References

[1] Rappaport SM. Genetic Factors Are Not the Major Causes of Chronic Diseases. PLoS One 2016;11:e0154387. doi:10.1371/journal.pone.0154387.
[2] Waterhouse J. Post-hunter-gatherer era microbes’ role in allergic, autoimmune and chronic inflammatory diseases. Authorea Prepr 2020. doi:10.22541/au.159113798.83363067.
[3] Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019;7:14. doi:10.3390/microorganisms7010014.
[4] Pollard KM, Christy JM, Cauvi DM, Kono DH. Environmental Xenobiotic Exposure and Autoimmunity. Curr Opin Toxicol 2018;10:15–22. doi:10.1016/j.cotox.2017.11.009.
[5] Arleevskaya MI, Kravtsova OA, Lemerle J, Renaudineau Y, Tsibulkin AP. How Rheumatoid Arthritis Can Result from Provocation of the Immune System by Microorganisms and Viruses. Front Microbiol 2016;7:1296. doi:10.3389/fmicb.2016.01296.
[6] Hugot JP, Alberti C, Berrebi D, Bingen E, Cézard JP. Crohn’s disease: the cold chain hypothesis. Lancet (London, England) 2003;362:2012–5. doi:10.1016/S0140-6736(03)15024-6.
[7] Benito-León J, Laurence M. The Role of Fungi in the Etiology of Multiple Sclerosis. Front Neurol 2017;8:535. doi:10.3389/fneur.2017.00535.
[8] Yamada Y, Tatsumi K, Yamaguchi T, Tanabe N, Takiguchi Y, Kuriyama T, et al. Influence of stressful life events on the onset of sarcoidosis. Respirology 2003;8:186–91. doi:10.1046/j.1440-1843.2003.00456.x.
[9] Song H, Fang F, Tomasson G, Arnberg FK, Mataix-Cols D, Cruz LF de la, et al. Association of Stress-Related Disorders With Subsequent Autoimmune Disease. JAMA 2018;319:2388–400. doi:10.1001/jama.2018.7028.
[10] Manzel A, Muller DN, Hafler DA, Erdman SE, Linker RA, Kleinewietfeld M. Role of “Western Diet” in Inflammatory Autoimmune Diseases. Curr Allergy Asthma Rep 2014;14:404. doi:10.1007/s11882-013-0404-6.
[11] Chiba M, Nakane K, Komatsu M. Westernized Diet is the Most Ubiquitous Environmental Factor in Inflammatory Bowel Disease. Perm J 2019;23:18–107. doi:10.7812/TPP/18-107.
[12] Strachan DP. Hay fever, hygiene, and household size. BMJ 1989;299:1259–60. doi:10.1136/bmj.299.6710.1259.
[13] Rook GAW. 99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Darwinian medicine and the ‘hygiene’ or ‘old friends’ hypothesis. Clin Exp Immunol 2010;160:70–9. doi:10.1111/j.1365-2249.2010.04133.x.
[14] Shreiner A, Huffnagle GB, Noverr MC. The “Microflora Hypothesis” of Allergic Disease. Adv Exp Med Biol 2008;635:113–34. doi:10.1007/978-0-387-09550-9_10.
[15] Blaser MJ. Missing microbes : how the overuse of antibiotics is fueling our modern plagues. 1st ed. NY, NY: Holt; 2015.
[16] Dani A. Colonization and infection. Cent Eur J Urol 2014;67:86–7. doi:10.5173/ceju.2014.01.art19.
[17] Profet M. The function of allergy: immunological defense against toxins. Q Rev Biol 1991;66:23–62. doi:10.1086/417049.
[18] Palm NW, Rosenstein RK, Medzhitov R. Allergic Host Defenses. Nature 2012;484:465–72. doi:10.1038/nature11047.
[19] Tsai M, Starkl P, Marichal T, Galli SJ. Testing the “toxin hypothesis of allergy”: Mast cells, IgE, and innate and acquired immune responses to venoms. Curr Opin Immunol 2015;36:80–7. doi:10.1016/j.coi.2015.07.001.
[20] Daschner A, González Fernández J. Allergy in an Evolutionary Framework. J Mol Evol 2020;88:66–76. doi:10.1007/s00239-019-09895-3.
[21] Sherman PW, Holland E, Sherman JS. Allergies: their role in cancer prevention. Q Rev Biol 2008;83:339–62. doi:10.1086/592850.
[22] Daschner A. An Evolutionary-Based Framework for Analyzing Mold and Dampness-Associated Symptoms in DMHS. Front Immunol 2017;7:672. doi:10.3389/fimmu.2016.00672.
[23] Sharma S, Thomas PG. The two faces of heterologous immunity: protection or immunopathology. J Leukoc Biol 2014;95:405–16. doi:10.1189/jlb.0713386.
[24] Earl CS, An S, Ryan RP. The changing face of asthma and its relation with microbes. Trends Microbiol 2015;23:408–18. doi:10.1016/j.tim.2015.03.005.
[25] Lagier J-C, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 2012;18:1185–93. doi:10.1111/1469-0691.12023.
[26] Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere.” Proc Natl Acad Sci U S A 2006;103:12115–20. doi:10.1073/pnas.0605127103.
[27] Chao A, Hsieh TC, Chazdon RL, Colwell RK, Gotelli NJ. Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory. Ecology 2015;96:1189–201. doi:10.1890/14-0550.1.
[28] Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J 2017;11:853–62. doi:10.1038/ismej.2016.174.
[29] Tett A, Pasolli E, Farina S, Truong DT, Asnicar F, Zolfo M, et al. Unexplored diversity and strain-level structure of the skin microbiome associated with psoriasis. NPJ Biofilms Microbiomes 2017;3:14. doi:10.1038/s41522-017-0022-5.
[30] Fischer M, Strauch B, Renard BY. Abundance estimation and differential testing on strain level in metagenomics data. Bioinformatics, vol. 33, 2017, p. i124–32. doi:10.1093/bioinformatics/btx237.
[31] Bui FQ, Almeida-da-Silva CLC, Huynh B, Trinh A, Liu J, Woodward J, et al. Association between periodontal pathogens and systemic disease. Biomed J 2019;42:27–35. doi:10.1016/j.bj.2018.12.001.
[32] Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv 2019;5:eaau3333. doi:10.1126/sciadv.aau3333.
[33] Casadevall A, Pirofski L. Accidental Virulence, Cryptic Pathogenesis, Martians, Lost Hosts, and the Pathogenicity of Environmental Microbes. Eukaryot Cell 2007;6:2169–74. doi:10.1128/EC.00308-07.
[34] Babič MN, Gostinčar C, Gunde-Cimerman N. Microorganisms populating the water-related indoor biome. Appl Microbiol Biotechnol 2020;104:6443–62. doi:10.1007/s00253-020-10719-4.
[35] Root-Bernstein R, Fairweather D. Unresolved issues in theories of autoimmune disease using myocarditis as a framework. J Theor Biol 2015;375:101–23. doi:10.1016/j.jtbi.2014.11.022.
[36] Pendala S, Walker JM, Holt PR. A High-Fat Diet Is Associated With Endotoxemia That Originates From the Gut. Gastroenterology 2012;142:1100-1101.e1. doi:10.1053/j.gastro.2012.01.034.
[37] Guo Y, Bian X, Liu J, Zhu M, Li L, Yao T, et al. Dietary Components, Microbial Metabolites and Human Health: Reading between the Lines. Foods 2020;9:1045. doi:10.3390/foods9081045.
[38] Dave ND, Xiang L, Rehm KE, Marshall GD, Jr. Stress and Allergic Diseases. Immunol Allergy Clin North Am 2011;31:55–68. doi:10.1016/j.iac.2010.09.009.
[39] Sherbet G. Bacterial Infections and the Pathogenesis of Autoimmune Conditions. Br J Med Pract 2009;2:6–13.
[40] Mattman LH. Cell wall deficient forms : stealth pathogens. 3rd ed. Boca Raton, FL: CRC Press; 2001.
[41] Hugot JP, Dumay A, Barreau F, Meinzer U. Crohn’s disease: is the cold chain hypothesis still hot? J Crohn’s Colitis 2020. doi:10.1093/ecco-jcc/jjaa192.
[42] Tenailleau QM, Lanier C, Gower-Rousseau C, Cuny D, Deram A, Occelli F. Crohn’s disease and environmental contamination: Current challenges and perspectives in exposure evaluation 2020. doi:10.1016/j.envpol.2020.114599.
[43] Roberts‐Thomson IC, Bryant R V, Costello SP. Uncovering the cause of ulcerative colitis. JGH Open 2019;3:274–6. doi:10.1002/jgh3.12216.
[44] Lee KY, Han JW, Lee JS. Kawasaki disease may be a hyperimmune reaction of genetically susceptible children to variants of normal environmental flora. Med Hypotheses 2007;69:642–51. doi:10.1016/j.mehy.2006.12.051.
[45] Bhattacharyya M, Ghosh T, Shankar S, Tomar N. The conserved phylogeny of blood microbiome. Mol Phylogenet Evol 2017;109:404–8. doi:10.1016/j.ympev.2017.02.001.
[46] Whittle E, Leonard MO, Harrison R, Gant TW, Tonge DP. Multi-Method Characterization of the Human Circulating Microbiome. Front Microbiol 2019;9:3266. doi:10.3389/fmicb.2018.03266.
[47] Castillo DJ, Rifkin RF, Cowan DA, Potgieter M. The Healthy Human Blood Microbiome: Fact or Fiction? Front Cell Infect Microbiol 2019;9:148. doi:10.3389/fcimb.2019.00148.
[48] Dickson RP, Martinez FJ, Huffnagle GB. The Role of the Microbiome in Exacerbations of Chronic Lung Diseases. Lancet 2014;384:691–702. doi:10.1016/s0140-6736(14)61136-3.
[49] Hammad DBM, Tonge DP. Molecular Characterisation of the Synovial Fluid Microbiome. PLoS One 2019;14:e0225110. doi:10.1371/journal.pone.0225110.
[50] Branton WG, Ellestad KK, Maingat F, Wheatley BM, Rud E, Warren RL, et al. Brain Microbial Populations in HIV/AIDS: α-Proteobacteria Predominate Independent of Host Immune Status. PLoS One 2013;8:e54673. doi:10.1371/journal.pone.0054673.
[51] Branton WG, Lu JQ, Surette MG, Holt RA, Lind J, Laman JD, et al. Brain microbiota disruption within inflammatory demyelinating lesions in multiple sclerosis. Sci Rep 2016;6:37344. doi:10.1038/srep37344.
[52] Kriesel JD, Bhetariya P, Wang Z-M, Renner D, Palmer C, Fischer KF. Spectrum of Microbial Sequences and a Bacterial Cell Wall Antigen in Primary Demyelination Brain Specimens Obtained from Living Patients. Sci Rep 2019;9:1387. doi:10.1038/s41598-018-38198-8.
[53] Alonso R, Pisa D, Carrasco L. Searching for Bacteria in Neural Tissue From Amyotrophic Lateral Sclerosis. Front Neurosci 2019;13:171. doi:10.3389/fnins.2019.00171.
[54] Carrasco L, Pisa D, Alonso R. Polymicrobial Infections and Neurodegenerative Diseases. Curr Clin Microbiol Reports 2020;7:20–30. doi:10.1007/s40588-020-00139-3.
[55] Whittle E, Leonard MO, Harrison R, Gant TW, Tonge DP. Multi-Method Characterisation of the Human Circulating Microbiome. Front Microbiol 2019;17:3266. doi:10.1101/359760.
[56] Domagal-Goldman SD, Wright KE, Adamala K, Arina de la Rubia L, Bond J, Dartnell LR, et al. The Astrobiology Primer v2.0. Astrobiology 2016;16:561–653. doi:10.1089/ast.2015.1460.
[57] Vaishampayan P, Probst AJ, La Duc MT, Bargoma E, Benardini JN, Andersen GL, et al. New perspectives on viable microbial communities in low-biomass cleanroom environments. ISME J 2013;7:312–24. doi:10.1038/ismej.2012.114.
[58] Mogul R, Barding GA, Lalla S, Lee S, Madrid S, Baki R, et al. Metabolism and Biodegradation of Spacecraft Cleaning Reagents by Strains of Spacecraft-Associated Acinetobacter. Astrobiology 2018;18:1517–27. doi:10.1089/ast.2017.1814.
[59] Casadevall A, Steenbergen JN, Nosanchuk JD. “Ready made” virulence and “dual use” virulence factors in pathogenic environmental fungi — the Cryptococcus neoformans paradigm. Curr Opin Microbiol 2003;6:332–7. doi:10.1016/S1369-5274(03)00082-1.
[60] Casadevall A, Pirofski L. Benefits and Costs of Animal Virulence for Microbes. MBio 2019;10:e00863-19. doi:10.1128/mBio.00863-19.
[61] Lee HS. Diversity of halophilic archaea in fermented foods and human intestines and their application. J Microbiol Biotechnol 2013;23:1645–53. doi:10.4014/jmb.1308.08015.
[62] Gibtan A, Park K, Woo M, Shin J-K, Lee DW, Sohn JH, et al. Diversity of Extremely Halophilic Archaeal and Bacterial Communities from Commercial Salts. Front Microbiol 2017;8:799. doi:10.3389/fmicb.2017.00799.
[63] Zajc J, Gunde-Cimerman N. The Genus Wallemia—From Contamination of Food to Health Threat. Microorganisms 2018;6:46. doi:10.3390/microorganisms6020046.
[64] Newman KL, Newman LS. Occupational Causes of Sarcoidosis. Curr Opin Allergy Clin Immunol 2012;12:145–50. doi:10.1097/ACI.0b013e3283515173.
[65] Pauly JL, Paszkiewicz G. Cigarette smoke, bacteria, mold, microbial toxins, and chronic lung inflammation. J Oncol 2011;2011:819129. doi:10.1155/2011/819129.
[66] Kobziar LN, Pingree MRA, Larson H, Dreaden TJ, Green S, Smith JA. Pyroaerobiology: the aerosolization and transport of viable microbial life by wildland fire. Ecosphere 2018;9:e02507. doi:10.1002/ecs2.2507.
[67] Moore RA, Bomar C, Kobziar LN, Christner BC. Wildland fire as an atmospheric source of viable microbial aerosols and biological ice nucleating particles. ISME J 2020:1–12. doi:10.1038/s41396-020-00788-8.
[68] Happo MR, Sippula O, Jalava PI, Rintala H, Leskinen A, Komppula M, et al. Role of microbial and chemical composition in toxicological properties of indoor and outdoor air particulate matter. Part Fibre Toxicol 2014;11:60. doi:10.1186/s12989-014-0060-6.
[69] Gutarowska B, Szulc J, Nowak A, Otlewska A, Okrasa M, Jachowicz A, et al. Dust at Various Workplaces—Microbiological and Toxicological Threats. Int J Environ Res Public Health 2018;15:877. doi:10.3390/ijerph15050877.
[70] Li H, Zhou XY, Yang XR, Zhu YG, Hong YW, Su JQ. Spatial and seasonal variation of the airborne microbiome in a rapidly developing city of China. Sci Total Environ 2019;665:61–8. doi:10.1016/j.scitotenv.2019.01.367.
[71] Qin T, Zhang F, Zhou H, Ren H, Du Y, Liang S, et al. High-Level PM2.5/PM10 Exposure Is Associated With Alterations in the Human Pharyngeal Microbiota Composition. Front Microbiol 2019;10:54. doi:10.3389/fmicb.2019.00054.
[72] Hesselmar B, Hicke-Roberts A, Wennergren G. Allergy in Children in Hand Versus Machine Dishwashing. Pediatrics 2015;135:e590–7.
[73] Cheng LE, Cabana MD. Dishing It Out to Allergies. Pediatrics 2015;135:e707–8.
[74] Beceiro A, Tomás M, Bou G. Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World? Clin Microbiol Rev 2013;26:185–230. doi:10.1128/CMR.00059-12.
[75] Mattman LH. Cell wall-deficient forms of mycobacteria. Ann N Y Acad Sci 1970;174:852–61. doi:10.1111/j.1749-6632.1970.tb45604.x.
[76] Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 2015;39:567–91. doi:10.1093/femsre/fuv013.
[77] Markova N. Dysbiotic microbiota in autistic children and their mothers: persistence of fungal and bacterial wall-deficient L-form variants in blood. Sci Rep 2019;9:13401. doi:10.1038/s41598-019-49768-9.
[78] Sampson HA. Food allergy: Past, present and future. Allergol Int 2016;65:363–9. doi:10.1016/j.alit.2016.08.006.
[79] Cserháti E. The history of bronchial asthma from the ancient times till the Middle Ages. Acta Physiol Hung 2004;91:243–61. doi:10.1556/APhysiol.91.2004.3-4.8.
[80] Entezami P, Fox DA, Clapham PJ, Chung KC. Historical Perspective on the Etiology of Rheumatoid Arthritis. Hand Clin 2011;27:1–10. doi:10.1016/j.hcl.2010.09.006.
[81] Costa-Pinto FA, Basso AS, Russo M. Role of mast cell degranulation in the neural correlates of the immediate allergic reaction in a murine model of asthma. Brain Behav Immun 2007;21:783–90. doi:10.1016/j.bbi.2007.01.002.
[82] Tonelli LH, Katz M, Kovacsics CE, Gould TD, Joppy B, Hoshino A, et al. Allergic rhinitis induces anxiety-like behavior and altered social interaction in rodents. Brain Behav Immun 2009;23:784–93. doi:10.1016/j.bbi.2009.02.017.
[83] Costa-Pinto FA, Basso AS, Britto LRG, Malucelli BE, Russo M. Avoidance behavior and neural correlates of allergen exposure in a murine model of asthma. Brain Behav Immun 2005;19:52–60. doi:10.1016/j.bbi.2004.02.005.
[84] Manalai P, Hamilton RG, Langenberg P, Kosisky SE, Lapidus M, Sleemi A, et al. Pollen-specific immunoglobulin E positivity is associated with worsening of depression scores in bipolar disorder patients during high pollen season. Bipolar Disord 2012;14:90–8. doi:10.1111/j.1399-5618.2012.00983.x.
[85] Kelly K, Ratliff S, Mezuk B. Allergies, asthma, and psychopathology in a nationally-representative US sample. J Affect Disord 2019;251:130–5. doi:10.1016/j.jad.2019.03.026.
[86] Hsiao YH, Chen YT, Tseng CM, Wu LA, Lin WC, Su VYF, et al. Sleep Disorders and Increased Risk of Autoimmune Diseases in Individuals without Sleep Apnea. Sleep 2015;38:581–6. doi:10.5665/sleep.4574.
[87] Zielinski MR, Systrom DM, Rose NR. Fatigue, sleep, and autoimmune and related disorders. Front Immunol 2019;10:1827. doi:10.3389/fimmu.2019.01827.
[88] Schneiderman N, Ironson G, Siegel SD. Stress and Health: Psychological, Behavioral, and Biological Determinants. Annu Rev Clin Psychol 2005;1:607–28. doi:10.1146/annurev.clinpsy.1.102803.144141.
[89] Dhabhar FS, Malarkey WB, Neri E, McEwen BS. Stress-induced redistribution of immune cells - from barracks to boulevards to battlefields: a tale of 3 hormones. Psychoneuroendocrinology 2012;37:1345–68. doi:10.1016/j.psyneuen.2012.05.008.
[90] Geng S, Yang L, Cheng F, Zhang Z, Li J, Liu W, et al. Gut Microbiota Are Associated With Psychological Stress-Induced Defections in Intestinal and Blood–Brain Barriers. Front Microbiol 2020;10:3067. doi:10.3389/fmicb.2019.03067.
[91] Tsujita S, Morimoto K. Secretory IgA in Saliva can be a Useful Stress Marker. Environ Health Prev Med 1999;4:1–8. doi:10.1007/BF02931243.
[92] Phillips AC, Carroll D, Evans P, Bosch JA, Clow A, Hucklebridge F, et al. Stressful life events are associated with low secretion rates of immunoglobulin A in saliva in the middle aged and elderly. Brain Behav Immun 2006;20:191–7. doi:10.1016/j.bbi.2005.06.006.
[93] Richmond BW, Brucker RM, Han W, Du RH, Zhang Y, Cheng DS, et al. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency. Nat Commun 2016;7:11240. doi:10.1038/ncomms11240.
[94] Pellegrino MG, Bluth MH, Smith-Norowitz T, Fikrig S, Volsky DJ, Moallem H, et al. HIV type 1-specific IgE in serum of long-term surviving children inhibits HIV type 1 production in vitro. AIDS Res Hum Retroviruses 2002;18:363–72. doi:10.1089/088922202753519142.
[95] Bluth MH, Robin J, Ruditsky M, Norowitz KB, Chice S, Pytlak E, et al. IgE Anti-Borrelia burgdorferi Components (p18, p31, p34, p41, p45, p60) and Increased Blood CD8 + CD60+ T Cells in Children with Lyme Disease. Scand J Immunol 2007;65:376–82. doi:10.1111/j.1365-3083.2007.01904.x.
[96] Magen E, Schlesinger M, David M, Ben-Zion I, Vardy D. Selective IgE deficiency, immune dysregulation, and autoimmunity. Allergy Asthma Proc 2014;35:e27-33. doi:10.2500/aap.2014.35.3734.
[97] Smith JK, Krishnaswamy GH, Dykes R, Reynolds S, Berk SL. Clinical Manifestations of IgE Hypogammaglobulinemia. Ann Allergy, Asthma Immunol 1997;78:313–8. doi:10.1016/S1081-1206(10)63188-2.
[98] Magen E, Mishal J, Vardy D. Selective IgE deficiency and cardiovascular diseases. Allergy Asthma Proc 2015;36:225–9. doi:10.2500/aap.2015.36.3825.
[99] Ferastraoaru D, Gross R, Rosenstreich D. Increased malignancy incidence in IgE deficient patients not due to concomitant Common Variable Immunodeficiency. Ann Allergy, Asthma Immunol 2017;119:267–73. doi:10.1016/j.anai.2017.07.006.
[100] Trost B, Lucchese G, Stufano A, Bickis M, Kusalik A, Kanduc D. No human protein is exempt from bacterial motifs, not even one. Self Nonself 2010;1:328–34. doi:10.4161/self.1.4.13315.
[101] Bacher P, Hohnstein T, Beerbaum E, Röcker M, Blango MG, Kaufmann S, et al. Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell 2019;176:1340-1355.e15. doi:10.1016/j.cell.2019.01.041.
[102] Sabino R, Faísca VM, Carolino E, Veríssimo C, Viegas C. Occupational exposure to Aspergillus by swine and poultry farm workers in Portugal. J Toxicol Environ Health A 2012;75:1381–91. doi:10.1080/15287394.2012.721170.
[103] Mousavi B, Hedayati MT, Hedayati N, Ilkit M, Syedmousavi S. Aspergillus species in indoor environments and their possible occupational and public health hazards. Curr Med Mycol 2016;2:36–52. doi:10.18869/acadpub.cmm.2.1.36.
[104] Fairs A, Agbetile J, Bourne M, Hargadon B, Monteiro WR, Morley JP, et al. Isolation of Aspergillus fumigatus from sputum is associated with elevated airborne levels in homes of patients with asthma. Indoor Air 2013;23:275–84. doi:10.1111/ina.12020.
[105] Hills RD, Jr., Pontefract BA, Mishcon HR, Black CA, Sutton SC, et al. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019;11:1613. doi:10.3390/nu11071613.
[106] Neuman H, Forsythe P, Uzan A, Avni O, Koren O. Antibiotics in early life: dysbiosis and the damage done. FEMS Microbiol Rev 2018;42:489–99. doi:10.1093/femsre/fuy018.
[107] Petersen J, Ciacchi L, Tran MT, Loh KL, Kooy-Winkelaar Y, Croft NP, et al. T cell receptor cross-reactivity between gliadin and bacterial peptides in celiac disease. Nat Struct Mol Biol 2020;27:49–61. doi:10.1038/s41594-019-0353-4.
[108] Scales BS, Dickson RP, LiPuma JJ, Huffnagle GB. Microbiology, Genomics, and Clinical Significance of the Pseudomonas fluorescens Species Complex, an Unappreciated Colonizer of Humans. Clin Microbiol Rev 2014;27:927–48. doi:10.1128/CMR.00044-14.
[109] Thirumala Krishna M, Subramanian A, Adderley NJ, Zemedikun DT, Gkoutos G V, Nirantharakumar K. Allergic diseases and long-term risk of autoimmune disorders: longitudinal cohort study and cluster analysis. Eur Respir J 2019;54:1900476. doi:10.1183/13993003.00476-2019.
[110] Klamt S, Vogel M, Kapellen TM, Hiemisch A, Prenzel F, Zachariae S, et al. Association between IgE-mediated allergies and diabetes mellitus type 1 in children and adolescents. Pediatr Diabetes 2015;16:493–503. doi:10.1111/pedi.12298.
[111] Seiskari T, Viskari H, Kondrashova A, Haapala AM, Ilonen J, Knip M, et al. Co-occurrence of allergic sensitization and type 1 diabetes. Ann Med 2010;42:352–9. doi:10.3109/07853890.2010.481678.
[112] Chen YH, Lin CL, Bau DT, Hung YC. The risk of allergic conjunctivitis in patients with type 1 diabetes mellitus: a population-based retrospective cohort study. BMJ Open 2017;7:e015795. doi:10.1136/bmjopen-2016-015795.
[113] Krischer JP, Cuthbertson D, Couluris M, Knip M, Virtanen SM. Association of diabetes-related autoantibodies with the incidence of asthma, eczema and allergic rhinitis in the TRIGR randomised clinical trial. Diabetologia 2020;63:1796–1807. doi:10.1007/s00125-020-05188-3.
[114] Mustonen N, Siljander H, Peet A, Tillmann V, Härkönen T, Niemelä O, et al. Coeliac disease and HLA-conferred susceptibility to autoimmunity are associated with IgE sensitization in young children. Allergy 2020;75:692–4. doi:10.1111/all.14055.
[115] Avrameas S, Alexopoulos H, Moutsopoulos HM. Natural autoantibodies: An undersung hero of the immune system and autoimmune disorders-A point of view. Front Immunol 2018;9:1320. doi:10.3389/fimmu.2018.01320.
[116] Rivera-Correa J, Rodriguez A. Divergent Roles of Antiself Antibodies during Infection. Trends Immunol 2018;39:515–22. doi:10.1016/j.it.2018.04.003.
[117] Tedeschi A, Asero R. Asthma and autoimmunity: a complex but intriguing relation. Expert Rev Clin Immunol 2008;4:767–76. doi:10.1586/1744666X.4.6.767.
[118] Macri GF, Greco A, Marinelli C, Gallo A, Fusconi M, De Virgilio A, et al. Evidence and Role of Autoantibodies in Chronic Rhinosinusitis with Nasal Polyps. Int J Immunopathol Pharmacol 2014;27:155–61. doi:10.1177/039463201402700202.
[119] Kamiya H, Panlaqui OM. Prognostic significance of autoantibodies for idiopathic pulmonary fibrosis: protocol for a systematic review. BMJ Open 2018;8:e020862. doi:10.1136/bmjopen-2017-020862.
[120] Wen L, Krauss-Etschmann S, Petersen F, Yu X. Autoantibodies in Chronic Obstructive Pulmonary Disease. Front Immunol 2018;9:66. doi:10.3389/fimmu.2018.00066.
[121] Maurer M, Altrichter S, Schmetzer O, Scheffel J, Church MK, Metz M. Immunoglobulin E-mediated autoimmunity. Front Immunol 2018;9:689. doi:10.3389/fimmu.2018.00689.
[122] Cojocaru M, Cojocaru IM, Silosi I, Vrabie CD. Pulmonary manifestations of systemic autoimmune diseases. Maedica (Buchar) 2011;6:224–9.
[123] Vutcovici M, Brassard P, Bitton A. Inflammatory bowel disease and airway diseases. World J Gastroenterol 2016;22:7735–41. doi:10.3748/wjg.v22.i34.7735.
[124] Abdul Rani R, Raja Ali RA, Lee YY. Irritable bowel syndrome and inflammatory bowel disease overlap syndrome: pieces of the puzzle are falling into place. Intest Res 2016;14:297–300. doi:10.5217/ir.2016.14.4.297.
[125] Lee M-R, Son B-S, Park Y-R, Kim H-M, Moon J-Y, Lee Y-J, et al. The Relationship Between Psychosocial Stress and Allergic Disease Among Children and Adolescents in Gwangyang Bay, Korea. J Prev Med Public Heal 2012;45:374–80. doi:10.3961/jpmph.2012.45.6.374.
[126] Lee JM, Kim HC, Kang JI, Suh I. Association between stressful life events and resting heart rate. BMC Psychol 2014;2:29. doi:10.1186/s40359-014-0029-0.
[127] Kim HG, Cheon EJ, Bai DS, Lee YH, Koo BH. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig 2018;15:235=245. doi:10.30773/pi.2017.08.17.
[128] Maheshwari A, Norby FL, Soliman EZ, Adabag S, Whitsel EA, Alonso A, et al. Low Heart Rate Variability in a 2-Minute Electrocardiogram Recording Is Associated with an Increased Risk of Sudden Cardiac Death in the General Population: The Atherosclerosis Risk in Communities Study. PLoS One 2016;11:e0161648. doi:10.1371/journal.pone.0161648.
[129] Chang YM, Huang YT, Chen IL, Yang CL, Leu SC, Su HL, et al. Heart rate variability as an independent predictor for 8-year mortality among chronic hemodialysis patients. Sci Rep 2020;10:881. doi:10.1038/s41598-020-57792-3.
[130] Zhang D, Shen X, Qi X. Resting heart rate and all-cause and cardiovascular mortality in the general population: a meta-analysis. Can Med Assoc J 2016;188:E53–63. doi:10.1503/cmaj.150535.
[131] Prasada S, Oswalt C, Yeboah P, Saylor G, Bowden D, Yeboah J. Heart rate is an independent predictor of all-cause mortality in individuals with type 2 diabetes: The diabetes heart study. World J Diabetes 2018;9:33–9. doi:10.4239/wjd.v9.i1.33.
[132] Zhao Q, Li H, Wang A, Guo J, Yu J, Luo Y, et al. Cumulative Resting Heart Rate Exposure and Risk of All-Cause Mortality: Results from the Kailuan Cohort Study. Sci Rep 2017;7:40212. doi:10.1038/srep40212.
[133] Liu H, Liang Z, Cao N, Tan X, Liu Z, Wang F, et al. Airway bacterial and fungal microbiome in chronic obstructive pulmonary disease. BioRxiv 2020. doi:10.1101/2020.10.05.327536.
[134] Hoggard M, Mackenzie BW, Jain R, Taylor MW, Biswas K, Douglas RG. Chronic rhinosinusitis and the evolving understanding of microbial ecology in chronic inflammatory mucosal disease. Clin Microbiol Rev 2017;30:321–48. doi:10.1128/CMR.00060-16.
[135] Luca F De, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immunol 2018. doi:10.1111/cei.13158.
[136] Stopinšek S, Ihan A, Salobir B, Terčelj M, Simčič S. Fungal cell wall agents and bacterial lipopolysaccharide in organic dust as possible risk factors for pulmonary sarcoidosis. J Occup Med Toxicol 2016;11:46. doi:10.1186/s12995-016-0135-4.
[137] Brownell I, Ramírez-Valle F, Sanchez M, Prystowsky S. Evidence for Mycobacteria in Sarcoidosis. Am J Respir Cell Mol Biol 2011;45:899–905. doi:10.1165/rcmb.2010-0433TR.
[138] Esteves T, Aparicio G, Garcia-Patos V. Is there any association between Sarcoidosis and infectious agents?: a systematic review and meta-analysis. BMC Pulm Med 2016;16:165. doi:10.1186/s12890-016-0332-z.
[139] Terčelj M, Salobir B, Zupancic M, Rylander R. Antifungal medication is efficient in the treatment of sarcoidosis. Ther Adv Respir Dis 2011;5:157–62. doi:10.1177/1753465811401648.
[140] Bachelez H, Senet P, Cadranel J, Kaoukhov A, Dubertret L. The Use of Tetracyclines for the Treatment of Sarcoidosis. Arch Dermatol 2001;137:69–73. doi:10.1001/archderm.137.1.69.
[141] Waterhouse JC, Perez TH, Albert PJ. Reversing bacteria-induced vitamin D receptor dysfunction is key to autoimmune disease. Ann N Y Acad Sci 2009;1173:757–65. doi:10.1111/j.1749-6632.2009.04637.x.
[142] Duréault A, Chapelon C, Biard L, Domont F, Savey L, Bodaghi B, et al. Severe infections in sarcoidosis: Incidence, predictors and long-term outcome in a cohort of 585 patients. Medicine (Baltimore) 2017;96:e8846. doi:10.1097/MD.0000000000008846.
[143] Rigottier-Gois L. Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis microbe-microbe and microbe-host interactions. ISME J 2013;7:1256–61. doi:10.1038/ismej.2013.80.
[144] Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. Proteobacteria: A common factor in human diseases. Biomed Res Int 2017;2017:1–7. doi:10.1155/2017/9351507.
[145] Witkowski M, Witkowski M, Gagliani N, Huber S. Recipe for IBD: can we use food to control inflammatory bowel disease? The role of the immune system and the intestinal microbiota in IBD. Semin Immunopathol 2018;40:145–56. doi:10.1007/s00281-017-0658-5.
[146] Zhang M, Sun K, Wu Y, Yang Y, Tso P, Wu Z. Interactions between Intestinal Microbiota and Host Immune Response in Inflammatory Bowel Disease. Front Immunol 2017;8:942. doi:10.3389/fimmu.2017.00942.
[147] Agrawal G, Hamblin H, Clancy A, Borody T. Anti-Mycobacterial Antibiotic Therapy Induces Remission in Active Paediatric Crohn’s Disease. Microorganisms 2020;8:1112. doi:10.3390/microorganisms8081112.
[148] Agrawal G, Clancy A, Huynh R, Borody T. Profound remission in Crohn’s disease requiring no further treatment for 3–23 years: a case series. Gut Pathog 2020;12:16. doi:10.1186/s13099-020-00355-8.
[149] Agrawal G, Aitken J, Hamblin H, Collins M, Borody TJ. Putting Crohn’s on the MAP: Five Common Questions on the Contribution of Mycobacterium avium subspecies paratuberculosis to the Pathophysiology of Crohn’s Disease. Dig Dis Sci 2020:1–11. doi:10.1007/s10620-020-06653-0.
[150] Agrawal G, Borody T, Turner R, Leis S, Campbell J. Combining infliximab, anti-MAP and hyperbaric oxygen therapy for resistant fistulizing Crohn’s disease. Futur Sci OA 2015;1:FSO77. doi:10.4155/fso.15.77.
[151] Agrawal G, Clancy A, Sharma R, Huynh R, Ramrakha S, Borody T. Targeted combination antibiotic therapy induces remission in treatment-naïve crohn’s disease: A case series. Microorganisms 2020;8:371. doi:10.3390/microorganisms8030371.
[152] Dow CT, Sechi LA. Cows get crohn’s disease and they’re giving us diabetes. Microorganisms 2019;7. doi:10.3390/microorganisms7100466.
[153] National Advisory Committee on Microbiological Criteria. Assessment of Food as a Source of Exposure to Mycobacterium avium subspecies paratuberculosis (MAP). J Food Prot 2010;73:1357–97. doi:10.4315/0362-028x-73.7.1357.
[154] Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, et al. Fungal microbiota dysbiosis in IBD. Gut 2017;66:1039–48. doi:10.1136/gutjnl-2015-310746.
[155] Kotlyar DS, Shum M, Hsieh J, Blonski W, Greenwald DA. Non-pulmonary allergic diseases and inflammatory bowel disease: A qualitative review. World J Gastroenterol 2014;20:11023–32. doi:10.3748/wjg.v20.i32.11023.
[156] Gunasekeera V, Mendall MA, Chan D, Kumar D. Treatment of Crohn’s Disease with an IgG4-Guided Exclusion Diet: A Randomized Controlled Trial. Dig Dis Sci 2016;61:1148–57. doi:10.1007/s10620-015-3987-z.
[157] Lee H, Lee JH, Koh SJ, Park H. Bidirectional relationship between atopic dermatitis and inflammatory bowel disease: a systematic review and meta-analysis. J Am Acad Dermatol 2020;93:1385–94. doi:10.1016/j.jaad.2020.05.130.
[158] Chudnow ML, Levy MB, Kelly KJ, Binion DG. Increased prevalence of environmental allergy in patients with Crohn’s disease. J Allergy Clin Immunol 2004;113:S276. doi:10.1016/j.jaci.2004.01.468.
[159] Wasielewska Z, Dolińska A, Wilczyńska D, Szaflarska-Popławska A, Krogulska A. Prevalence of allergic diseases in children with inflammatory bowel disease. Postȩpy Dermatol Alergol 2019;36:282–90. doi:10.5114/ada.2018.81189.
[160] Sun Y, Li L, Xie R, Wang B, Jiang K, Cao H. Stress Triggers Flare of Inflammatory Bowel Disease in Children and Adults. Front Pediatr 2019;7:432. doi:10.3389/fped.2019.00432.
[161] Mawdsley JE, Rampton DS. Psychological stress in IBD: new insights into pathogenic and therapeutic implications. Gut 2005;54:1481–91. doi:10.1136/gut.2005.064261.
[162] Brassard P, Vutcovici M, Ernst P, Patenaude V, Sewitch M, Suissa S, et al. Increased incidence of inflammatory bowel disease in Québec residents with airway diseases. Eur Respir J 2015;45:962–8. doi:10.1183/09031936.00079414.
[163] Gómez-Gascón L, Bröker BM. Bacterial Allergens. In: Schmidt-Weber CB, editor. Allergy Prev. Exacerbation, Springer International Publishing; 2017, p. 27–50. doi:10.1007/978-3-319-69968-4_3.
[164] Nordengrün M, Michalik S, Völker U, Bröker BM, Gómez-Gascón L. The quest for bacterial allergens. Int J Med Microbiol 2018;308:738–50. doi:10.1016/j.ijmm.2018.04.003.
[165] Dutkiewicz J, Mackiewicz B, Lemieszek MK, Golec M, Skórska C, Góra-Florek A, et al. Pantoea agglomerans: a mysterious bacterium of evil and good. Part II – Deleterious effects: Dust- borne endotoxins and allergens – focus on grain dust, other agricultural dusts and wood dust. Ann Agric Env Med 2016;23:6–29. doi:10.5604/12321966.1196848.
[166] Lecours PB, Veillette M, Marsolais D, Duchaine C. Characterization of Bioaerosols from Dairy Barns: Reconstructing the Puzzle of Occupational Respiratory Diseases by Using Molecular Approaches. Appl Environ Microbiol 2012;78:3242–8. doi:10.1128/AEM.07661-11.
[167] Lecours PB, Duchaine C, Taillefer M, Tremblay C, Veillette M, Cormier Y, et al. Immunogenic Properties of Archaeal Species Found in Bioaerosols. PLoS One 2011;6:e23326. doi:10.1371/journal.pone.0023326.
[168] Smith-Norowitz TA, Josekutty J, Lev-Tov H, Kohlhoff S, Norowitz KB, Silverberg JI, et al. IgE Anti-Varicella Zoster Virus and Other Immune Responses Before, During, and After Shingles. Ann Clin Lab Sci 2009;39:43–50.
[169] Smith-Norowitz TA, Josekutty J, Silverberg JI, Lev-Tov H, Norowitz YM, Kohlhoff S, et al. Long Term Persistence of IgE Anti-Varicella Zoster Virus in Pediatric and Adult Serum Post Chicken Pox Infection and after Vaccination with Varicella Virus Vaccine. Int J Biomed Sci 2009;5:353–8. doi:10.1016/j.jaci.2007.12.770.
[170] Smith-Norowitz TA, Wong D, Kusonruksa M, Norowitz KB, Joks R, Durkin HG, et al. Long Term Persistence of IgE Anti-Influenza Virus Antibodies in Pediatric and Adult Serum Post Vaccination with Influenza Virus Vaccine. Int J Med Sci 2011;8:239–44. doi:10.7150/ijms.8.239.
[171] Smith-Norowitz TA, Drew H, Norowitz HM, Nowakowski M, Bluth EF, Durkin HG, et al. Detection of IgE Anti-Parvovirus Antibodies in Human Breast Milk. Ann Clin Lab Sci 2008;38:168–73.
[172] Bachert C, Pawankar R, Zhang L, Bunnag C, Fokkens WJ, Hamilos DL, et al. ICON: chronic rhinosinusitis. World Allergy Organ J 2014;7:25. doi:10.1186/1939-4551-7-25.
[173] Calenoff E, McMahan JT, Herzon GD, Kern RC, Ghadge GD, Hanson DG. Bacterial Allergy in Nasal Polyposis A New Method for Quantifying Specific IgE. Arch Otolaryngol Neck Surg 1993;119:830–6. doi:10.1001/archotol.1993.01880200030004.
[174] Mendell MJ, Mirer AG, Cheung K, Tong M, Douwes J. Respiratory and Allergic Health Effects of Dampness, Mold, and Dampness-Related Agents: A Review of the Epidemiologic Evidence. Environ Health Perspect 2011;119:748–56. doi:10.1289/ehp.1002410.
[175] Park J-H, Cox-Ganser JM, White SK, Laney AS, Caulfield SM, Turner WA, et al. Bacteria in a water-damaged building: associations of actinomycetes and non-tuberculous mycobacteria with respiratory health in occupants. Indoor Air 2017;27:24–33. doi:10.1111/ina.12278.
[176] Huttunen K, Hyvärinen A, Nevalainen A, Komulainen H, Hirvonen M-R. Production of Proinflammatory Mediators by Indoor Air Bacteria and Fungal Spores in Mouse and Human Cell Lines. Environ Health Perspect 2003;111:85–92. doi:10.1289/ehp.5478.
[177] Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, Pace NR. Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci U S A 2009;106:16393–9. doi:10.1073/pnas.0908446106.
[178] Nogaller AM, Maligin AG. Specific bacterial immunotherapy in chronic colitis. Allergol Immunopathol (Madr) 1980;9:9–18.
[179] Bacigaluppi JE, Negroni R, de Severino HM. Bacterial allergy in allergic rhinitis and bronchial asthma. Ann Allergy 1979;42:95–8.
[180] Oehling A, Baena-Cagnani C, Neffen H. Bacterial immunotherapy of childhood bronchial asthma. Allergol Immunopathol (Madr) 1980;8:177–84.
[181] Malling HJ. Bacterial vaccines: anything but placebo. Allergy 2000;55:214–8. doi:10.1034/j.1398-9995.2000.00110.x.
[182] Zak-Nejmark T, Małolepszy J, Kraus-Filarska M, Nadobna G, Jutel M, Stankiewicz M. Autologous bacteria induce chemotaxis of peripheral blood mononuclear cells (MNC) from non-atopic asthmatics. Clin Exp Allergy 1992;22:863–6. doi:10.1111/j.1365-2222.1992.tb02832.x.
[183] Matricardi PM, Bjorksten B, Bousquet J, Diukanovic R, Dreborg S, Gereda J, et al. Microbial products in allergy prevention and therapy. Allergy 2003;58:461–71. doi:10.1034/j.1398-9995.2003.00175.x.
[184] Vasakova M, Morell F, Walsh S, Leslie K, Raghu G. Hypersensitivity Pneumonitis: Perspectives in Diagnosis and Management. Am J Respir Crit Care Med 2017;196:680–9. doi:10.1164/rccm.201611-2201PP.
[185] Seaman DM, Meyer CA, Kanne JP. Occupational and Environmental Lung Disease. Clin Chest Med 2015;36:249–68. doi:10.1016/j.ccm.2015.02.008.
[186] Quirce S, Vandenplas O, Campo P, Cruz MJ, de Blay F, Koschel D, et al. Occupational hypersensitivity pneumonitis: an EAACI position paper. Allergy 2016;71:765–79. doi:10.1111/all.12866.
[187] Riario Sforza GG, Marinou A. Hypersensitivity pneumonitis: a complex lung disease. Clin Mol Allergy 2017;15:6. doi:10.1186/s12948-017-0062-7.
[188] Horve PF, Lloyd S, Mhuireach GA, Dietz L, Fretz M, MacCrone G, et al. Building upon current knowledge and techniques of indoor microbiology to construct the next era of theory into microorganisms, health, and the built environment. J Expo Sci Env Epidemiol 2019;30:219–35. doi:10.1038/s41370-019-0157-y.
[189] Gilbert JA, Stephens B. Microbiology of the built environment. Nat Rev Microbiol 2018;16:661–670. doi:10.1038/s41579-018-0065-5.
[190] Jiang C, Wang X, Li X, Inlora J, Wang T, Liu Q, et al. Dynamic Human Environmental Exposome Revealed by Longitudinal Personal Monitoring. Cell 2018;175:277-291.e31. doi:10.1016/j.cell.2018.08.060.
[191] Stinson LF, Keelan JA, Payne MS. Identification and removal of contaminating microbial DNA from PCR reagents: impact on low-biomass microbiome analyses. Lett Appl Microbiol 2019;68:2–8. doi:10.1111/lam.13091.
[192] Ruemmele FM. Role of Diet in Inflammatory Bowel Disease. Ann Nutr Metab 2016;68:33–41. doi:10.1159/000445392.
[193] Naja F, Hwalla N, Itani L, Karam S, Sibai AM, Nasreddine L. A Western dietary pattern is associated with overweight and obesity in a national sample of Lebanese adolescents (13-19 years): a cross-sectional study. Br j Nutr 2015;114:1909–19. doi:10.1017/S0007114515003657.
[194] Trott S, King IL. An introduction to the microbiome and MS. Mult Scler 2018;24:53–7. doi:10.1177/1352458517737391.
[195] Benchimol EI, Manuel DG, To T, Mack DR, Nguyen GC, Gommerman JL, et al. Asthma, type 1 and type 2 diabetes mellitus, and inflammatory bowel disease amongst South Asian immigrants to Canada and their children: a population-based cohort study. PLoS One 2015;10:e0123599. doi:10.1371/journal.pone.0123599.
[196] Poongadan MN, Gupta N, Kumar R. Dietary pattern and asthma in India. Pneumonol Alergol Pol 2016;84:160–7. doi:10.5603/PiAP.2016.0018.
[197] Chiba M, Ishii H, Komatsu M. Recommendation of plant-based diets for inflammatory bowel disease. Transl Pediatr 2019;8:23–7. doi:10.21037/tp.2018.12.02.
[198] Nazarenkov N, Seeger K, Beeken L, Ananthakrishnan AN, Khalili H, Lewis JD, et al. Implementing Dietary Modifications and Assessing Nutritional Adequacy of Diets for Inflammatory Bowel Disease. Gastroenterol Hepatol (N Y) 2019;15:133–44.
[199] Levine A, Wine E, Assa A, Sigall Boneh R, Shaoul R, Kori M, et al. Crohn’s Disease Exclusion Diet Plus Partial Enteral Nutrition Induces Sustained Remission in a Randomized Controlled Trial. Gastroenterology 2019;157:440-450.e8. doi:10.1053/j.gastro.2019.04.021.
[200] Spellberg B, Hansen GR, Kar A, Cordova CD, Price LB, Johnson JR. Antibiotic Resistance in Humans and Animals. NAM Perspect 2016;6. doi:10.31478/201606d.
[201] Lindahl O, Lindwall L, Spångberg A, Stenram Å, Öckerman PA. Vegan Regimen with Reduced Medication in the Treatment of Bronchial Asthma. J Asthma 1985;22:45–55. doi:10.3109/02770908509079883.
[202] Haugen M, Kjeldsen-Kragh J, Nordvåg BY, Førre O. Diet and disease symptoms in rheumatic diseases–results of a questionnaire based survey. Clin Rheumatol 1991;10:401–7. doi:10.1007/bf02206660.
[203] McDougall J, Bruce B, Spiller G, Westerdahl J, McDougall M. Effects of a Very Low-Fat, Vegan Diet in Subjects with Rheumatoid Arthritis. J Altern Complement Med 2002;8:71–5. doi:10.1089/107555302753507195.
[204] Trichopoulou A, Bamia C, Trichopoulos D. Anatomy of health effects of Mediterranean diet: Greek EPIC prospective cohort study. BMJ 2009;338:b2337. doi:10.1136/bmj.b2337.
[205] Davinelli S, Willcox DC, Scapagnini G. Extending healthy ageing: nutrient sensitive pathway and centenarian population. Immun Ageing 2012;9:9. doi:10.1186/1742-4933-9-9.
[206] Prenafeta-Boldú FX, Summerbell R, de Hoog GS. Fungi growing on aromatic hydrocarbons: Biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 2006;30:109–30. doi:10.1111/j.1574-6976.2005.00007.x.
[207] Massier L, Chakaroun R, Tabei S, Crane A, David Didt K, Fallmann J, et al. Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut 2020;69:1796–806. doi:10.1136/gutjnl-2019-320118.
[208] Chakaroun RM, Massier L, Kovacs P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients 2020;12:1082. doi:10.3390/nu12041082.
[209] Jensen BA, Marette A. Microbial translocation in type 2 diabetes: when bacterial invaders overcome host defence in human obesity. Gut 2020;69:1724–6. doi:10.1136/gutjnl-2020-321288.
[210] Ornish D, Brown SE, Scherwitz LW, Billings JH, Armstrong WT, Ports TA, et al. Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. Lancet 1990;336:129–33. doi:10.1016/0140-6736(90)91656-u.
[211] Ornish D. Avoiding revascularization with lifestyle changes: The Multicenter Lifestyle Demonstration Project. Am J Cardiol 1998;82:72T-76T. doi:10.1016/s0002-9149(98)00744-9.
[212] Swank RL. Multiple Sclerosis: Twenty Years on Low Fat Diet. Arch Neurol 1970;23:460–74. doi:10.1001/archneur.1970.00480290080009.
[213] Wahls TL, Chenard CA, Snetselaar LG. Review of Two Popular Eating Plans within the Multiple Sclerosis Community: Low Saturated Fat and Modified Paleolithic. Nutrients 2019;11:352. doi:10.3390/nu11020352.
[214] Drago S, El Asmar R, Di Pierro M, Grazia Clemente M, Tripathi A, Sapone A, et al. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 2006;41:408–19. doi:10.1080/00365520500235334.
[215] Fasano A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Research 2020;9:F1000 Faculty. doi:10.12688/f1000research.20510.1.
[216] Mu Q, Kirby J, Reilly CM, Luo XM. Leaky Gut As a Danger Signal for Autoimmune Diseases. Front Immunol 2017;8:598. doi:10.3389/fimmu.2017.00598.
[217] Keller KB, Lemberg L. Obesity and the metabolic syndrome. Am J Crit Care 2003;12:167–70.
[218] Kankaanranta H, Kauppi P, Tuomisto LE, Ilmarinen P. Emerging Comorbidities in Adult Asthma: Risks, Clinical Associations, and Mechanisms. Mediators Inflamm 2016;2016:3690628. doi:10.1155/2016/3690628.
[219] Lokaj-Berisha V, Gacaferri-Lumezi B, Minci–Bejtullahu G, Latifi-Pupovci H, Karahoda–Gjurgjeala N, Berisha N, et al. Gender Associated High Body Mass Index in Allergic Diseases. Maced J Med Sci 2015;3:69–74. doi:10.3889/oamjms.2015.008.
[220] Chung S-D, Chen P-Y, Lin H-C, Hung S-H. Comorbidity profile of chronic rhinosinusitis: a population-based study. Laryngoscope 2014;124:1536–41. doi:10.1002/lary.24581.
[221] Gremese E, Tolusso B, Gigante MR, Ferraccioli G. Obesity as a Risk and Severity Factor in Rheumatic Diseases (Autoimmune Chronic Inflammatory Diseases). Front Immunol 2014;5:576. doi:10.3389/fimmu.2014.00576.
[222] Versini M, Jeandel P-Y, Rosenthal E, Shoenfeld Y. Obesity in autoimmune diseases: Not a passive bystander. Autoimmun Rev 2014;13:981–1000. doi:10.1016/j.autrev.2014.07.001.
[223] Hu T, Mills KT, Yao L, Demanelis K, Eloustaz M, Yancy WS, et al. Effects of Low-Carbohydrate Diets Versus Low-Fat Diets on Metabolic Risk Factors: A Meta-Analysis of Randomized Controlled Clinical Trials. Am J Epidemiol 2012;176:S44-54. doi:10.1093/aje/kws264.
[224] Gardner CD, Trepanowski JF, Del Gobbo LC, Hauser ME, Rigdon J, Ioannidis JPA, et al. Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion: The DIETFITS Randomized Clinical Trial. JAMA 2018;319:667–79. doi:10.1001/jama.2018.0245.
[225] Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015;163:1079–94. doi:10.1016/j.cell.2015.11.001.
[226] Li L, Li X, Zhou W, Messina JL. Acute Psychological Stress Results in the Rapid Development of Insulin Resistance. J Endocrinol 2013;217:175–84. doi:10.1530/JOE-12-0559.
[227] Sade MY, Kloog I, Liberty IF, Katra I, Novack L, Novack V. Air Pollution and Serum Glucose Levels: A Population-Based Study. Medicine (Baltimore) 2015;94:e1093. doi:10.1097/MD.0000000000001093.
[228] Park SK. Ambient Air Pollution and Type 2 Diabetes: Do the Metabolic Effects of Air Pollution Start Early in Life? Diabetes 2017;66:1755–7. doi:10.2337/dbi17-0012.
[229] Eze IC, Hemkens LG, Bucher HC, Hoffmann B, Schindler C, Künzli N, et al. Association between Ambient Air Pollution and Diabetes Mellitus in Europe and North America: Systematic Review and Meta-Analysis. Environ Health Perspect 2015;123:381–9. doi:10.1289/ehp.1307823.
[230] Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake Cell Metabolism Clinical and Translational Report Ultra-Processed Diets Cause Excess Ca. Cell Metab 2019;30:67-77.e3. doi:10.1016/j.cmet.2019.05.008.
[231] Alcock J, Maley CC, Aktipis CA. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays 2014;36:940–9. doi:10.1002/bies.201400071.
[232] Schulte EM, Avena NM, Gearhardt AN. Which Foods May Be Addictive? The Roles of Processing, Fat Content, and Glycemic Load. PLoS One 2015;10:e0117959. doi:10.1371/journal.pone.0117959.
[233] Konijeti GG, Kim N, Lewis JD, Groven S, Chandrasekaran A, Grandhe S, et al. Efficacy of the Autoimmune Protocol Diet for Inflammatory Bowel Disease. Inflamm Bowel Dis 2017;23:2054–60. doi:10.1097/MIB.0000000000001221.
[234] Abbott RD, Sadowski A, Alt AG. Efficacy of the Autoimmune Protocol Diet as Part of a Multi-disciplinary, Supported Lifestyle Intervention for Hashimoto’s Thyroiditis. Cureus 2019;11:e4556. doi:10.7759/cureus.4556.
[235] Irish AK, Erickson CM, Wahls TL, Snetselaar LG, Darling WG. Randomized control trial evaluation of a modified Paleolithic dietary intervention in the treatment of relapsing-remitting multiple sclerosis: a pilot study. Degener Neurol Neuromuscul Dis 2017;7:1–18. doi:10.2147/DNND.S116949.
[236] Gupta L, Khandelwal D, Lal PR, Kalra S, Dutta D. Palaeolithic Diet in Diabesity and Endocrinopathies – A Vegan’s Perspective. Eur Endocrinol 2019;15:77–82. doi:10.17925/EE.2019.15.2.77.
[237] Fakih R, Diaz-Cruz C, Chua AS, Gonzalez C, Healy BC, Sattarnezhad N, et al. Food allergies are associated with increased disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 2019;90:629–35. doi:10.1136/jnnp-2018-319301.
[238] Farez MF. Food allergies and multiple sclerosis. J Neurol Neurosurg Psychiatry 2019;90:625. doi:10.1136/jnnp-2018-319585.
[239] Karatay S, Erdem T, Yildirim K, Melikoglu MA, Ugur M, Cakir E, et al. The effect of individualized diet challenges consisting of allergenic foods on TNF-alpha and IL-1beta levels in patients with rheumatoid arthritis. Rheumatology (Oxford) 2004;43:1429–33. doi:10.1093/rheumatology/keh366.
[240] Yu KK, Crew AB, Messingham KA, Fairley JA, Woodley DT. Omalizumab therapy for bullous pemphigoid. J Am Acad Dermatol 2014;71:468–74. doi:10.1016/j.jaad.2014.04.053.
[241] Al-Ahmad M. Omalizumab therapy in three patients with chronic autoimmune urticaria. Ann Saudi Med 2010;30:478–81. doi:10.4103/0256-4947.70567.
[242] Hasni S, Gupta S, Davis M, Poncio E, Temesgen‐Oyelakin Y, Joyal E, et al. Safety and Tolerability of Omalizumab: A Randomized Clinical Trial of Humanized Anti‐IgE Monoclonal Antibody in Systemic Lupus Erythematosus. Arthritis Rheumatol 2019;71:1135–40. doi:10.1002/art.40828.
[243] Lin L, Moran TP, Peng B, Yang J, Culton DA, Che H, et al. Walnut antigens can trigger autoantibody development in patients with pemphigus vulgaris through a “hit-and-run” mechanism. J Allergy Clin Immunol 2019;144:720-728.e4. doi:10.1016/j.jaci.2019.04.020.
[244] Hvatum M, Kanerud L, Hällgren R, Brandtzaeg P. The gut–joint axis: cross reactive food antibodies in rheumatoid arthritis. Gut 2006;55:1240–7. doi:10.1136/gut.2005.076901.
[245] Jethwa H, Prince M, Bukhari M, Abraham S. The evidence for dietary manipulation in inflammatory arthritis. Int J Clin Rheumtol 2019;14:190–9.
[246] Hemmings O, Kwok M, McKendry R, Santos AF. Basophil Activation Test: Old and New Applications in Allergy. Curr Allergy Asthma Rep 2018;18:77. doi:10.1007/s11882-018-0831-5.
[247] Eguiluz-Gracia I, Pérez-Sánchez N, Bogas G, Campo P, Rondón C. How to Diagnose and Treat Local Allergic Rhinitis: A Challenge for Clinicians. J Clin Med 2019;8:1062. doi:10.3390/jcm8071062.
[248] Cozma-Petruţ A, Loghin F, Miere D, Dumitraşcu DL. Diet in irritable bowel syndrome: What to recommend, not what to forbid to patients! World J Gastroenterol 2017;23:3771–83. doi:10.3748/wjg.v23.i21.3771.
[249] Fang Z-Y, Zhang H-T, Lu C, Lu Q-M, Yu C-H, Wang H-Y. Association between Allergic Diseases and Irritable Bowel Syndrome: A Retrospective Study. Int Arch Allergy Immunol 2018;177:153–9. doi:10.1159/000489611.
[250] Koloski N, Jones M, Walker MM, Veysey M, Zala A, Keely S, et al. Population based study: atopy and autoimmune diseases are associated with functional dyspepsia and irritable bowel syndrome, independent of psychological distress. Aliment Pharmacol Ther 2019;49:546–55. doi:10.1111/apt.15120.
[251] Ford AC, Talley NJ, Walker MM, Jones MP. Increased prevalence of autoimmune diseases in functional gastrointestinal disorders: case–control study of 23 471 primary care patients. Aliment Pharmacol Ther 2014;40:827–34. doi:10.1111/apt.12903.
[252] Farup PG, Ueland T, Rudi K, Lydersen S, Hestad K. Functional Bowel Disorders Are Associated with a Central Immune Activation. Gastroenterol Res Pract 2017;2017:1642912. doi:10.1155/2017/1642912.
[253] Lee KN, Lee OY. The Role of Mast Cells in Irritable Bowel Syndrome. Gastroenterol Res Pract 2016;2016:2031480. doi:10.1155/2016/2031480.
[254] Werlang ME, Palmer WC, Lacy BE. Irritable Bowel Syndrome and Dietary Interventions. Gastroenterol Hepatol (N Y) 2019;15:16–26.
[255] Ali A, Weiss TR, McKee D, Scherban A, Khan S, Fields MR, et al. Efficacy of individualised diets in patients with irritable bowel syndrome: a randomised controlled trial. BMJ Open Gastroenterol 2017;4:e000164. doi:10.1136/BMJGAST-2017-000164.
[256] Garcia-Martinez I, Weiss TR, Yousaf MN, Ali A, Mehal WZ. A leukocyte activation test identifies food items which induce release of DNA by innate immune peripheral blood leucocytes. Nutr Metab 2018;15:26. doi:10.1186/s12986-018-0260-4.
[257] Lukaszuk JM, Shokrani M, Roy PG, Hoppensteadt J, Umoren J. Effects of Antigen Leukocyte Cellular Activation Test-Based Diet on Inflammation, Body Composition, and Medical Symptoms. Altern Complem Ther 2018;24:215–21. doi:10.1089/act.2018.29183.jml.
[258] Fritscher-Ravens A, Schuppan D, Ellrichmann M, Schoch S, Röcken C, Brasch J, et al. Confocal Endomicroscopy Shows Food-Associated Changes in the Intestinal Mucosa of Patients With Irritable Bowel Syndrome. Gastroenterology 2014;147:1012-1020.e4. doi:10.1053/j.gastro.2014.07.046.
[259] Lee HS, Lee KJ. Immunoglobulin G4-related immune responses to common food antigens in patients with ulcerative colitis and Crohn’s disease. Turkish J Gastroenterol 2019;30:408–14. doi:10.5152/tjg.2019.18466.
[260] Wright BL, Kulis M, Guo R, Orgel KA, Wolf WA, Burks AW, et al. Food-specific IgG4 is associated with eosinophilic esophagitis. J Allergy Clin Immunol 2016;138:1190-1192.e3. doi:10.1016/j.jaci.2016.02.024.
[261] Rosenberg CE, Mingler MK, Caldwell JM, Collins MH, Fulkerson PC, Morris DW, et al. Esophageal IgG4 levels correlate with histopathologic and transcriptomic features in eosinophilic esophagitis. Allergy 2018;73:1892–901. doi:10.1111/all.13486.
[262] Gocki J, Bartuzi Z. Role of immunoglobulin G antibodies in diagnosis of food allergy. Postep Dermatol Alergol 2016;33:253–6. doi:10.5114/ada.2016.61600.
[263] Bianchini R, Karagiannis SN, Jordakieva G, Jensen-Jarolim E. The role of IgG4 in the fine tuning of tolerance in IgE-mediated allergy and cancer. Int J Mol Sci 2020;21:1507. doi:10.3390/ijms21145017.
[264] Moss RB, Carmack MA, Esrig S. Deficiency of IgG4 in children: Association of isolated IgG4 deficiency with recurrent respiratory tract infection. J Pediatr 1992;120:16–21. doi:10.1016/s0022-3476(05)80590-6.
[265] Dine G, Ali‐Ammar N, Brahimi S, Rehn Y. Chronic sinusitis in a patient with selective IgG4 subclass deficiency controlled with enriched immunoglobulins. Clin Case Reports 2017;5:792–4. doi:10.1002/ccr3.936.
[266] Ryu JH, Horie R, Sekiguchi H, Peikert T, Yi ES. Spectrum of Disorders Associated with Elevated Serum IgG4 Levels Encountered in Clinical Practice. Int J Rheumatol 2012;2012:232960. doi:10.1155/2012/232960.
[267] Trampert DC, Hubers LM, van de Graaf SFJ, Beuers U. On the role of IgG4 in inflammatory conditions: lessons for IgG4-related disease. Biochim Biophys Acta Mol Basis Dis 2018;1864:1401–9. doi:10.1016/j.bbadis.2017.07.038.
[268] Hsieh SC, Shen CY, Liao HT, Chen MH, Wu CH, Li KJ, et al. The Cellular and Molecular Bases of Allergy, Inflammation and Tissue Fibrosis in Patients with IgG4-related Disease. Int J Mol Sci 2020;21:5082. doi:10.3390/ijms21145082.
[269] Culver EL, van de Bovenkamp FS, Derksen NIL, Koers J, Cargill T, Barnes E, et al. Unique patterns of glycosylation in immunoglobulin subclass G4‐related disease and primary sclerosing cholangitis. J Gastroenterol Hepatol 2019;34:1878–86. doi:10.1111/jgh.14512.
[270] Toorenenbergen AW Van, Heerde MJ Van, Buuren HR Van. Potential Value of Serum Total IgE for Differentiation between Autoimmune Pancreatitis and Pancreatic Cancer. Scand J Immunol 2010;72:444–8. doi:10.1111/j.1365-3083.2010.02453.x.
[271] Culver EL, Vermeulen E, Makuch M, van Leeuwen A, Sadler R, Cargill T, et al. Increased IgG4 responses to multiple food and animal antigens indicate a polyclonal expansion and differentiation of pre-existing B cells in IgG4-related disease. Ann Rheum Dis 2015;74:944–7. doi:10.1136/annrheumdis-2014-206405.
[272] de Buy Wenniger LJ, Culver EL, Beuers U. Exposure to occupational antigens might predispose to IgG4‐related disease. Hepatology 2014;60:1453=1454. doi:10.1002/hep.26999.
[273] Harrison SL, Fazio-Eynullayeva E, Lane DA, Underhill P, Lip GYH. Comorbidities associated with mortality in 31,461 adults with COVID-19 in the United States: A federated electronic medical record analysis. PLOS Med 2020;17:e1003321. doi:10.1371/journal.pmed.1003321.
[274] Waterhouse J. Exploring the microbiome’s potential role in severe COVID-19: possible implications for prevention and treatment. Authorea Prepr 2020. doi:10.22541/au.158758665.58622495.
[275] Koren O, Spor A, Felin J, Fåk F, Stombaugh J, Tremaroli V, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A 2011;108:4592–8. doi:10.1073/pnas.1011383107.
[276] Burcelin R. Gut microbiota and immune crosstalk in metabolic disease. Mol Metab 2016;5:771–81. doi:10.1016/j.molmet.2016.05.016.
[277] Woodruff MC, Ramonell RP, Lee FE-H, Sanz I. Clinically identifiable autoreactivity is common in severe SARS-CoV-2 Infection. MedRxiv 2020. doi:10.1101/2020.10.21.20216192.
[278] Theoharides TC. COVID‐19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin. Biofactors 2020;46:306–8. doi:10.1002/biof.1633.
[279] Kempuraj D, Selvakumar GP, Ahmed ME, Raikwar SP, Thangavel R, Khan A, et al. COVID-19, Mast Cells, Cytokine Storm, Psychological Stress, and Neuroinflammation. Neurosci 2020;26:402–414. doi:10.1177/1073858420941476.
[280] Hogan II RB, Hogan III RB, Cannon T, Rappai M, Studdard J, Paul D, et al. Dual-histamine receptor blockade with cetirizine - famotidine reduces pulmonary symptoms in COVID-19 patients. Pulm Pharmacol Ther 2020;63:101942. doi:10.1016/j.pupt.2020.101942.
[281] Rogosnitzky M, Berkowitz E, Jadad AR. No Time to Waste: Real-World Repurposing of Generic Drugs as a Multifaceted Strategy Against COVID-19. JMIRx | Med 2020;1:e19583. doi:10.2196/19583.
[282] Malone RW, Tisdall P, Fremont-Smith P, Liu Y, Huang X-P, White KM, et al. COVID-19: Famotidine, Histamine, Mast Cells, and Mechanisms. Prepr Res Sq 2020;Version 2:rs.3.rs-30934. doi:10.21203/rs.3.rs-30934/v2.
[283] Andersson CK, Mori M, Bjermer L, Löfdahl C-G, Erjefält JS. Alterations in Lung Mast Cell Populations in Patients with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2010;181:206–17. doi:10.1164/rccm.200906-0932OC.
[284] Xu Y, Chen G. Mast Cell and Autoimmune Diseases. Mediators Inflamm 2015;2015:246126. doi:10.1155/2015/246126.
[285] Magrone T, Magrone M, Jirillo E. Mast Cells as A Double Edged Sword in Immunity: Disorders of Mast Cell Activation and Therapeutic Management. Second of Two Parts. Endocrine, Metab Immune Disord - Drug Targets 2019;19. doi:10.2174/1871530319666191202121644.
[286] Jin JM, Sun YC. Allergy and Chronic Obstructive Pulmonary Disease. Chinese Med J 2017;130:2017–20. doi:10.4103/0366-6999.213427.
[287] Tzortzaki EG, Proklou A, Siafakas NM. Asthma in the Elderly: Can We Distinguish It from COPD? J Allergy 2011;2011:1–7. doi:10.1155/2011/843543.
[288] To T, Zhu J, Larsen K, Simatovic J, Feldman L, Ryckman K, et al. Progression from Asthma to Chronic Obstructive Pulmonary Disease. Is Air Pollution a Risk Factor? Am J Respir Crit Care Med 2016;194:429–38. doi:10.1164/rccm.201510-1932OC.
[289] Veil-Picard M, Soumagne T, Vongthilath R, Annesi-Maesano I, Guillien A, Laurent L, et al. Is atopy a risk indicator of chronic obstructive pulmonary disease in dairy farmers? Respir Res 2019;20:124. doi:10.1186/s12931-019-1082-2.
[290] Vaz Fragoso C, Murphy T, Agogo G, Allore H, McAvay G. Asthma-COPD overlap syndrome in the US: a prospective population-based analysis of patient-reported outcomes and health care utilization. Int J Chron Obstruct Pulmon Dis 2017;12:517–27. doi:10.2147/COPD.S121223.
[291] Jaakkola MS, Lajunen TK, Jaakkola JJK. Indoor mold odor in the workplace increases the risk of Asthma-COPD Overlap Syndrome: a population-based incident case–control study. Clin Transl Allergy 2020;10:3. doi:10.1186/s13601-019-0307-2.
[292] Rossi A, Butorac-Petanjek B, Chilosi M, Cosío BG, Flezar M, Koulouris N, et al. Chronic obstructive pulmonary disease with mild airflow limitation: Current knowledge and proposal for future research – A consensus document from six scientific societies. Int J COPD 2017;12:2593–610. doi:10.2147/COPD.S132236.
[293] De Schryver E, Devuyst L, Derycke L, Dullaers M, Van Zele T, Bachert C, et al. Local Immunoglobulin E in the Nasal Mucosa: Clinical Implications. Allergy Asthma Immunol Res 2015;7:321–31. doi:10.4168/aair.2015.7.4.321.
[294] Perelmutter L, Potvin L, Phipps P. lmmunoglobulin E response during viral infections. J Allergy Clin Immunol 1979;64:127–30. doi:10.1016/0091-6749(79)90046-0.
[295] Lommatzsch M, Stoll P, Virchow JC. COVID‐19 in a patient with severe asthma treated with Omalizumab. Allergy 2020;75:2705–8. doi:10.1111/all.14456.
[296] Esquivel A, Busse WW, Calatroni A, Togias AG, Grindle KG, Bochkov YA, et al. Effects of Omalizumab on Rhinovirus Infections, Illnesses, and Exacerbations of Asthma. Am J Respir Crit Care Med 2017;196:985. doi:10.1164/rccm.201701-0120OC.
[297] Vaughn VM, Gandhi T, Petty LA, Patel PK, Prescott HC, Malani AN, et al. Empiric Antibacterial Therapy and Community-onset Bacterial Co-infection in Patients Hospitalized with COVID-19: A Multi-Hospital Cohort Study. Clin Infect Dis 2020;21:ciaa1239. doi:10.1093/cid/ciaa1239.
[298] Zhou P, Liu Z, Chen Y, Xiao Y, Huang X, Fan XG. Bacterial and fungal infections in COVID-19 patients: A matter of concern. Infect Control Hosp Epidemiol 2020;41:1124-1125. doi:10.1017/ice.2020.156.
[299] Arunachalam PS, Wimmers F, Mok CKP, Perera RAPM, Scott M, Hagan T, et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 2020;369:1210–20. doi:10.1126/science.abc6261.
[300] Rawson TM, Wilson RC, Holmes A. Understanding the role of bacterial and fungal infection in COVID-19. Clin Microbiol Infect 2020:S1198. doi:10.1016/j.cmi.2020.09.025.
[301] Chen Y, Dong Y, Cai S, Ye C, Dong L. Clinical characteristics of IgG4-RD patients infected with COVID-19 in Hubei, China. Semin Arthritis Rheum 2020;50:559–63. doi:10.1016/j.semarthrit.2020.04.015.
[302] Roncati L, Bergonzini G, Lusenti B, Nasillo V, Paolini A, Zanelli G, et al. High density of IgG4-secreting plasma cells in the fibrotic tissue from a surgically resected tracheal ring impaired by complex subglottic stenosis post-tracheostomy as immune expression of a Th2 response due to severe COVID-19. Ann Hematol 2020;Aug 28:1–2. doi:10.1007/s00277-020-04231-y.
[303] Sousa LP, Pinho V, Teixeira MM. Harnessing inflammation resolving‐based therapeutic agents to treat pulmonary viral infections: What can the future offer to COVID‐19? Br J Pharmacol 2020;177:3898–904. doi:10.1111/bph.15164.
[304] Afrin LB, Weinstock LB, Molderings GJ. Covid-19 Hyperinflammation and Post-Covid-19 Illness May Be Rooted in Mast Cell Activation Syndrome. Int J Infect Dis 2020;100:327–332. doi:10.1016/j.ijid.2020.09.016.
[305] Kasama I. Stabilizing mast cells by commonly used drugs: a novel therapeutic target to relieve post-COVID syndrome? Drug Discov Ther 2020;14:259–61. doi:10.5582/ddt.2020.03095.
[306] Davido B, Seang S, Tubiana R, de Truchis P. Post–COVID-19 chronic symptoms: a postinfectious entity? Clin Microbiol Infect 2020;26:1448–9. doi:10.1016/j.cmi.2020.07.028.
[307] Chu L, Valencia IJ, Garvert DW, Montoya JG. Onset Patterns and Course of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Pediatr 2019;7:12. doi:10.3389/fped.2019.00012.
[308] Ellis JE, Missan DS, Shabilla M, Martinez D, Fry SE. Microbial community profiling of peripheral blood in myalgic encephalomyelitis/chronic fatigue syndrome. Hum Microbiome J 2018;9:16–21. doi:10.1016/j.humic.2018.05.003.
[309] Nisenbaum R, Jones JF, Unger ER, Reyes M, Reeves WC. A population-based study of the clinical course of chronic fatigue syndrome. Heal Qual Life Outcomes 2003;1:49. doi:10.1186/1477-7525-1-49.
[310] Rowe PC, Marden CL, Jasion SE, Cranston EM, Flaherty MAK, Kelly KJ. Cow’s milk protein intolerance in adolescents and young adults with chronic fatigue syndrome. Acta Paediatr 2016;105:e412–8. doi:10.1111/apa.13476.
[311] Rowe PC, Underhill RA, Friedman KJ, Gurwitt A, Medow MS, Schwartz MS, et al. Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome Diagnosis and Management in Young People: A Primer. Front Pediatr 2017;5:121. doi:10.3389/fped.2017.00121.
[312] Maes M, Leunis J-C. Normalization of leaky gut in chronic fatigue syndrome (CFS) is accompanied by a clinical improvement: effects of age, duration of illness and the translocation of LPS from gram-negative bacteria. Neuroendocr Lett 2008;29:902–10.
[313] Esposito S, Polinori I, Rigante D. The Gut Microbiota-Host Partnership as a Potential Driver of Kawasaki Syndrome. Front Pediatr 2019;7:124. doi:10.3389/fped.2019.00124.
[314] Nielsen TM, Andersen NH, Torp-Pedersen C, Søgaard P, Kragholm KH. Kawasaki disease, autoimmune disorders, and cancer: a register-based study. Eur J Pediatr 2020. doi:10.1007/s00431-020-03768-4.
[315] Choi BS. The association between asthma and Kawasaki disease. Allergy, Asthma Respir Dis 2019;7:173–8. doi:10.4168/aard.2019.7.4.173.
[316] Hwang CY, Hwang YY, Chen YJ, Chen CC, Lin MW, Chen TJ, et al. Atopic diathesis in patients with kawasaki disease. J Pediatr 2013;163:811–5. doi:10.1016/j.jpeds.2013.03.068.
[317] Rodó X, Curcoll R, Robinson M, Ballester J, Burns JC, Cayan DR, et al. Tropospheric winds from northeastern China carry the etiologic agent of Kawasaki disease from its source to Japan. Proc Natl Acad Sci U S A 2014;111:7952–7. doi:10.1073/pnas.1400380111.
[318] Manlhiot C, Mueller B, O’Shea S, Majeed H, Bernknopf B, Labelle M, et al. Environmental epidemiology of Kawasaki disease: Linking disease etiology, pathogenesis and global distribution. PLoS One 2018;13:e0191087. doi:10.1371/journal.pone.0191087.
[319] Awaya A, Murayama K. Positive Correlation Between Japanese Cedar Pollen Numbers and the Development of Kawasaki Disease. Open Allergy J 2012;5:1–10. doi:10.2174/1874838401205010001.
[320] Obersteiner A, Gilles S, Frank U, Beck I, Häring F, Ernst D, et al. Pollen-associated microbiome correlates with pollution parameters and the allergenicity of pollen. PLoS One 2016;11:e0149545. doi:10.1371/journal.pone.0149545.
[321] Awaya A, Kuroiwa Y. The Relationship between Annual Airborne Pollen Levels and Occurrence of All Cancers, and Lung, Stomach, Colorectal, Pancreatic and Breast Cancers: A Retrospective Study from the National Registry Database of Cancer Incidence in Japan, 1975–2015. Int J Environ Res Public Health 2020;17:3950. doi:10.3390/ijerph17113950.
[322] Wu X, Nethery RC, Sabath BM, Braun D, Dominici F. Exposure to air pollution and COVID-19 mortality in the United States. MedRxiv Prepr 2020. doi:10.1101/2020.04.05.20054502.
[323] Travaglio M, Yu Y, Popovic R, Selley L, Leal NS, Martins LM. Links between air pollution and COVID-19 in England. Env Pollut 2020 Oct 19;268(Pt A)115859 2020;268:115859. doi:10.1101/2020.04.05.20054502.
[324] Fattorini D, Regoli F. Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ Pollut 2020;264:114732. doi:10.1016/j.envpol.2020.114732.
[325] Santos J, Saperas E, Nogueiras C, Mourelle M, Antolín M, Cadahia A, et al. Release of mast cell mediators into the jejunum by cold pain stress in humans. Gastroenterology 1998;114:640–8. doi:10.1016/s0016-5085(98)70577-3.
[326] Gao L, Kang M, Zhang MJ, Sailani MR, Kuraji R, Martinez A, et al. Polymicrobial periodontal disease triggers a wide radius of effect and unique virome. Npj Biofilms Microbiomes 2020;6:1–13. doi:10.1038/s41522-020-0120-7.
[327] Stacy A, McNally L, Darch SE, Brown SP, Whiteley M. The biogeography of polymicrobial infection. Nat Rev Microbiol 2015;14:93–105. doi:10.1038/nrmicro.2015.8.
[328] Diakite A, Dubourg G, Dione N, Afouda P, Bellali S, Ngom I, et al. Extensive culturomics of 8 healthy samples enhances metagenomics efficiency. PLoS One 2019;14:e0223543. doi:10.1371/journal.pone.0223543.
[329] Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A new genomic blueprint of the human gut microbiota. Nature 2019;568:499–504. doi:10.1038/s41586-019-0965-1.
[330] Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol 2020 2020. doi:10.1038/s41587-020-0603-3.
[331] Paoli L, Sunagawa S. Space, time and microdiversity: towards a resolution revolution in microbiomics. Environ Microbiol Rep 2020:1758-2229.12897. doi:10.1111/1758-2229.12897.
[332] Piliponsky AM, Acharya M, Shubin NJ. Mast Cells in Viral, Bacterial, and Fungal Infection Immunity. Int J Mol Sci 2019;20:2851. doi:10.3390/ijms20122851.
[333] Secord EA, Kleiner GI, Auci DL, Smith-Norowitz T, Chice S, Finkielstein A, et al. IgE against HIV proteins in clinically healthy children with HIV disease. J Allergy Clin Immunol 1996;98:979–84. doi:10.1016/S0091-6749(96)80015-7.
[334] Karasuyama H, Miyake K, Yoshikawa S, Yamanishi Y. Multifaceted roles of basophils in health and disease. J Allergy Clin Immunol 2018;142:370–80. doi:10.1016/j.jaci.2017.10.042.
[335] Simon HU, Yousefi S, Germic N, Arnold IC, Haczku A, Karaulov A V, et al. The Cellular Functions of Eosinophils: Collegium Internationale Allergologicum (CIA) Update 2020. Int Arch Allergy Immunol 2020;181:11–23. doi:10.1159/000504847.
[336] Dispenza MC. Classification of hypersensitivity reactions. Allergy Asthma Proc 2019;40:470–3. doi:10.2500/aap.2019.40.4274.
[337] Kondo Y, Urisu A. Oral Allergy Syndrome. Allergol Int 2009;58:485–91. doi:10.2332/allergolint.09-RAI-0136.