References
- Benedetto, J. J. (1992): Irregular sampling and frames, in: Wavelets -
A Tutorial in Theory and Applications, C.K. Chui (Ed.), Boca Raton,
FL, CRC Press, pp. 445–507.
- Bettadpur, S. (2007): Gravity Recovery and Climate Experiment Level-2
Gravity Field Product User Handbook, GRACE 327-734, CSR Publ.
GR-03-01, Rev 2.3, pp. 19, University of Texas at Austin, USA.
- Csapó, G. (2000): The Hungarian Gravimetric Network, MGH-2000 (In
Hungarian; Magyarország új gravimetriai alaphálózata, MGH–2000),
Geodézia és Kartográfia, 52(2), p. 27-33.
- Duffin, R. J., Schaeffer, A. C. (1992): A class of nonharmonic Fourier
series, Trans. Amer. Math. Soc., vol. 72, pp. 314–366.
- Facsinay L., Szilárd J. (1956): The Hungarian Gravimetric Network (in
Hungarian; A magyar országos gravitációs hálózat), Geofizikai
Közlemények, V(2), p. 3-49.
- Földváry, L (2015).: Desmoothing of averaged periodical signals for
geodetic applications, Geophysical Journal International, 201 (3):
1235-1250, DOI 10.1093/gji/ggv092
- Kaula, W, M. (1966): Theory of Satellite Geodesy, Blaisdell, Waltham
- Kaula W.M. (1992): Properties of the Gravity Fields of Terrestrial
Planets. In: Colombo O.L. (ed.) From Mars to Greenland: Charting
Gravity With Space and Airborne Instruments. International Association
of Geodesy Symposia, vol 110. Springer, New York, NY, 1-10.
- Leis, J. W. (2011): Digital Signal Processing Using MATLAB for
Students and Researchers. John Wiley & Sons. p. 82, ISBN
9781118033807
- Mallat, S. (1998): A Wavelet Tour of Signal Processing. San Diego, CA,
Academic.
- Marks, R.J. (1991): Introduction to Shannon Sampling and Interpolation
Theory, Springer-Verlag
- Marks, R.J., editor (1993): Advanced Topics in Shannon Sampling and
Interpolation Theory, Springer-Verlag
- McMahon, J. W., Farnocchia, D., Scheeres, D., Chesley, S. (2016):
Understanding Kaula’s Rule for Small Bodies, 47th Lunar and Planetary
Science Conference 2016, paper 2129.
- Rummel, R. (2004): Gravity and Topography of Moon and Planets. Earth
Moon Planet 94, 103–111. https://doi.org/10.1007/s11038-005-3245-z
- Selesnick, I. W. (1999): Interpolating multiwavelets bases and the
sampling theorem, IEEE Trans. Signal Processing, vol. 47, no. 6, pp.
1615–1621.
- Shannon, C. E. (1949): Communication in the presence of noise, in:
Proc. IRE, vol. 37, pp. 10-21.
- Shannon, C. E. (1998): Classic paper: Communication in the presence of
noise, Proc. IEEE, vol. 86, no. 2, pp. 447–457.
- Strang, G. (1971): The finite element method and approximation theory,
in: Numerical Solution of Partial Differential Equations—II, B.
Hubbard (Ed.), New York, Academic, pp. 547–583.
- Strang, G., Nguyen, T. (1996): Wavelets and Filter Banks. Wellesley,
MA, Wellesley-Cambridge.
- Swenson, S., J. Wahr, and P. C. D. Milly (2003): Estimated accuracies
of regional water storage variations inferred from the gravity
recovery and climate experiment (GRACE), Water Resources Research, 39,
11–1. https://doi.org/10.1029/2002WR001808
- Unser, M. (2000): Sampling-50 Years after Shannon, Proc. IEEE, 88(4),
p. 569–587.
- Wahr, J., S. Swenson, and I. Velicogna (2006), Accuracy of GRACE mass
estimates, Geophysical Research Letteres, 33, L06,401,
doi:10.1029/2005GL025305.