References
Alessandrini, C. et al. 2022. Remotely sensed variables explain microhabitat selection and reveal buffering behaviours against warming in a climate-sensitive bird species. - Remote Sensing in Ecology and Conservation 8: 615–628.
Amiet, F. et al. 2017. Apidae 1: Allgemeiner Teil, Gattungen, Apis, Bombus / Partie Générale, Genres, Apis, Bombus. Fauna Helvetica 29. - Info Fauna CSCF & SEG.
Bauert, M. R. et al. 1998. No genetic variation detected within isolated relict populations of Saxifraga cernua in the Alps using RAPD markers. - Molecular Ecology 7: 1519–1527.
Bertini, L. et al. 2021. What Antarctic Plants Can Tell Us about Climate Changes: Temperature as a Driver for Metabolic Reprogramming. - Biomolecules 11: 1094.
Besson, A. A. and Cree, A. 2011. Integrating physiology into conservation: an approach to help guide translocations of a rare reptile in a warming environment. - Animal Conservation 14: 28–37.
Biella, P. et al. 2017. Distribution patterns of the cold adapted bumblebee <em>Bombus alpinus</em> in the Alps and hints of an uphill shift (Insecta: Hymenoptera: Apidae). - J Insect Conserv 21: 357–366.
Biella, P. et al. 2021a. Northwestward range expansion of the bumblebee Bombus haematurus into Central Europe is associated with warmer winters and niche conservatism. - Insect Science 28: 861–872.
Biella, P. et al. 2021b. Investigating pollination strategies in disturbed habitats: the case of the narrow-endemic toadflax Linaria tonzigii (Plantaginaceae) on mountain screes. - Plant Ecol 222: 511–523.
Biella, P. et al. 2022. City climate and landscape structure shape pollinators, nectar and transported pollen along a gradient of urbanization. - Journal of Applied Ecology 59: 1586–1595.
Bonifacino, M. et al. 2022. Climate change may cause the extinction of the butterfly Lasiommata petropolitana in the Apennines. - J Insect Conserv 26: 959–972.
Brambilla, M. et al. 2016. Climate change will increase the potential conflict between skiing and high-elevation bird species in the Alps. - Journal of Biogeography 43: 2299–2309.
Brambilla, M. et al. 2017. Foraging habitat selection by Alpine White-winged Snowfinches Montifringilla nivalis during the nestling rearing period. - Journal of Ornithology 158: 277–286.
Brambilla, M. et al. 2020. Species interactions and climate change: How the disruption of species co-occurrence will impact on an avian forest guild. - Global Change Biology 26: 1212–1224.
Brambilla, M. et al. 2022. Identifying climate refugia for high-elevation Alpine birds under current climate warming predictions. - Global Change Biology 28: 4276–4291.
Cameron, S. A. et al. 2011. Patterns of widespread decline in North American bumble bees. - PNAS 108: 662–667.
Ceresa, F. et al. 2023. Landscape characteristics influence regional dispersal in a high-elevation specialist migratory bird, the water pipit Anthus spinoletta. - Molecular Ecology 32: 1875–1892.
Condamine, F. L. and Hines, H. M. 2015. Historical species losses in bumblebee evolution. - Biology Letters 11: 20141049.
de Gabriel Hernando, M. et al. 2021. Warming threatens habitat suitability and breeding occupancy of rear-edge alpine bird specialists. - Ecography 44: 1191–1204.
Di Musciano, M. et al. 2020. Dispersal ability of threatened species affects future distributions. - Plant Ecol 221: 265–281.
Elith, J. et al. 2011. A statistical explanation of MaxEnt for ecologists. - Diversity and Distributions 17: 43–57.
Eyring, V. et al. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. - Geoscientific Model Development 9: 1937–1958.
Ghisbain, G. et al. 2023. Projected decline in European bumblebee populations in the twenty-first century. - Nature: 1–5.
Grimmett, L. et al. 2020. Presence-only species distribution models are sensitive to sample prevalence: Evaluating models using spatial prediction stability and accuracy metrics. - Ecological Modelling 431: 109194.
Harvey, J. A. et al. 2023. Scientists’ warning on climate change and insects. - Ecological Monographs 93: e1553.
Hill, J. K. et al. 2011. Climate change and evolutionary adaptations at species’ range margins. - Annual review of entomology 56: 143–159.
Irwin, J. T. and Lee, R. E. 2000. Mild winter temperatures reduce survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae). - Journal of Insect Physiology 46: 655–661.
Iserbyt, S. and Rasmont, P. 2012. The effect of climatic variation on abundance and diversity of bumblebees: a ten years survey in a mountain hotspot. - Annales de la Société entomologique de France (N.S.) 48: 261–273.
Jackson, H. M. et al. 2022. Climate change winners and losers among North American bumblebees. - Biology Letters 18: 20210551.
Jiménez-Valverde, A. et al. 2008. Not as good as they seem: the importance of concepts in species distribution modelling. - Diversity and Distributions 14: 885–890.
Kaky, E. et al. 2020. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. - Ecological Informatics 60: 101150.
Kapos, V. et al. 2000. Developing a map of the world’s mountain forests., Forests in sustainable mountain development: a state of knowledge report for 2000. - Task Force For. Sustain. Mt. Dev.: 4–19.
Karger, D. N. et al. 2017. Climatologies at high resolution for the earth’s land surface areas. - Sci Data 4: 170122.
Karger, D. N. et al. 2021. Climatologies at high resolution for the earth’s land surface areas.
Kerr, J. T. et al. 2015. Climate change impacts on bumblebees converge across continents. - Science 349: 177–180.
Kimball, S. et al. 2010. Contemporary climate change in the Sonoran Desert favors cold-adapted species. - Global Change Biology 16: 1555–1565.
Koot, E. M. et al. 2022. Climate change and alpine-adapted insects: modelling environmental envelopes of a grasshopper radiation. - Royal Society Open Science 9: 211596.
Körner, C. and Hiltbrunner, E. 2021. Why Is the Alpine Flora Comparatively Robust against Climatic Warming? - Diversity 13: 383.
Kuo, C.-C. et al. 2021. Assessment of climate change effects on alpine summit vegetation in the transition of tropical to subtropical humid climate. - Plant Ecol 222: 933–951.
Lobo, J. M. et al. 2008. AUC: a misleading measure of the performance of predictive distribution models. - Global Ecology and Biogeography 17: 145–151.
Manino, A. et al. 2007. Bumblebee (Bombus Latreille, 1802) distribution in high mountains and global warming. - Redia 90: 125–129.
Marshall, L. et al. 2018. The interplay of climate and land use change affects the distribution of EU bumblebees. - Global Change Biology 24: 101–116.
Marshall, L. et al. 2020. Bumblebees moving up: shifts in elevation ranges in the Pyrenees over 115 years. - Proceedings of the Royal Society B: Biological Sciences 287: 20202201.
Martinet, B. et al. 2021. Mating under climate change: Impact of simulated heatwaves on the reproduction of model pollinators. - Functional Ecology 35: 739–752.
Martínez-López, O. et al. 2021. Reduction in the potential distribution of bumble bees (Apidae: Bombus) in Mesoamerica under different climate change scenarios: Conservation implications. - Global Change Biology 27: 1772–1787.
McCain, C. M. et al. 2021. Unusually large upward shifts in cold-adapted, montane mammals as temperature warms. - Ecology 102: e03300.
Muggeo, V. M. R. 2003. Estimating regression models with unknown break-points. - Statist. Med. 22: 3055–3071.
Muscarella, R. et al. 2014. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. - Methods in Ecology and Evolution 5: 1198–1205.
Nieto, A. et al. 2014. European red list of bees. - Luxembourg: Publication Office of the European Union.
Nogués-Bravo, D. et al. 2007. Exposure of global mountain systems to climate warming during the 21st Century. - Global Environmental Change 17: 420–428.
Ornosa, C. et al. 2017. Updated list of bumblebees (Hymenoptera: Apidae) from the Spanish Pyrenees with notes on their decline and conservation status. - Zootaxa 4237: 41–77.
Oyen, K. J. et al. 2016. Altitudinal variation in bumble bee (Bombus) critical thermal limits. - Journal of Thermal Biology 59: 52–57.
Pearson, R. G. et al. 2013. Shifts in Arctic vegetation and associated feedbacks under climate change. - Nature Clim Change 3: 673–677.
Pepin, N. C. and Seidel, D. J. 2005. A global comparison of surface and free-air temperatures at high elevations. - J. Geophys. Res. 110: D03104.
Peters, M. K. et al. 2019. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. - Nature 568: 88–92.
Phillips, S. J. et al. 2006. Maximum entropy modeling of species geographic distributions. - Ecological Modelling 190: 231–259.
Quaranta, M. et al. 2018. Lista Rossa IUCN delle api italiane minacciate. (IUCN Red list of the Italian threatened bees). - Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare.
R Core Team 2020. R: A language and environment for statistical computing.
Rannow, S. et al. 2014. Managing Protected Areas Under Climate Change: Challenges and Priorities. - Environmental Management 54: 732–743.
Rasmont, P. et al. 2015. Climatic Risk and Distribution Atlas of European Bumblebees. - BioRisk 10: 1–236.
Ricciardelli D’Albore, G. and Piatti, C. 2003. Ecology of Bombus monticola konradini Reining (Hymenoptera: Apidae) in the National Park of the Sibillini mountains [Umbria (Italy)]. - Annali della Facoltà di Agraria - Università di Perugia (Italy) in press.
Rubidge, E. M. et al. 2012. Climate-induced range contraction drives genetic erosion in an alpine mammal. - Nature Clim. Change 2: 285–288.
Santamaría, S. et al. 2011. Abejorros (Bombus spp.: Hymenoptera, Apidae) del Jou de los Cabrones (Parque Nacional Picos de Europa) y confirmación de la presencia de Bombus mendax Gerstaecker, 1869 en la Cordillera Cantábrica (España). - Boletín de la Sociedad Entomológica Aragonesa 48: 143–146.
Scharsack, J. P. et al. 2021. Climate change facilitates a parasite’s host exploitation via temperature-mediated immunometabolic processes. - Global Change Biology 27: 94–107.
Seaborn, T. et al. 2021. Drivers of distributions and niches of North American cold-adapted amphibians: evaluating both climate and land use. - Ecological Applications 31: e2236.
Sistri, G. et al. 2022. The isolated Erebia pandrose Apennine population is genetically unique and endangered by climate change. - Insect Conservation and Diversity 15: 136–148.
Stiels, D. et al. 2021. An iconic messenger of climate change? Predicting the range dynamics of the European Bee-eater (Merops apiaster). - J Ornithol 162: 631–644.
Stuhldreher, G. et al. 2014. Cold-adapted species in a warming world – an explorative study on the impact of high winter temperatures on a continental butterfly. - Entomologia Experimentalis et Applicata 151: 270–279.
Thuiller, W. et al. 2005. Niche properties and geographical extent as predictors of species sensitivity to climate change. - Global Ecology and Biogeography 14: 347–357.
Thuiller, W. et al. 2019. Uncertainty in ensembles of global biodiversity scenarios. - Nat Commun 10: 1446.
Tommasi, N. et al. 2022. Effect of urbanization and its environmental stressors on the intraspecific variation of flight functional traits in two bumblebee species. - Oecologia 199: 289–299.
Wieczynski, D. J. et al. 2019. Climate shapes and shifts functional biodiversity in forests worldwide. - Proceedings of the National Academy of Sciences 116: 587–592.
Williams, J. E. and Blois, J. L. 2018. Range shifts in response to past and future climate change: Can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? - Journal of Biogeography 45: 2175–2189.
Williams, J. B. et al. 2003. Deleterious effects of mild simulated overwintering temperatures on survival and potential fecundity of rose-galling Diplolepis wasps (Hymenoptera: Cynipidae). - Journal of Experimental Zoology Part A: Comparative Experimental Biology 298A: 23–31.
Zait, Y. et al. 2020. Elucidating the limiting factors for regeneration and successful establishment of the thermophilic tree Ziziphus spina-christi under a changing climate. - Sci Rep 10: 14335.
Zemp, M. et al. 2015. Historically unprecedented global glacier decline in the early 21st century. - Journal of Glaciology 61: 745–762.