References
  1. Benedetto, J. J. (1992): Irregular sampling and frames, in: Wavelets - A Tutorial in Theory and Applications, C.K. Chui (Ed.), Boca Raton, FL, CRC Press, pp. 445–507.
  2. Bettadpur, S. (2007): Gravity Recovery and Climate Experiment Level-2 Gravity Field Product User Handbook, GRACE 327-734, CSR Publ. GR-03-01, Rev 2.3, pp. 19, University of Texas at Austin, USA.
  3. Csapó, G. (2000): The Hungarian Gravimetric Network, MGH-2000 (In Hungarian; Magyarország új gravimetriai alaphálózata, MGH–2000), Geodézia és Kartográfia, 52(2), p. 27-33.
  4. Duffin, R. J., Schaeffer, A. C. (1992): A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., vol. 72, pp. 314–366.
  5. Facsinay L., Szilárd J. (1956): The Hungarian Gravimetric Network (in Hungarian; A magyar országos gravitációs hálózat), Geofizikai Közlemények, V(2), p. 3-49.
  6. Földváry, L (2015).: Desmoothing of averaged periodical signals for geodetic applications, Geophysical Journal International, 201 (3): 1235-1250, DOI 10.1093/gji/ggv092
  7. Kaula, W, M. (1966): Theory of Satellite Geodesy, Blaisdell, Waltham
  8. Kaula W.M. (1992): Properties of the Gravity Fields of Terrestrial Planets. In: Colombo O.L. (ed.) From Mars to Greenland: Charting Gravity With Space and Airborne Instruments. International Association of Geodesy Symposia, vol 110. Springer, New York, NY, 1-10.
  9. Leis, J. W. (2011): Digital Signal Processing Using MATLAB for Students and Researchers. John Wiley & Sons. p. 82, ISBN 9781118033807
  10. Mallat, S. (1998): A Wavelet Tour of Signal Processing. San Diego, CA, Academic.
  11. Marks, R.J. (1991): Introduction to Shannon Sampling and Interpolation Theory, Springer-Verlag
  12. Marks, R.J., editor (1993): Advanced Topics in Shannon Sampling and Interpolation Theory, Springer-Verlag
  13. McMahon, J. W., Farnocchia, D., Scheeres, D., Chesley, S. (2016): Understanding Kaula’s Rule for Small Bodies, 47th Lunar and Planetary Science Conference 2016, paper 2129.
  14. Rummel, R. (2004): Gravity and Topography of Moon and Planets. Earth Moon Planet 94, 103–111. https://doi.org/10.1007/s11038-005-3245-z
  15. Selesnick, I. W. (1999): Interpolating multiwavelets bases and the sampling theorem, IEEE Trans. Signal Processing, vol. 47, no. 6, pp. 1615–1621.
  16. Shannon, C. E. (1949): Communication in the presence of noise, in: Proc. IRE, vol. 37, pp. 10-21.
  17. Shannon, C. E. (1998): Classic paper: Communication in the presence of noise, Proc. IEEE, vol. 86, no. 2, pp. 447–457.
  18. Strang, G. (1971): The finite element method and approximation theory, in: Numerical Solution of Partial Differential Equations—II, B. Hubbard (Ed.), New York, Academic, pp. 547–583.
  19. Strang, G., Nguyen, T. (1996): Wavelets and Filter Banks. Wellesley, MA, Wellesley-Cambridge.
  20. Swenson, S., J. Wahr, and P. C. D. Milly (2003): Estimated accuracies of regional water storage variations inferred from the gravity recovery and climate experiment (GRACE), Water Resources Research, 39, 11–1. https://doi.org/10.1029/2002WR001808
  21. Unser, M. (2000): Sampling-50 Years after Shannon, Proc. IEEE, 88(4), p. 569–587.
  22. Wahr, J., S. Swenson, and I. Velicogna (2006), Accuracy of GRACE mass estimates, Geophysical Research Letteres, 33, L06,401, doi:10.1029/2005GL025305.