Reference
Arft, A.M., Walker, M.D., Gurevitch,
J., Alatalo, J.M., Bret-Harte, M.S., Dale, M. et al. (1999).
Responses of tundra plants to experimental warming: Meta-analysis of the
international tundra experiment. Ecol. Monogr. , 69, 491-511.
https://doi.org/10.1890/0012-9615(1999)069[0491:rotpte]2.0.co;2
Augspurger, C.K. (2013).
Reconstructing patterns of temperature, phenology, and frost damage over
124 years: spring damage risk is increasing. Ecology , 94, 41-50.
https://doi.org/10.1890/12-0200.1
Bahuguna, R.N. & Jagadish, K.S.V.
(2015). Temperature regulation of plant phenological development.Environ. Exp. Bot. , 111, 83-90.
https://doi.org/10.1016/j.envexpbot.2014.10.007
Baruah, G., Molau, U., Yang, B. &
Alatalo, J.M. (2017). Community and species-specific responses of plant
traits to 23 years of experimental warming across subarctic tundra plant
communities. Sci. Rep. , 7, 2571.
https://doi.org/10.1038/s41598-017-02595-2
Block, S., Alexander, J.M. & Levine,
J.M. (2019). Phenological plasticity is a poor predictor of subalpine
plant population performance following experimental climate change.Oikos . https://doi.org/10.1111/oik.06667
CaraDonna, P.J., Iler, A.M. & Inouye,
D.W. (2014). Shifts in flowering phenology reshape a subalpine plant
community. P. Natl. Acad. Sci. , 111, 4916-4921.
https://doi.org/10.1073/pnas.1323073111
Cayton, H.L., Haddad, N.M., Gross, K.,
Diamond, S.E. & Ries, L. (2015). Do growing degree days predict
phenology across butterfly species? Ecology , 96, 1473-1479.
https://doi.org/10.1890/15-0131.1
Chen, J., Luo, Y., Xia, J., Jiang, L.,
Zhou, X., Lu, M. et al. (2015a). Stronger warming effects on
microbial abundances in colder regions. Sci. Rep. , 5, 18032.
https://doi.org/10.1038/srep18032
Chen, J., Luo, Y., Xia, J., Shi, Z.,
Jiang, L., Niu, S. et al. (2016). Differential responses of
ecosystem respiration components to experimental warming in a meadow
grassland on the Tibetan Plateau. Agr. Forest Meteorol. , 220,
21-29. http://dx.doi.org/10.1016/j.agrformet.2016.01.010
Chen, J., Luo, Y., Xia, J., Wilcox,
K.R., Cao, J., Zhou, X. et al. (2017a). Warming Effects on
Ecosystem Carbon Fluxes Are Modulated by Plant Functional Types.Ecosystems , 20, 515-526.
https://doi.org/10.1007/s10021-016-0035-6
Chen, J., Luo, Y., Xia, J., Zhou, X.,
Niu, S., Shelton, S. et al. (2018). Divergent responses of
ecosystem respiration components to livestock exclusion on the Qinghai
Tibetan Plateau. Land Degrad. Dev. , 29, 1726-1737.
https://doi.org/org/10.1002/ldr.2981
Chen, J., Shi, W. & Cao, J. (2015b).
Effects of Grazing on Ecosystem CO2 Exchange in a Meadow Grassland on
the Tibetan Plateau During the Growing Season. Environ. Manage. ,
55, 347-359. https://doi.org/10.1007/s00267-014-0390-z
Chen, J., Zhou, X., Hruska, T., Cao,
J., Zhang, B., Liu, C. et al. (2017b). Asymmetric Diurnal and
Monthly Responses of Ecosystem Carbon Fluxes to Experimental Warming.Clean-Soil Air Water , 45, 1600557.
https://doi.org/10.1002/clen.201600557
Chmura, H.E., Kharouba, H.M.,
Ashander, J., Ehlman, S.M., Rivest, E.B. & Yang, L.H. (2019). The
mechanisms of phenology: the patterns and processes of phenological
shifts. Ecol. Monogr. , 89, e01337.
https://doi.org/10.1002/ecm.1337
Cleland, E.E., Chuine, I., Menzel,
A., Mooney, H.A. & Schwartz, M.D. (2007). Shifting plant phenology in
response to global change. Trends Ecol. Evol. , 22, 357-365.
https://doi.org/10.1016/j.tree.2007.04.003
Craufurd, P.Q. & Wheeler, T.R.
(2009). Climate change and the flowering time of annual crops. J.
Exp. Bot. , 60, 2529-2539. https://doi.org/10.1093/jxb/erp196
Damgaard, C. (2014). Estimating mean
plant cover from different types of cover data: a coherent statistical
framework. Ecosphere , 5, 1-7.
https://doi.org/10.1890/ES13-00300.1
Dawson, T.P., Jackson, S.T., House,
J.I., Prentice, I.C. & Mace, G.M. (2011). Beyond predictions:
biodiversity conservation in a changing climate. Science , 332,
53-58. https://doi.org/10.1126/science.1200303
de Valpine, P. & Harte, J. (2001).
Plant responses to experimental warming in a montane meadow.Ecology , 82, 637-648.
https://doi.org/10.1890/0012-9658(2001)082[0637:PRTEWI]2.0.CO;2
Deutsch, C.A., Tewksbury, J.J., Huey,
R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. et al. (2008).
Impacts of climate warming on terrestrial ectotherms across latitude.P. Natl. Acad. Sci. , 105, 6668-6672.
https://doi.org/10.1073/pnas.0709472105
Diez, J.M., Ibáñez, I.,
Miller-Rushing, A.J., Mazer, S.J., Crimmins, T.M., Crimmins, M.A.et al. (2012). Forecasting phenology: from species variability to
community patterns. Ecol. Lett. , 15, 545-553.
https://doi.org/10.1111/j.1461-0248.2012.01765.x
Dorji, T., Totland, O., Moe, S.R.,
Hopping, K.A., Pan, J. & Klein, J.A. (2013). Plant functional traits
mediate reproductive phenology and success in response to experimental
warming and snow addition in Tibet. Global Change Biol. , 19,
459-472. https://doi.org/10.1111/gcb.12059
Dunne, J.A., Harte, J. & Taylor,
K.J. (2003). Subalpine meadow flowering phenology responses to climate
change: Integrating experimental and gradient methods. Ecol.
Monogr. , 73, 69-86.
https://doi.org/10.1890/0012-9615(2003)073[0069:smfprt]2.0.co;2
Elzinga, J.A., Atlan, A., Biere, A.,
Gigord, L., Weis, A.E. & Bernasconi, G. (2007). Time after time:
flowering phenology and biotic interactions. Trends Ecol. Evol. ,
22, 432-439. https://doi.org/10.1016/j.tree.2007.05.006
Engelbrecht, B.M.J., Comita, L.S.,
Condit, R., Kursar, T.A., Tyree, M.T., Turner, B.L. et al.(2007). Drought sensitivity shapes species distribution patterns in
tropical forests. Nature , 447, 80.
https://doi.org/10.1038/nature05747
Ernakovich, J.G., Hopping, K.A.,
Berdanier, A.B., Simpson, R.T., Kachergis, E.J., Steltzer, H. et
al. (2014). Predicted responses of arctic and alpine ecosystems to
altered seasonality under climate change. Global Change Biol. ,
20, 3256-3269. https://doi.org/10.1111/gcb.12568
Estiarte, M. & Peñuelas, J. (2015).
Alteration of the phenology of leaf senescence and fall in winter
deciduous species by climate change: effects on nutrient proficiency.Global Change Biol. , 21, 1005-1017.
https://doi.org/10.1111/gcb.12804
Forrest, J. & Miller-Rushing, A.J.
(2010). Toward a synthetic understanding of the role of phenology in
ecology and evolution. Philos. T. R. Soc. B. , 365, 3101-3112.
https://doi.org/10.1098/rstb.2010.0145
Fridley, J.D., Lynn, J.S., Grime,
J.P. & Askew, A.P. (2016). Longer growing seasons shift grassland
vegetation towards more-productive species. Nat. Clim. Change , 6,
865. https://doi.org/10.1038/nclimate3032
Gallinat, A.S., Primack, R.B. &
Wagner, D.L. (2015). Autumn, the neglected season in climate change
research. Trends Ecol. Evol. , 30, 169-176.
https://doi.org/10.1016/j.tree.2015.01.004
Gill, A.L., Gallinat, A.S.,
Sanders-DeMott, R., Rigden, A.J., Gianotti, D.J.S., Mantooth, J.A.et al. (2015). Changes in autumn senescence in northern
hemisphere deciduous trees: a meta-analysis of autumn phenology studies.Ann. Bot. , 116, 875-888. https://doi.org/10.1093/aob/mcv055
Godoy, O., Bartomeus, I., Rohr, R.P.
& Saavedra, S. (2018). Towards the integration of niche and network
theories. Trends Ecol. Evol. , 33, 287-300.
https://doi.org/10.1016/j.tree.2018.01.007
Guerin, G.R., Wen, H. & Lowe, A.J.
(2012). Leaf morphology shift linked to climate change. Biol.
Letters , 8, 882. https://doi.org/10.1098/rsbl.2012.0458
Guo, L., Chen, J., Luedeling, E., He,
J.-S., Cheng, J., Wen, Z. et al. (2018). Early-spring soil
warming partially offsets the enhancement of alpine grassland
aboveground productivity induced by warmer growing seasons on the
Qinghai-Tibetan Plateau. Plant Soil , 425, 177-188.
https://doi.org/10.1007/s11104-018-3582-0
Guo, L., Wang, J., Li, M., Liu, L.,
Xu, J., Cheng, J. et al. (2019). Distribution margins as natural
laboratories to infer species’ flowering responses to climate warming
and implications for frost risk. Agr. Forest Meteorol. , 268,
299-307. https://doi.org/10.1016/j.agrformet.2019.01.038
Iler, A.M., Høye, T.T., Inouye, D.W.
& Schmidt, N.M. (2013). Nonlinear flowering responses to climate: are
species approaching their limits of phenological change? Philos.
T. R. Soc. B. , 368, 20120489. https://doi.org/10.1098/rstb.2012.0489
Khorsand Rosa, R., Oberbauer, S.F.,
Starr, G., Inga, P.L.P., Pop, E., Ahlquist, L. et al. (2016).
Plant phenological responses to a long‐term experimental extension of
growing season and soil warming in the tussock tundra of Alaska.Global Change Biol. , 21, 4520-4532.
https://doi.org/10.1111/gcb.13040
Kraft, N.J.B., Godoy, O. & Levine,
J.M. (2015). Plant functional traits and the multidimensional nature of
species coexistence. P. Natl. Acad. Sci. , 112, 797-802.
https://doi.org/10.1073/pnas.1413650112
Kudo, G. & Ida, T.Y. (2013). Early
onset of spring increases the phenological mismatch between plants and
pollinators. Ecology , 94, 2311-2320.
https://doi.org/10.1890/12-2003.1
Leblans, N.I.W., Sigurdsson, B.D.,
Vicca, S., Fu, Y., Penuelas, J. & Janssens, I.A. (2017). Phenological
responses of Icelandic subarctic grasslands to short-term and long-term
natural soil warming. Global Change Biol. , 23, 4932-4945.
https://doi.org/10.1111/gcb.13749
Li, X., Guo, W., Chen, J., Ni, X. &
Wei, X. (2019). Responses of vegetation green-up date to temperature
variation in alpine grassland on the Tibetan Plateau. Ecol.
Indic. , 104, 390-397. https://doi.org/10.1016/j.ecolind.2019.05.003
Marchin, R.M., Salk, C.F., Hoffmann,
W.A. & Dunn, R.R. (2015). Temperature alone does not explain
phenological variation of diverse temperate plants under experimental
warming. Global Change Biol. , 21, 3138-3151.
https://doi.org/10.1111/gcb.12919
McKinney, M.L. & Lockwood, J.L.
(1999). Biotic homogenization: a few winners replacing many losers in
the next mass extinction. Trends Ecol. Evol. , 14, 450-453.
https://doi.org/10.1016/S0169-5347(99)01679-1
McLean, N., Lawson, C.R., Leech, D.I.
& van de Pol, M. (2016). Predicting when climate‐driven phenotypic
change affects population dynamics. Ecol. Lett. , 19, 595-608.
https://doi.org/10.1111/ele.12599
Myers-Smith, I.H., Elmendorf, S.C.,
Beck, P.S.A., Wilmking, M., Hallinger, M., Blok, D. et al.(2015). Climate sensitivity of shrub growth across the tundra biome.Nat. Clim. Change , 5, 887. https://doi.org/10.1038/nclimate2697
Nicotra, A.B., Atkin, O.K., Bonser,
S.P., Davidson, A.M., Finnegan, E.J., Mathesius, U. et al.(2010). Plant phenotypic plasticity in a changing climate. Trends
Plant Sci. , 15, 684-692. https://doi.org/10.1016/j.tplants.2010.09.008
Parmesan, C. (2006). Ecological and
evolutionary responses to recent climate change. Annu. Rev. Ecol.
Evol. Syst. , 37, 637-669.
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
Penuelas, J., Gordon, C., Llorens,
L., Nielsen, T., Tietema, A., Beier, C. et al. (2004).
Nonintrusive field experiments show different plant responses to warming
and drought among sites, seasons, and species in a north–south European
gradient. Ecosystems , 7, 598-612.
https://doi.org/10.1007/s10021-004-0179-7
Petitpierre, B., Kueffer, C.,
Broennimann, O., Randin, C., Daehler, C. & Guisan, A. (2012). Climatic
niche shifts are rare among terrestrial plant invaders. Science ,
335, 1344-1348. https://doi.org/10.1126/science.1215933
Piao, S., Tan, J., Chen, A., Fu,
Y.H., Ciais, P., Liu, Q. et al. (2015). Leaf onset in the
northern hemisphere triggered by daytime temperature. Nat.
Commun. , 6, 6911. https://doi.org/10.1038/ncomms7911
Post, E., Kerby, J., Pedersen, C. &
Steltzer, H. (2016). Highly individualistic rates of plant phenological
advance associated with arctic sea ice dynamics. Biol. Letters ,
12. https://doi.org/10.1098/rsbl.2016.0332
Prevéy, J., Vellend, M., Rüger, N.,
Hollister, R.D., Bjorkman, A.D., Myers‐Smith, I.H. et al. (2017).
Greater temperature sensitivity of plant phenology at colder sites:
implications for convergence across northern latitudes. Global
Change Biol. , 23, 2660-2671. https://doi.org/10.1111/gcb.13619
Prevéy, J.S., Rixen, C., Rüger, N.,
Høye, T.T., Bjorkman, A.D., Myers-Smith, I.H. et al. (2019).
Warming shortens flowering seasons of tundra plant communities.Nat. Ecol. Evol. , 3, 45.
https://doi.org/10.1038/s41559-018-0745-6
Renner, S.S. & Zohner, C.M. (2018).
Climate change and phenological mismatch in trophic interactions among
plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. ,
49, 165-182. https://doi.org/10.1146/annurev-ecolsys-110617-062535
Richardson, A.D., Hufkens, K.,
Milliman, T., Aubrecht, D.M., Furze, M.E., Seyednasrollah, B. et
al. (2018). Ecosystem warming extends vegetation activity but heightens
vulnerability to cold temperatures. Nature , 560, 368-+.
https://doi.org/10.1038/s41586-018-0399-1
Root, T.L., Price, J.T., Hall, K.R.,
Schneider, S.H., Rosenzweig, C. & Pounds, J.A. (2003). Fingerprints of
global warming on wild animals and plants. Nature , 421, 57.
https://doi.org/10.1038/nature01333
Rudolf, V.H.W. (2019). The role of
seasonal timing and phenological shifts for species coexistence.Ecol. Lett. https://doi.org/10.1111/ele.13277
Savage, J. & Vellend, M. (2015).
Elevational shifts, biotic homogenization and time lags in vegetation
change during 40 years of climate warming. Ecography , 38,
546-555. https://doi.org/10.1111/ecog.01131
Schmidt, N.M., Mosbacher, J.B.,
Nielsen, P.S., Rasmussen, C., Hoye, T.T. & Roslin, T. (2016). An
ecological function in crisis? The temporal overlap between plant
flowering and pollinator function shrinks as the Arctic warms.Ecography , 39, 1250-1252. https://doi.org/10.1111/ecog.02261
Sherry, R.A., Zhou, X., Gu, S.,
Arnone, J.A., Schimel, D.S., Verburg, P.S. et al. (2007).
Divergence of reproductive phenology under climate warming. P.
Natl. Acad. Sci. , 104, 198-202. https://doi.org/10.1073/pnas.0605642104
Simpson, E.H. (1949). Measurement of
diversity. Nature , 163, 688. https://doi.org/10.1038/163688a0
Smith, M.D. & Knapp, A.K. (2003).
Dominant species maintain ecosystem function with non‐random species
loss. Ecol. Lett. , 6, 509-517.
https://doi.org/10.1046/j.1461-0248.2003.00454.x
Suonan, J., Classen, A.T., Zhang, Z.
& He, J. (2017). Asymmetric winter warming advanced plant phenology to
a greater extent than symmetric warming in an alpine meadow.Funct. Ecol. https://doi.org/10.1111/1365-2435.12909
Tang, J., Körner, C., Muraoka, H.,
Piao, S., Shen, M., Thackeray, S.J. et al. (2016). Emerging
opportunities and challenges in phenology: a review. Ecosphere ,
7. https://doi.org/10.1002/ecs2.1436
Thuiller, W., Lavorel, S., Araújo,
M.B., Sykes, M.T. & Prentice, I.C. (2005). Climate change threats to
plant diversity in Europe. P. Natl. Acad. Sci. , 102, 8245-8250.
https://doi.org/10.1073/pnas.0409902102
Wheeler, H.C., Høye, T.T., Schmidt,
N.M., Svenning, J.-C. & Forchhammer, M.C. (2015). Phenological mismatch
with abiotic conditions-implications for flowering in Arctic plants.Ecology , 96, 775-787. https://doi.org/10.1890/14-0338.1
White, T.A., Campbell, B.D., Kemp,
P.D. & Hunt, C.L. (2000). Sensitivity of three grassland communities to
simulated extreme temperature and rainfall events. Global Change
Biol. , 6, 671-684. https://doi.org/10.1046/j.1365-2486.2000.00344.x
Whittaker, R.H. (1965). Dominance and
diversity in land plant communities: numerical relations of species
express the importance of competition in community function and
evolution. Science , 147, 250-260.
https://doi.org/10.1126/science.147.3655.250
You, Q., Min, J. & Kang, S. (2016).
Rapid warming in the Tibetan Plateau from observations and CMIP5 models
in recent decades. Int. J. Climatol. , 36, 2660-2670.
https://doi.org/10.1002/joc.4520
Zhang, X., Friedl, M.A., Schaaf,
C.B., Strahler, A.H., Hodges, J.C.F., Gao, F. et al. (2003).
Monitoring vegetation phenology using MODIS. Remote Sens.
Environ. , 84, 471-475. https://doi.org/10.1016/S0034-4257(02)00135-9
Zohner, C.M., Mo, L. & Renner, S.S.
(2018). Global warming reduces leaf-out an flowering synchrony among
individuals. Elife , 7. https://doi.org/10.7554/eLife.40214
Zuur, A., Ieno, E.N., Walker, N.,
Saveliev, A.A. & Smith, G.M. (2009). Mixed effects models and
extensions in ecology with R . Springer Science & Business Media.