71. https://doi.org/10.1016/j.enganabound.2016.06.004
  5. Chen, P. C., Chuang, M. H., Tan, Y. C., & Ma, K. C. (2016). A general solution for groundwater flow in an estuarine’s leaky aquifer system after considering aquifer anisotropy. Hydrological Processes , 30, 1862–1871. https://doi.org/10.1002/hyp.10687
  6. Chen, R., Zhou, X., Song, C., Zhang, H., & Xiao, R. (2013). Numerical Modeling of Groundwater Level Oscillations in a Coastal Leaky Confined Aquifer Induced by the Tide. Geoscience , 27, 1465–1470. (in Chinese)
  7. Chuang, M. H., & Yeh, H. D. (2011). A generalized solution for groundwater head fluctuation in a tidal leaky aquifer system.Journal of Earth System Science , 120, 1055–1066. https://doi.org/10.1007/s12040-011-0128-8
  8. Chuang, M. H., Huang, C. S., Li, G. H., & Yeh, H. D. (2010). Groundwater fluctuations in heterogeneous coastal leaky aquifer systems. Hydrology and Earth System Sciences , 14, 1819–1826. https://doi.org/10.5194/hess-14-1819-2010
  9. Ciałkowki, M. J., & Grysa, K. (2010). Trefftz method in solving the inverse problems. Journal of Inverse and Ill-posed Problems , 18, 595–616. https://doi.org/10.1515/jiip.2010.027
  10. Fang, H. T., Tan, Y. C., Chuang, M. H., Ke, K. Y., & Chen, P. C. (2018). A general solution for tide‐induced groundwater fluctuation in an estuarine‐coastal confined and unconfined aquifer system.Hydrological Processes , 32, 2239–2253. https://doi.org/10.1002/hyp.13161
  11. Grysa, K., & Maciejewska, B. (2013). Trefftz functions for the non-stationary problems. Journal of Theoretical and Applied Mechanics , 51: 251–264.
  12. Grysa, K., Maciag, A., & Adamczyk-Krasa, J. (2014). Trefftz functions applied to direct and inverse non-Fourier heat conduction problems.Journal of Heat Transfer , 136, 091302. https://doi.org/10.1115/1.4027770
  13. Huang, F. K., Chuang, M. H., Wang, G. S., & Yeh, H. D. (2015). Tide-induced groundwater level fluctuation in a U-shaped coastal aquifer. Journal of Hydrology , 530, 291–305. https://doi.org/10.1016/j.jhydrol.2015.09.032
  14. Jeng, D. S., Li, L., & Barry, D. A. (2002). Analytical solution for tidal propagation in a coupled semi-confined/phreatic coastal aquifer.Advances in Water Resources , 25, 577–584. https://doi.org/10.1016/S0309-1708(02)00016-7
  15. Jiao, J., & Tang, Z. (1999). An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer. Water Resources Research , 35, 747–751. https://doi.org/10.1029/1998WR900075
  16. Jiao, J., & Tang, Z. (2001). Reply to R. E. Volker and Q. Zhang’s comments on ”An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer”. Water Resources Research , 37(1), 187–188. https://doi.org/10.1029/1998WR900075
  17. Kim, K. Y., Kim, Y., Lee, C. W., & Woo, N. C. (2003). Analysis of groundwater response to tidal effect in a finite leaky confined coastal aquifer considering hydraulic head at source bed.Geosciences Journal , 7, 169–178. https://doi.org/10.1007/BF02910221
  18. Kita, E., & Kamiya, N. (1995). Trefftz method: an overview.Advances in Engineering Software , 24, 3–12.
  19. Kołodziej, J. A., & Grabski, J. K. (2018). Many names of the Trefftz method. Engineering Analysis with Boundary Elements , 96, 169–178. https://doi.org/10.1016/j.enganabound.2018.08.013
  20. Ku, C. Y., Liu, C. Y., Su, Y., & Xiao, J. E. (2018). Modeling of Transient Flow in Unsaturated Geomaterials for Rainfall-Induced Landslides Using a Novel Spacetime Collocation Method.Geofluids , 7892789, 1–16. https://doi.org/10.1155/2018/7892789
  21. Ku, C. Y., Liu, C. Y., Yeih, W., Liu, C. S., & Fan, C. M. (2019). A novel space–time meshless method for solving the backward heat conduction problem. International Journal of Heat and Mass Transfer , 130, 109–122. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.083
  22. Li, H., & Jiao, J. (2002). Analytical solutions of tidal groundwater flow in coastal two-aquifer system. Advances in Water Resources , 25, 417–426. https://doi.org/10.1016/S0309-1708(02)00004-0
  23. Li, J., Li, M. G., Zhang, L. L., Chen, H., Xia, X. H., & Chen, J. J. (2019). Experimental Study and Estimation of Groundwater Fluctuation and Ground Settlement due to Dewatering in a Coastal Shallow Confined Aquifer. Journal of Marine Science and Engineering , 7, 58. https://doi.org/10.3390/jmse7030058
  24. Li, Z. C., Lu, Z. Z., Hu, H. Y., & Cheng, H. D. (2008). Trefftz and Collocation Methods, WIT Press, Southampton/ Boston.
  25. Liao, C., Jeng, D., Lin, Z., Guo, Y., & Zhang, Q. (2018). Wave (Current)-Induced Pore Pressure in Offshore Deposits: A Coupled Finite Element Model. Journal of Marine Science and Engineering , 6, 83. https://doi.org/10.3390/jmse6030083
  26. Liu, C. Y., Ku, C. Y., Xiao, J. E., & Yeih, W. (2019). A Novel Spacetime Collocation Meshless Method for Solving Two-Dimensional Backward Heat Conduction Problems. Computer Modeling in Engineering & Sciences , 118(1), 229–252. https://doi.org/10.31614/cmes.2019.04376
  27. Sun, H. (1997). A two-dimensional analytical solution of response to tidal loading in an estuary. Water Resources Research , 33, 1429–1435. https://doi.org/10.1029/97WR00482
  28. Trefftz, E. (1926). Ein gegenstück zum ritz’schen verfahren. In: Proceedings of the 2nd international congress on applied mechanics. Zürich; 131–7.
  29. Volker, R. E., & Zhang, Q. (2001). Comment on ”An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer” by Jiu Jimmy Jiao and Zhonghua Tang. Water Resources Research , 37, 185–186. https://doi.org/10.1029/2000WR900218
  30. Water Resources Agency, Ministry of Economic Affairs. Available online: https://gweb.wra.gov.tw/HydroInfo/?id=Index (accessed on 01 June 2019) (in Chinese).
  31. Zhao, Z., Wang, X., Hao, Y., Wang, T., Jardani, A., Jourde, H., & Yeh, T. C., Zhang, M. (2019). Groundwater response to tidal fluctuations in a leaky confined coastal aquifer with a finite length.Hydrological Processes , 2551–2560. https://doi.org/10.1002/hyp.13529