Literature Cited
1.Ackerman, R.A. (1980). Physiological and Ecological Aspects of Gas Exchange by Sea Turtle Eggs. Am. Zool. , 20, 575–583
2.Ackerman, R.A. & Lott, D.B. (2004). Thermal, hydric and respiratory climate of nests. In: Reptilian incubation: environment, evolution, and behaviour (ed. Deeming, D..). Nottingham University Press, Nottingham, pp. 15–43
3.Amarasekare, P. & Johnson, C. (2017). Evolution of thermal reaction norms in seasonally varying environments. Am. Nat. , 189, E31–E45
4.Armstrong, D.P., Keevil, M.G., Rollinson, N. & Brooks, R.J. (2017). Subtle individual variation in indeterminate growth leads to major variation in survival and lifetime reproductive output in a long-lived reptile. Funct. Ecol.
5.Arnqvist, G. & Rowe, L. (2005). Sexual Conflict . Princeton University Press, Princeton, New Jersey
6.Bateman, A.J. (1948). Intra-sexual selection in Drosophila.Heredity (Edinb). , 2, 349–368
7.Berry, J.F. & Shine, R. (1980). Sexual size dimorphism and sexual selection in turtles (order testudines). Oecologia , 44, 185–191
8.Bobyn, M.L. & Brooks, R.J. (1994a). Incubation conditions as potential factors limiting the northern distribution of snapping turtles, Chelydra serpentina. Can. J. Zool. , 72, 28–37
9.Bobyn, M.L. & Brooks, R.J. (1994b). Interclutch and interpopulation variation in the effects of incubation conditions on sex, survival and growth of hatchling turtles ( Chelydra serpentina ). J. Zool. , 233, 233–257
10.Bókony, V., Milne, G., Pipoly, I., Székely, T. & Liker, A. (2019). Sex ratios and bimaturism differ between temperature-dependent and genetic sex-determination systems in reptiles. BMC Evol. Biol. , 19, 57
11.Booth, D.T., Burgess, E., McCosker, J. & Lanyon, J.M. (2004). The influence of incubation temperature on post-hatching fitness characteristics of turtles. Int. Congr. Ser. , 1275, 226–233
12.Bowden, R.M., Ewert, M.A. & Nelson, C.E. (2000). Environmental sex determination in a reptile varies seasonally and with yolk hormones.Proc. R. Soc. London. Ser. B Biol. Sci. , 267, 1745–1749
13.Brooks, R.J., Bobyn, M.L., Galbraith, D.A., Layfield, J.A. & Nancekivell, E.G. (1991). Maternal and environmental influences on growth and survival of embryonic and hatchling snapping turtles ( Chelydra serpentina ). Can. J. Zool. , 69, 2667–2676
14.Bull, J.J. (1980). Evolution of sex determining mechansims . The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA
15.Bull, J.J. & Bulmer, M.G. (1989). Longevity enhances selection of environmental sex determination. Heredity (Edinb). , 63, 315–320
16.Cameron, E.Z., Lemons, P.R., Bateman, P.W. & Bennett, N.C. (2008). Experimental alteration of litter sex ratios in a mammal. Proc. R. Soc. B Biol. Sci. , 275, 323–327
17.Carter, A.L., Bodensteiner, B.L., Iverson, J.B., Milne‐Zelman, C.L., Mitchell, T.S., Refsnider, J.M., et al. (2019a). Breadth of the thermal response captures individual and geographic variation in temperature‐dependent sex determination. Funct. Ecol. , 33, 1928–1939
18.Carter, A.W., Bowden, R.M. & Paitz, R.T. (2017). Seasonal shifts in sex ratios are mediated by maternal effects and fluctuating incubation temperatures. Funct. Ecol. , 31, 876–884
19.Carter, A.W., Paitz, R.T. & Bowden, R.M. (2019b). The Devil is in the Details: Identifying Aspects of Temperature Variation that Underlie Sex Determination in Species with TSD. Integr. Comp. Biol. , 59, 1081–1088
20.Carter, A.W., Sadd, B.M., Tuberville, T.D., Paitz, R.T. & Bowden, R.M. (2018). Short heatwaves during fluctuating incubation regimes produce females under temperature-dependent sex determination with implications for sex ratios in nature. Sci. Rep. , 8, 3
21.Chaloupka, M. & Limpus, C. (2005). Estimates of sex- and age-class-specific survival probabilities for a southern Great Barrier Reef green sea turtle population. Mar. Biol. , 146, 1251–1261
22.Charnov, E.L. & Bull, J. (1977). When is sex environmentally determined? Nature , 266, 828–830
23.Charnov, E.L., Los-den Hartogh, R. L. Jones, W.T. & Van den Assem, J. (1981). Sex ratio evolution in a variable environment. Nature , 289, 27–32
24.Congdon, J.D., Nagle, R.D. & Kinney, O.M. (2018). Front-loading life histories: the enduring influence of juvenile growth on age, size, and reproduction of primiparous female freshwater turtles. Evol. Ecol. Res. , 19, 353–364
25.Conover, D.O. (1984). Adaptive Significance of Temperature-Dependent Sex Determination in a Fish. Am. Nat. , 123, 297–313
26.Cox, R.M., Butler, M.A. & John-Alder, H.B. (2007). The evolution of sexual size dimorphism in reptiles. In: Sex, size and gender roles: evolutionary studies of sexual size dimorphism (eds. Fairbairn, D.J., Blanckenhorn, W.U. & Székely, T.). Oxford University Press, Oxford, p. 38–49.
27.Crawford, N.G., Faircloth, B.C., McCormack, J.E., Brumfield, R.T., Winker, K. & Glenn, T.C. (2012). More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs.Biol. Lett. , 8, 783–786
28.Dang, W., Zhang, W. & Du, W.-G. (2015). Incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. Sci. Rep. , 5, 10594
29.Dayananda, B., Penfold, S. & Webb, J.K. (2017). The effects of incubation temperature on locomotor performance, growth and survival in hatchling velvet geckos. J. Zool. , 303, 46–53
30.Deeming, D.C. & Ferguson, M.W.J. (1989). The Mechanism of Temperature Dependent Sex Determination in Crocodilians: A Hypothesis.Am. Zool. , 29, 973–985
31.Deeming, D.C., Ferguson, M.W.J., Mittwoch, U., Wolf, U., Dorizzi, M., Zaborski, P., et al. (1988). Environmental Regulation of Sex Determination in Reptiles. Philos. Trans. R. Soc. B Biol. Sci. , 322, 19–39
32.Etchberger, C., Ewert, M., Phillips, J. & Nelson, C. (2002). Carbon dioxide influences environmental sex determination in two species of turtles. Amphibia-Reptilia , 23, 169–175
33.Ewert, M.A. (1985). Embryology of Turtles. In: Biology of the Reptilia. Vol 15. Development (eds. A. C. Gans, Billet, F. & Maderson, P.F..). John Wiley & Sons, New York, pp. 75–267
34.Ewert, M.A., Etchberger, C.R. & Nelson, C.E. (2004). Turtle sex-determining modes and TSD patterns, and some TSD pattern correlates. In: Temperature dependent sex determination in vertebrates (eds. Valenzuela, N. & Lance, V.). Smithsonian Institute, Washington, D.C., pp. 21–32
35.Ewert, M.A., Jackson, D.R. & Nelson, C.E. (1994). Patterns of temperature‐dependent sex determination in turtles. J. Exp. Zool. , 270, 3–15
36.Ewert, M.A., Lang, J.W. & Nelson, C.E. (2005). Geographic variation in the pattern of temperature-dependent sex determination in the American snapping turtle (Chelydra serpentina). J. Zool. , 265, 81–95
37.Ewert, M.A. & Nelson, C.E. (1991). Sex Determination in Turtles: Diverse Patterns and Some Possible Adaptive Values. Copeia , 1991, 50–69
38.Feder, M.E. & Hofmann, G.E. (1999). Heat-shock proteins, molecular chaperones, and stress response. Annu. Rev. Physiol. , 61, 243–282
39.Ferguson, M.J.W. & Joanen, T. (1983). Temperature-dependent sex determination in alligator mississippiensis. J. Zool. , 200, 143–177
40.Forster, J., Hirst, A.G. & Woodward, G. (2011). Growth and development rates have different thermal responses. Am. Nat. , 178, 668–678
41.Francis, E.A., Moldowan, P.D., Greischar, M.A. & Rollinson, N. (2019). Anthropogenic nest sites provide warmer incubation environments than natural nest sites in a population of oviparous reptiles near their northern range limit. Oecologia , 190, 511–522
42.Freedberg, S., Greives, T.J., Ewert, M.A., Demas, G.E., Beecher, N. & Nelson, C.E. (2008). Incubation Environment Affects Immune System Development in a Turtle with Environmental Sex Determination. J. Herpetol. , 42, 536–541
43.Le Galliard, J.-F., Ferriere, R. & Clobert, J. (2005). Juvenile growth and survival under dietary restriction: are males and females equal? Oikos , 111, 368–376
44.Gamble, T., Coryell, J., Ezaz, T., Lynch, J., Scantlebury, D.P. & Zarkower, D. (2015). Restriction Site-Associated DNA Sequencing (RAD-seq) Reveals an Extraordinary Number of Transitions among Gecko Sex-Determining Systems. Mol. Biol. Evol. , 32, 1296–1309
45.Georges, A., Beggs, K., Young, J.E. & Doody, J.S. (2005). Modelling development of reptile embryos under fluctuating temperature regimes.Physiol. Biochem. Zool. , 78, 18–30
46.Georges, A., Limpus, C. & Stoutjesdijk, R. (1994). Hatchling sex in the marine turtle Caretta caretta is determined by proportion of development at a temperature, not daily duration of exposure. J. Exp. Zool. , 270, 432–444
47.Gilchrist, G.W. (1995). Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. , 146, 252–270
48.Girondot, M., Monsinjon, J. & Guillon, J.-M. (2018). Delimitation of the embryonic thermosensitive period for sex determination using an embryo growth model reveals a potential bias for sex ratio prediction in turtles. J. Therm. Biol. , 73, 32–40
49.Girondot, M. & Pieau, C. (1999). A fifth hypothesis for the evolution of TSD in reptiles. Trends Ecol. Evol. , 14, 359–360
50.Godfrey, M.H., Delmas, V. & Girondot, M. (2003). Assessment of patterns of temperature-dependent sex determination using maximum likelihood model selection. Écoscience , 10, 265–272
51.Gutzke, W.H.N. & Crews, D. (1988). Embryonic temperature determines adult sexuality in a reptile. Nature , 832–834
52.Hall, J.M. & Warner, D.A. (2019). Thermal sensitivity of lizard embryos indicates a mismatch between oxygen supply and demand at near-lethal temperatures. BioRxiv
53.Harms, H.K., Paitz, R.T., Bowden, R.M. & Janzen, F.J. (2005). Age and season impact resource allocation to eggs and nesting behavior in the painted turtle. Physiol. Biochem. Zool. , 78, 996–1004
54.Head, G., May, R.M. & Pendleton, L. (1987). Environmental determination of sex in the reptiles. Nature , 329, 198–199
55.Holleley, C.E., O’Meally, D., Sarre, S.D., Marshall Graves, J.A., Ezaz, T., Matsubara, K., et al. (2015). Sex reversal triggers the rapid transition from genetic to temperature-dependent sex.Nature , 523, 79–82
56.Huey, R.B. & Stevenson, R.D. (1979). Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am. Zool. , 1, 357–366
57.Janzen, F.J. (1995). Experimental Evidence for the Evolutionary Significance of Temperature-dependent Sex Determination. Evolution (N. Y). , 49, 864–873
58.Janzen, F.J. (2008). Sex determination in Chelydra. In: Biology of the snapping turtle (Chelydra serpentina) (eds. Steyermark, A.C., Finkler, M.S. & Brooks, R.J.). The John Hopkins University Press, Baltimore, Maryland, pp. 146–157
59.Janzen, F.J. & Krenz, J.G. (2004). Phylogenetics: Which was first, TSD or GSD? In: Temperature dependent sex determination in vertebrates (eds. Valenzuela, N. & Lance, V.A.). Smithsonian Institution Press, Washington, D.C., pp. 121–130
60.Janzen, F.J. & Morjan, C.L. (2002). Egg size, incubation temperature, and posthatching growth in painted turtles (Chrysemys picta). J. Herpetol. , 36, 308–311
61.Janzen, F.J. & Paukstis, G.L. (1991a). A preliminary test of the adaptive significance of environmental sex determination in reptiles.Evolution (N. Y). , 45, 435–440
62.Janzen, F.J. & Paukstis, G.L. (1991b). Environmental Sex Determination in Reptiles: Ecology, Evolution, and Experimental Design.Q. Rev. Biol. , 66, 149–179
63.Janzen, F.J. & Phillips, P.C. (2006). Exploring the evolution of environmental sex determination, especially in reptiles. J. Evol. Biol. , 19, 1775–1784
64.Jensen, M.P., Allen, C.D., Eguchi, T., Bell, I.P., LaCasella, E.L., Hilton, W.A., et al. (2018). Environmental Warming and Feminization of One of the Largest Sea Turtle Populations in the World.Curr. Biol. , 28, 154–159.e4
65.Jones, A.G., Arguello, J.R. & Arnold, S.J. (2002). Validation of Bateman’s principles: a genetic study of sexual selection and mating patterns in the rough–skinned newt. Proc. R. Soc. London. Ser. B Biol. Sci. , 269, 2533–2539
66.Jonsson, B., Jonsson, N. & Finstad, A. (2014). Linking embryonic temperature with adult reproductive investment in Atlantic salmon Salmo salar. Mar. Ecol. Prog. Ser. , 515, 217–226
67.Kingsolver, J.G. (2009). The well-temperatured biologist. Am. Nat. , 174, 755–768
68.Kingsolver, J.G., Diamond, S.E., Siepielski, A.M. & Carlson, S.M. (2012). Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evol. Ecol. , 26, 1101–1118
69.Kingsolver, J.G., Hoekstra, H.E., Hoekstra, J.M., Berrigan, D., Vignieri, S.N., Hill, C.E., et al. (2001). The strength of phenotypic selection in natural populations. Am. Nat. , 157, 245–61
70.Kingsolver, J.G. & Woods, H.A. (2016). Beyond thermal performance curves: modeling time-dependent effects of thermal stress on ectotherm growth rates. Am. Nat. , 187, 283–294
71.Lang, J.W. & Andrews, H. V. (1994). Temperature-dependent sex determination in crocodilians. J. Exp. Zool. , 270, 28–44
72.LeBlanc, A.M. & Wibbels, T. (2009). Effect of daily water treatment on hatchling sex ratios in a turtle with temperature-dependent sex determination. J. Exp. Zool. Part A Ecol. Genet. Physiol. , 311A, 68–72
73.De Lisle, S.P. & Rowe, L. (2013). Correlated evolution of allometry and sexual dimorphism across higher taxa. Am. Nat. , 182, 630–639
74.De Lisle, S.P. & Rowe, L. (2015). Ecological Character Displacement between the Sexes. Am. Nat. , 186, 693–707
75.Lolavar, A. & Wyneken, J. (2017). Experimental assessment of the effects of moisture on loggerhead sea turtle hatchling sex ratios.Zoology , 123, 64–70
76.Madsen, T. & Shine, R. (2000). Silver spoons and snake body sizes: prey availability early in life influences long-term growth rates of free-ranging pythons. J. Anim. Ecol. , 69, 952–958
77.Martin, T.L. & Huey, R.B. (2008). Why “suboptimal” is optimal: Jensen’s Inequality and ectotherm thermal preferences. Am. Nat. , 171, E102–E118
78.Massey, M.D., Holt, S.M., Brooks, R.J. & Rollinson, N. (2019). Measurement and modelling of primary sex ratios for species with temperature-dependent sex determination. J. Exp. Biol. , 222, jeb190215
79.McCabe, J. & Dunn, A.M. (1997). Adaptive significance of environmental sex determination in an amphipod. J. Evol. Biol. , 10, 515–527
80.Mitchell, N.J., Nelson, N.J., Cree, A., Pledger, S., Keall, S.N. & Daugherty, C.H. (2006). Support for a rare pattern of temperature-dependent sex determination in archaic reptiles: evidence from two species of tuatara (Sphenodon). Front. Zool. , 3, 9
81.Mitchell, T.S., Janzen, F.J. & Warner, D.A. (2018). Quantifying the effects of embryonic phenotypic plasticity on adult phenotypes in reptiles: A review of current knowledge and major gaps. J. Exp. Zool. Part A Ecol. Integr. Physiol. , 329, 203–214
82.Morjan, C.L. & Janzen, F.J. (2003). Nest Temperature Is Not Related to Egg Size in a Turtle with Temperature-Dependent Sex Determination.Copeia , 2003, 366–372
83.Noble, D.W.A., Stenhouse, V., Riley, J.L., Warner, D.A., While, G.M., Du, W.-G., et al. (2018a). A comprehensive database of thermal developmental plasticity in reptiles. Sci. Data , 5, 180138
84.Noble, D.W.A., Stenhouse, V. & Schwanz, L.E. (2018b). Developmental temperatures and phenotypic plasticity in reptiles: a systematic review and meta-analysis. Biol. Rev. , 93, 72–97
85.O’Steen, S. (1998). Embryonic temperature influences juvenile temperature choice and growth rate in snapping turtles Chelydra serpentina. J. Exp. Biol. , 201, 439–449
86.Packard, G. (1999). Water Relations of Chelonian Eggs and Embryos: Is Wetter Better? Am. Zool. , 39, 289–303
87.Packard, G.C., Packard, M.J. & Birchard, G.F. (1989). Sexual Differentiation and Hatching Success by Painted Turtles Incubating in Different Thermal and Hydric Environments. Herpetologica , 45, 385–392
88.Packard, G.C., Packard, M.J., Miller, K. & Boardman, T.J. (1987). Influence of Moisture, Temperature, and Substrate on Snapping Turtle Eggs and Embryos. Ecology , 68, 983–993
89.Packard, G.C., Packard, M.J., Miller, K. & Boardman, T.J. (1988). Effects of temperature and moisture during incubation on carcass composition of hatchling snapping turtles (Chelydra serpentina).J. Comp. Physiol. B , 158, 117–125
90.Paitz, R.T., Harms, H.K., Bowden, R.M. & Janzen, F.J. (2007). Experience pays: offspring survival increases with female age.Biol. Lett. , 3, 44–46
91.Paukstis, G.L., Gutzke, W.H.N. & Packard, G.C. (1984). Effects of substrate water potential and fluctuating temperatures on sex ratios of hatchling painted turtles (Chrysemys picta). Can. J. Zool. , 62, 1491–1494
92.Pen, I., Uller, T., Feldmeyer, B., Harts, A., While, G.M. & Wapstra, E. (2010). Climate-driven population divergence in sex-determining systems. Nature , 468, 436–438
93.Pokorná, M. & Kratochvíl, L. (2009). Phylogeny of sex-determining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zool. J. Linn. Soc. , 156, 168–183
94.Quinn, A.E., Sarre, S.D., Ezaz, T., Marshall Graves, J.A. & Georges, A. (2011). Evolutionary transitions between mechanisms of sex determination in vertebrates. Biol. Lett. , 7, 443–448
95.Radder, R.S., Pike, D. a, Quinn, A.E. & Shine, R. (2009). Offspring sex in a lizard depends on egg size. Curr. Biol. , 19, 1102–5
96.Rest, J.S., Ast, J.C., Austin, C.C., Waddell, P.J., Tibbetts, E.A., Hay, J.M., et al. (2003). Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. Mol. Phylogenet. Evol. , 29, 289–297
97.Rhen, T. & Crews, D. (2001). Sex and Gender. In: Evolutionary Ecology: Concepts and Case Studies (eds. Fox, C.W., Roff, D.A. & Fairbairn, D.J.). Oxford University Press, Oxford, pp. 154–164
98.Rhen, T. & Lang, J.W. (1994). Temperature-Dependent Sex Determination in the Snapping Turtle: Manipulation of the Embryonic Sex Steroid Environment. Gen. Comp. Endocrinol. , 96, 243–254
99.Rhen, T. & Lang, J.W. (1999). Incubation Temperature and Sex Affect Mass and Energy Reserves of Hatchling Snapping Turtles, Chelydra serpentina. Oikos , 86, 311–319
100.Rollinson, N. & Brooks, R.J. (2008). Sources and significance of among-individual reproductive variation in a northern population of Painted Turtles (Chrysemys picta). Copeia , 533–541
101.Rollinson, N., Holt, S.M., Massey, M.D., Holt, R.C., Nancekivell, E.G. & Brooks, R.J. (2018). A new method of estimating thermal performance of embryonic development rate yields accurate prediction of embryonic age in wild reptile nests. J. Therm. Biol. , 74
102.Rollinson, N. & Rowe, L. (2015). Persistent directional selection on body size and a resolution to the paradox of stasis. Evolution (N. Y). , 69, 2441–2451
103.Roosenburg, W.M. (1996). Maternal Condition and Nest Site Choice: An Alternative for the Maintenance of Environmental Sex Determination?Am. Zool. , 36, 157–168
104.Rowe, L. & Houle, D. (1996). The Lek Paradox and the Capture of Genetic Variance by Condition Dependent Traits. Proc. R. Soc. B Biol. Sci. , 263, 1415–1421
105.Rowe, L., Ludwig, D. & Schluter, D. (1994). Time, condition, and the seasonal decline of avian clutch size. Am. Nat. , 143, 698–722
106.Sabath, N., Itescu, Y., Feldman, A., Meiri, S., Mayrose, I. & Valenzuela, N. (2016). Sex determination, longevity, and the birth and death of reptilian species. Ecol. Evol. , 6, 5207–5220
107.Schoolfield, R.M., Sharpe, P.J.H. & Magnuson, C.E. (1981). Non-linear regression of biological temperature-dependent rate models based on absolute reaction rate theory. J. Theor. Biol. , 88, 719
108.Schwanz, L.E., Cordero, G.A., Charnov, E.L. & Janzen, F.J. (2016). Sex-specific survival to maturity and the evolution of environmental sex determination. Evolution (N. Y). , 70, 329–341
109.Schwanz, L.E., Spencer, R.-J., Bowden, R.M. & Janzen, F.J. (2010). Climate and predation dominate juvenile and adult recruitment in a turtle with temperature‐dependent sex determination. Ecology , 91, 3016–3026
110.Schwarzkopf, L. & Brooks, R.J. (1985). Sex determination in northern painted turtles: effect of incubation at constant and fluctuating temperatures. Can. J. Zool. , 63, 2543–2547
111.Shine, R. (1999). Why is sex determined by nest temperature in many reptiles? Trends Ecol. Evol. , 14, 186–189
112.Sinclair, B.J. & Roberts, S.P. (2005). Acclimation, shock and hardening in the cold. J. Therm. Biol. , 30, 557–562
113.Singh, A. & Punzalan, D. (2018). The strength of sex‐specific selection in the wild. Evolution (N. Y). , 72, 2818–2824
114.Sørensen, J.G., Kristensen, T.N. & Loeschcke, V. (2003). The evolutionary and ecological role of heat shock proteins. Ecol. Lett. , 6, 1025–1037
115.Spencer, R.-J. & Janzen, F.J. (2014). A novel hypothesis for the adaptive maintenance of environmental sex determination in a turtle.Proc. R. Soc. B Biol. Sci. , 281, 20140831
116.Steele, A.L., Wibbels, T. & Warner, D.A. (2018). Revisiting the first report of temperature-dependent sex determination in a vertebrate, the African redhead agama. J. Zool. , 306, 16–22
117.Telemeco, R.S., Gangloff, E.J., Cordero, G.A., Mitchell, T.S., Bodensteiner, B.L., Holden, K.G., et al. (2016). Reptile embryos lack the opportunity to thermoregulate by moving within the egg.Am. Nat. , 188, E13–E27
118.Telemeco, R.S., Warner, D.A., Reida, M.K. & Janzen, F.J. (2013). Extreme developmental temperatures result in morphological abnormalities in painted turtles ( Chrysemys picta ): a climate change perspective.Integr. Zool. , 8, 197–208
119.Trillmich, K.G.K. (1983). The mating system of the marine iguana.Z. Tierpsychol. , 63, 141–172
120.Trivers, R.L. (1972). Parental Investment and Sexual Selection.. In:Sexual Selection and the Descent of Man 1871-1971 (ed. Campbell, B.). Aldine, Chicago, IL, pp. 136–179
121.Trivers, R.L. & Willard, D.E. (1973). Natural Selection of Parental Ability to Vary the Sex Ratio of Offspring. Science (80-. ). , 179, 90–92
122.Valenzuela, N. (2004). Evolution and maintenance of temperature-dependent sex determination. In: Temperature dependent sex determination in vertebrates (eds. Valenzuela, N. & Lance, V.A.). Smithsonian Institute, Washington, D.C., pp. 131–147
123.Warner, D.A., Mitchell, T.S., Bodensteiner, B.L. & Janzen, F.J. (2017). The effect of hormone manipulations on sex ratios varies with environmental conditions in a turtle with temperature-dependent sex determination. J. Exp. Zool. Part A Ecol. Integr. Physiol. , 327, 172–181
124.Warner, D.A., Mitchell, T.S., Bodensteiner, B.L. & Janzen, F.J. (n.d.). Sex and incubation temperature independently affect embryonic development and offspring size in a turtle with temperature-dependent sex determination. Physiol. Biochem. Zool.
125.Warner, D.A. & Shine, R. (2005). The adaptive significance of temperature-dependent sex determination: experimental tests with a short-lived lizard. Evolution (N. Y). , 59, 2209–2221
126.Warner, D.A. & Shine, R. (2008a). Maternal nest-site choice in a lizard with temperature-dependent sex determination. Anim. Behav. , 75, 861–870
127.Warner, D.A. & Shine, R. (2008b). The adaptive significance of temperature-dependent sex determination in a reptile. Nature , 451, 566–568
128.West, S. (2009). Sex allocation . Princeton University Press, Princeton, New Jersey
129.Ye, Y.-Z., Ma, L., Sun, B.-J., Li, T., Wang, Y., Shine, R., et al. (2019). The Embryos of Turtles Can Influence Their Own Sexual Destinies. Curr. Biol. , 29, 2597–2603.e4
130.Yntema, C.L. (1968). A series of stages in the embryonic development of Chelydra serpentina. J. Morphol. , 125, 219–251
131.Yntema, C.L. (1979). Temperature levels and period of sex determination during incubation of eggs of Chelydra serpentina. J. Morphol. , 159, 17–28
Figure 1: The three patterns of sex determination in reptiles. (a) FMF is ancestral and is found in turtles, crocodilians, and lizards, (b) MF is derived and found in turtles, (c) FM is derived and found in tuataras and lizards. TPiv is the pivotal temperature, which is the temperature where the sex ratio is 50:50 under constant temperature incubation.
Figure 2 : Histogram of fitness distribution for (a) males and (b) females at sexual maturity.
Figure 3 : The relationship between environmental quality and expected fitness for males and females. (a) Visualization of the classic Trivers-Willard hypothesis. Maternal quality has a differential influence on fitness of sons and daughters (assuming quality is passed across generations), with the switch point representing the value ofx where mothers should switch bias in sex allocation. (b, c) The Mighty Males hypothesis is similar to Trivers-Willard, but incubation temperature influences condition, rather than properties of the mother. In panels (a) FMF and (b) MF, males should be produced under the conditions that maximize fitness for both sexes, as males stand to gain more from good incubation environments, and to lose more bad incubation environments. In panel (b) the lower TPiv (light grey) is meant to depict the fact that females can be produced under extremely low temperatures in MF species (Schwarzkopf & Brooks 1985).
Figure 4 : The evolution of thermal performance gives rise to embryonic adaptation that is related to thermal variability, which predicts the extent to which phenotypes are susceptible to thermal stress. Mighty Males predicts that the range of male-producing temperatures will be wider when embryos are adapted to environments that feature regular incursions into thermal extremes. (a) The evolution of thermal performance in a seasonal environment (e.g., northern latitude), with the histogram of environmentally relevant temperature (and mean embryonic temperature, To) in the background. Phenotypes experience thermal extremes and a wide range of incubation temperature. Males are produced over a relatively wide-range of incubation temperatures as individuals evolve to be robust under thermal variability. (b) The evolution of thermal performance in an aseasonal environment (e.g., tropics). Males are produced under a narrow range of temperature because embryos are less subject to thermal variability, and hence are not tolerant of thermal extremes. (c) Redrawn from Ewert et al. (2003). Thermal reaction norms for sex were measured at constant temperatures in snapping turtle (Chelydra serpentina ) populations from Minnesota (MN), Michigan (MI), Indiana (IN), Arkansas and Louisiana (AR-LA), western Florida (W.FL) and peninsular Florida (P.FL). Note that the range of male-producing temperatures seems to decline with approximate latitude, to the point that no temperature produces 100% males in more southern areas.