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Abstract

Fractures and their connectivity are essential for fluid flow in low perme-

ability formations. Abundant outcrops can only provide two-dimensional (2D)

information, but subsurface fractures are three-dimensional (3D). The percola-

tion status of 3D fracture networks and their 2D cross-section maps are rarely

investigated simultaneously. In this work, we construct 3D fracture networks

with their geometries characterized by different stochastic distributions. Then,

we take cross-section maps to mimic real outcrops and label clusters to check

the percolation status of 3D fracture networks and their 2D cross-section maps.

The properties, reflecting the connectivity of two essential phases, are summa-

rized and analyzed. We find that clustering effects impact local intersections

significantly but have negligible impacts on fracture intensities of 3D fracture

networks. The number of intersections per fracture is not a proper percolation

parameter for complex 2D and 3D fracture networks. Fracture intensities are
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scale-dependent and usually decrease with increasing scales. The real fracture

networks in the subsurface should be geometrically well-connected and pervasive

if their outcrop maps are well connected. In particular, the fracture intensity of

the real fracture network can be several times (at least 3.6 times) larger than the

intensity at percolation. However, if outcrop maps are not well-connected, but

their intensities are large enough (at least 0.43 times as large as the intensity

at percolation), corresponding 3D fracture networks can also form a spanning

cluster and show good connectivity with a high possibility.

1. Introduction1

Fractures play an essential role for any fluid flow in subsurface formations2

with low permeability, because fractures usually have much higher permeabil-3

ity than the matrix and serve as a high-permeable pathway to any fluid flow.4

Fractures are typically connected and form complex fracture networks. The5

connectivity of such a fracture network is crucial in flow characterizations [1].6

However, little is known about configurations of real fracture networks in the7

subsurface. Commonly available approaches, such as borehole images or outcrop8

observations [2, 3, 4, 5], can only provide one-dimensional or two-dimensional9

information. While real fracture networks in the subsurface are always three-10

dimensional. 3D seismic techniques [6] are available for large faults, but for11

fractures with a size of meters or tens of meters, they are sub-seismic patterns12

and can not be observed by seismic data. There are also several crosswell imag-13

ing techniques, which can resolve higher resolutions of subsurface structures,14
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such as crosswell seismic tomography[7] and crosswell electromagnetic tomog-15

raphy [8]. However, the well spacing limits the range of available information.16

Therefore, it is almost impossible to have the detailed mapping of subsurface17

fracture networks and evaluate their connectivity in 3D with current technolo-18

gies.19

Properties of 3D fracture networks in the subsurface cannot be measured20

directly in detail. For example, fracture intensity, an essential parameter for21

connectivity of fracture networks, has been investigated extensively by corre-22

lating 3D intensities with lower-dimensional intensities mostly through stereo-23

logical interpretations [9, 10, 11]. The 1D intensity measure P10 and the 2D24

measure P21 are often linearly correlated with the 3D intensity measure P3225

under strong assumptions about the distributions of fracture lengths, positions26

and orientations. Here, Pij notation conforms to the definition of [12], where27

i refers to the dimension of the sample, and j refers to the dimension of the28

measure. For example, P21 is the length of fracture traces per unit area and P3229

is the area of fractures per unit volume. However, Zhu et al. [13] investigated30

the fracture intensities in different dimensions. They found that the correlation31

between 1D and 3D intensity parameters is weak. 2D fracture intensity param-32

eters, such as P21, have good correlations with 3D intensity parameters, such as33

P32, if samples are correctly collected, and the number of independent samples34

is larger than 20. However, these conditions are almost inaccessible in reality.35

Furthermore, fracture intensity is an essential factor that impacts connectiv-36

ity but cannot completely characterize it. The fracture orientations, clustering37

3



effects, and length distributions are also crucial for the system connectivity [14].38

Percolation theory [15] is used to study the connectivity of anything in gen-39

eral. The theory describes the percolation threshold, when a spanning clus-40

ter is formed in an infinitely large system, and scaling properties close to the41

percolation threshold. In particular, the connectivity of fracture networks is42

also heavily investigated with percolation theory considering finite-size effects43

[16, 17, 18, 19, 20, 21, 22]. However, the percolation status of 2D and 3D44

fracture networks are usually investigated as separated issues [23, 24] mostly45

with stochastic discrete fracture networks. The relationship between the per-46

colation status of 2D and 3D fracture networks is rarely investigated. In this47

research, the percolation status particularly refers to the formation of a span-48

ning cluster instead of the exact percolation parameter and its threshold. We49

use the formation of a spanning cluster to represent good global connectivity.50

From our previous research[17], we found that commonly used quantities (total51

excluded area, total self-determined area and the number of intersections per52

fracture) are not appropriate percolation parameters for complex fracture net-53

works, where fracture lengths follow a power-law distribution and positions of54

fracture centers follow a fractal spatial density distribution. Therefore, finding55

a proper percolation parameter and its threshold is still an open issue, which56

should depend on specific configurations of fracture networks and be valid in an57

infinitely large system.58

Outcrop maps provide abundant resources to observe natural fractures ex-59

posed on the surface [25, 26]. If the rock types and structural settings of the60
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surface outcrops and subsurface formations are similar, outcrop analogues can61

be regarded as relevant to the subsurface formation. From a collection of 8062

outcrops in our previous research [27], we find that most natural outcrop maps63

show good geometrical connectivity, and 63 out of 80 outcrop maps have formed64

a spanning cluster that connects the outcrop map’s boundaries. For small-scale65

(<100 m) outcrop maps, such proportion is much higher. One example of out-66

crop maps at Achnashellach Culmination field area [28] is shown in Fig. 1, where67

the largest cluster is marked in red, and the other small clusters are marked in68

green. Outcrops are processed with an automatic fracture detection algorithm69

[29, 27], where raw outcrops are converted to polylines for calculations.70

(a) (b)

Figure 1: Fracture outcrop map at Achnashellach Culmination field area (Fig. 7B and 7D

in [28]). Red line segments are the largest spanning cluster; Green line segments are local

clusters.

In this work, we assume that an outcrop map is relevant to the subsurface71

structures. However, an outcrop map can only be considered as a cross-section72

map of the actual 3D fracture network. From well-connected 2D outcrop maps,73

can we infer good connectivity of corresponding 3D fracture networks? Do 3D74

fracture networks also form the spanning cluster? Can 3D fractures be perva-75

sive? In this research, the word "pervasive" means that the fracture intensity is76
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much higher than the intensity at percolation. This information is essential to77

evaluate the geometrical connectivity of fracture networks in the subsurface but78

is rarely investigated. The geometrical connectivity is a premise for fluid flow79

in low permeability formations, because fluid flow happens in connected instead80

of isolated fractures. This work aims to explore the percolation status of 2D81

cross-section maps and their corresponding 3D fracture networks.82

In this research, we adopt the stochastic discrete fracture network method83

[30, 31, 32, 33], and generate 3D fracture networks with their geometries, such84

as fracture sizes, orientations, positions of fracture centers, following different85

stochastic distributions. We also change the system size and evaluate finite-size86

effects. We take cross-section maps to mimic real outcrops. Then, label clus-87

ters and check the percolation status of the 3D fracture network and their 2D88

cross-section maps. The properties, reflecting the connectivity of two important89

phases, are summarized and analyzed. The properties include P30, P32 and I3D90

for 3D fracture networks, and P20, P21 and I2D for 2D cross-section maps. I3D91

and I2D are the number of intersections per fracture for a 3D fracture network92

and 2D cross-section map, respectively. Although none of those parameters can93

characterize the connectivity of a fracture network completely, they are conve-94

nient to quantify and usually adopted as the termination criterion in stochastic95

discrete fracture network modellings, especially for fracture intensities. The96

critical phases considered include: i, when the spanning cluster is formed in the97

3D fracture network, indicating good connectivity of the 3D fracture network;98

ii, when a spanning cluster is formed in the 2D cross-section map, indicating99
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good connectivity in 2D cross-section maps. The simulation in this research is100

conducted with in-house software, HatchFrac, efficient software to generate101

discrete fracture networks in 2D and 3D [34, 13].102

The remainder of this paper is organized as follows: Section. 2 introduces103

the techniques to construct a 3D fracture network and take cross-section maps.104

We also evaluate the impact of fracture geometries (lengths and center posi-105

tions) and system sizes on the connectivity. The method of sensitivity analysis106

is introduced in Section. 2. Section. 3 presents results on the percolation status107

of 3D fracture networks and their cross-section maps. The properties at two108

critical phases are analyzed in detail. Section. 4 discusses the percolation sta-109

tus in realistic fracture networks and real outcrops. Important conclusions are110

summarized in Section. 5.111

2. Materials and Methods112

This section introduces procedures to generate 3D fracture networks, take 2D113

cross-section samples and check clusters in both 2D and 3D fracture networks.114

2.1. Generation of 3D fracture networks and cluster-check115

Subsurface fracture networks are complex, and it is almost impossible to have116

an accurate mapping of them. Discrete fracture network modelling is a practical117

alternative to represent complex fracture networks with simpler geometries. In118

this research, we adopt random convex polygons with four vertices to represent119

fractures in 3D. The random polygon reserves certain degrees of irregularity120

compared with a disk or ellipse shape. It is also straightforward to convert121
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convex polygons to ellipse shapes or other polygon shapes by adding a few122

more vertices and minor adjustments to the coordinates. Furthermore, the123

intersection analysis of convex polygons is much more convenient than that of124

ellipses. Jing and Stephansson [35] figured out that the significance of fracture125

shapes decreases with an increase in the fracture population size.126

Three key geometrical parameters are adopted to describe a fracture net-127

work, including fracture lengths (sizes), orientations, positions of fracture cen-128

ters. Different stochastic distributions are summarized mainly from outcrop or129

experiment observations to characterize those geometrical parameters.130

A power-law distribution [36, 23] is dominantly used to describe fracture131

length probably due to the self-similarity of natural fractures [37].132

n(l) = αl−a, (1)

where n(l)dl is the number of fractures with lengths ranging from [l, l+dl], α is133

the proportionality coefficient and a is the power-law exponent. The power-law134

exponent has to be larger than one, as we derived in our previous research, and135

usually ranges between 2 and 3 for most cases [23, 17]. The exponent controls136

the probability of generating long fractures, and the probability of generating137

very long fractures decreases sharply as a increases. 3D fractures are represented138

with planar polygons. Therefore fracture lengths are inappropriate to describe139

their sizes. We first generate convex polygons with the side length randomly140

varying between 0 and 1, then perform the scaling operation on the polygon141

with a scale factor of l to change their sizes.142

The fracture orientations are highly stress-dependent, depending on the cur-143
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rent stress field and the history of stress changes. Over the long geologic history,144

subsurface rocks may have many different sets of fractures because of stress145

variations [38]. A von Mises–Fisher distribution [39] is commonly adopted to146

describe fracture orientations. From outcrop observations, the concentration147

parameter κ in the distribution is usually small and make the distribution close148

to a uniform distribution. Therefore, fracture orientations follow a uniform149

distribution between 0 and π for strikes and dips in this research.150

The positions of fracture centers are described by a uniform or fractal spatial151

density distribution[23, 40]. The former one is simple for implementation but not152

realistic since many outcrop maps show clustered natural fractures [40, 17]. The153

fractal spatial density distribution introduces clustering effects, characterized by154

a fractal dimension, FD. For a three-dimensional space, the fractal dimension155

varies between 2.0 and 3.0, while a smaller fractal dimension refers to more156

server clustering effects.157

After determining the stochastic distributions, we can generate each fracture158

and form complex networks by adding fractures in succession. To check the159

percolation status of fracture networks, we need to find fracture clusters and160

label them. In this research, we extend a fast Monte Carlo algorithm by Newman161

and Ziff [41] to check clusters instead of the commonly used Hoshen-Kopelman162

algorithm [42]. The efficiency is significantly enhanced and make it practical to163

check clusters for large systems and thousands of realizations. The termination164

of generating new fractures can be any user-defined criterion, such as a given165

fracture intensity or the formation of a spanning cluster.166
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Fig. 2 shows examples of 3D fracture networks with their geometries char-167

acterized by stochastic distributions listed above. The termination criterion is168

forming a spanning cluster (red cluster), which connects six faces of the 3D169

domain.170

Fractal Uniform

Figure 2: 3D fracture networks. The red fractures form the connected spanning cluster. The

green fractures correspond to all other locally connected clusters. In both networks, fracture

orientations follow a uniform distribution, lengths obey a power-law distribution, and the

fracture apertures are constant. The left network has fracture center positions that follow a

fractal spatial density distribution with the fractal dimension of 2.5, and in the right network,

the fracture centers follow a uniform distribution.

2.2. Cross-section of 3D fracture networks and cluster-check171

Outcrop maps are spread worldwide and provide abundant resources to study172

natural fracture networks. However, outcrops are only 2D cross-section maps173

of an entire 3D fracture network, where the ground surface serves as the cross-174

sectional plane. How to link the connectivity of 2D outcrops and their corre-175

sponding 3D structures remains an open issue because the actual 3D structures176

are almost inaccessible with current technologies. With the 3D fracture networks177
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generated in the previous section, we can investigate the problem reversely. By178

taking 2D cross-section maps from the 3D fracture network, we mimic the 2D179

outcrop maps and investigate the percolation status and its relationship between180

2D outcrops and their 3D structures.181

The method to take the cross-section map is trivial. First, define a cross-182

sectional plane based on a given orientation and position of the plane. Second,183

find all the intersection lines between the cross-sectional plane and all fractures184

in the 3D fracture network. The cross-section map of the 3D fracture network is185

a 2D fracture network. The same cluster-check algorithm can be implemented186

to check clusters in cross-section maps. Fig. 3 and Fig. 4 provide two examples187

of a cross-section map taken from a 3D fracture network. The percolation status188

of the 2D cross-section maps in the two examples are different. In Fig. 3, the 3D189

fracture network has formed a spanning cluster, suggesting good connectivity,190

but no spanning cluster is formed in the cross-section map. In Fig. 4, both 3D191

fracture network and its cross-section map have a spanning cluster formed. The192

spanning cluster for both 3D fracture networks and 2D cross-section maps are193

shown in red. The fracture intensity in Fig. 4 is almost three times larger than194

the intensity in Fig. 3. Therefore, good connectivity in 3D structures cannot195

ensure good connectivity in 2D outcrop maps. In reverse, good connectivity in196

outcrop maps may suggest an over-percolated status of the corresponding 3D197

fracture network. An over-percolated status means that fractures are pervasive,198

where the intensity is much higher than the intensity at percolation.199

It is worthwhile to mention that fracture intensities of cross-section maps200
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Figure 3: A 3D fracture network and its cross-section map at the middle position. The

3D fracture network has fracture lengths following a power-law distribution with a = 3,

positions of fracture centers following a uniform distribution and orientations following a

uniform distribution. In the 3D fracture network, red fractures form a spanning cluster that

connects six faces of the domain. Green fractures are local clusters. In the 2D cross-section

map, on spanning cluster is formed, and green fractures are local clusters.

vary at different positions. Fig. 5 shows fracture intensities, P20 and P21, at201

different positions in three directions for a typical 3D fracture network. The202

fracture intensities near boundaries are usually small. However, the spatial203

variations inside the domain are uncertain, depending on the geometrical prop-204

erties of fracture networks. It is unpractical and unnecessary to have many 2D205

cross-section maps with limited computational resources. Therefore, we choose206

the cross-section map at the middle position (blue plane) of the domain as a rep-207

resentative to investigate the percolation status of different dimensional fracture208

networks.209

This research investigates the percolation status and connectivity of 3D frac-210

ture networks and their cross-section maps. In particular, we generate fracture211
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Figure 4: A 3D fracture network and its cross-section map at the middle position. The

3D fracture network has fracture lengths following a power-law distribution with a = 3,

positions of fracture centers following a uniform distribution and orientations following a

uniform distribution. In the 3D fracture network, red fractures form a spanning cluster which

connects six faces of the domain. Green fractures are local clusters. In the 2D cross-section

map, red fractures form the spanning cluster, which connects four sides of the 2D domain;

green fractures are local clusters.

networks in 3D and stop generating new fractures when the 2D cross-section212

map forms a spanning cluster. This process includes two critical phases. The213

first phase is when the spanning cluster is formed in the 3D fracture network,214

indicating good connectivity for the 3D fracture network. The second phase is215

when a spanning cluster is formed in the 2D cross-section map, indicating good216

connectivity for 2D cross-section maps. Several key parameters, essential for217

connectivity, are summarized from each realization at both phases, including218

P30, P32 and I3D for 3D fracture networks, and P20,P21 and I2D for 2D cross-219

section maps. Pij notation conforms to the definition of Dershowitz et al. [12],220

where i refers to the dimension of the sample, and j refers to the dimension of221
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Figure 5: Fracture intensity, P20 and P21, of cross-section maps of a typical fracture network

at different locations. The typical 3D fracture network has fracture lengths following a power-

law distribution with a = 3, positions of fracture centers following a uniform distribution and

orientations following a uniform distribution. Cross-section maps are taken from different

orientations shown in different colors.

the measure. For example, P21 is the length of fracture traces per unit area and222

P32 is the area of fractures per unit volume. I2D and I3D are the number of in-223

tersections per fracture in 2D cross-section maps and corresponding 3D fracture224

networks, respectively. Pij refers to fracture intensity, and I2D and I3D focus225

on the intersections. Both of them are essential to evaluate the connectivity of226

a fracture network.227

2.3. Sensitivity analysis228

We investigate the impacts of critical geometrical properties, including frac-229

ture lengths, positions of fracture centers, and system sizes, on the connectivity230

of 3D fracture networks and their 2D cross-section maps. Different stochastic231

distributions are implemented to describe fracture geometries, as discussed in232

the previous section. The power-law exponent, a, usually varies between 2 and 3233
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[17], and we take 11 values from 2 to 3 with a step of 0.1. The fractal dimension,234

FD, for 3D fracture networks should be larger than 2 but smaller than 3. We235

take 10 values from 2.1 to 3 with a step of 0.1. The system size, L, is chosen236

from 10 to 40 with a step of 10. Each case is stabilized by averaging over 50237

realizations.238

To quantify the impact of each geometrical parameter on the connectivity, a239

sensitity analysis is necessary. We adopt the input/output correlation method,240

in which the sensitivity of model response Y to the components of the input241

random vector X is calculated by determining the component-wise correlation242

coefficients between the two. Consider n samples of the input random vector243

X = {x(1), x(2), x(3), . . . , x(n)}, and the corresponding model responses Y =244

{y(1), y(2), y(3), . . . , y(N)}. The linear correlation coefficient ρi between the ith245

input and output is defined as246

ρi = ρ(Xi, Y ) = E[(Xi − µi)(Y − µY )]
σiσY

, (2)

where µi and µY are the expected values of Xi and Y respectively, and σi247

and σY are the corresponding standard deviations. The importance of each248

factor is ranked based on the correlation coefficient. The response can be any249

recorded parameter mentioned above, which reflects the connectivity of the250

fracture network, and the input vector included a, FD, L, for both the 2D and251

3D fracture networks.252
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3. Results253

This section presents results of I2D, P20 and P21 of 2D cross-section maps and254

I3D, P30 and P32 of corresponding 3D fracture networks in two critical phases.255

One phase is when the 3D fracture network forms a spanning cluster, and the256

other phase is when a spanning cluster is formed in cross-section maps. The257

sensitivity analysis of geometrical properties, including the power-law exponent258

(a), fractal dimension (FD) and system size (L), are provided.259

3.1. Results in phase one260

When a spanning cluster is formed in 3D fracture networks, their cross-261

section maps are usually poorly connected, and there is no spanning cluster262

formed in cross-section maps. Fig. 6(a-c) show I2D, P20 and P21 of 2D cross-263

section maps averaged over 50 realizations. Fig. 6(d-f) show standard deviations264

of each parameter in the first row. Fig. 6(g-i) show the sensitivity rank of each265

geometrical parameter (a, FD, L) with each parameter in the first row as the266

response. Similarly, Fig. 7(a-c) show I3D, P30 and P32 of 3D fracture networks267

over 50 realizations. Fig. 7(d-f) show standard deviations of each parameter in268

the first row. Fig. 7(g-i) show the sensitivity correlation of each geometrical269

parameter (a, FD, L) with each parameter in the first row as the response.270

In Fig. 6(a), the number of intersections per fracture I2D is low, and for271

many cases, there is no intersection at all and yield zero for I2D. In Fig. 6(b,272

c), P20 and P21 have similar behaviors. They have low values and decrease with273

system sizes. The standard deviations of P20 and P21 decrease with increasing274
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system sizes. From the sensitivity analysis, the exponent a and system size L275

have strong correlations with P20 and P21. The exponent a has a strong positive276

correlation with these two parameters, indicating fracture networks dominated277

by small fractures tend to have high fracture intensities. System size L has a278

strong negative correlation with P20 and P21, indicating large system may have279

sparse fracture networks. The fractal dimension, representing clustering effects,280

has almost no correlation with fracture intensities.
L=10 L=20 L=30 L=40

(d)

(a) (b)

(e) (f)

(c)

(g) (h) (i)

Figure 6: Results of 2D cross-section maps at phase one, where a spanning cluster is formed

in each 3D fracture network. (a-c) show I2D, P20 and P21 of 2D cross-section maps averaged

over 50 realizations. (d-f) show standard deviations of each parameter in the first row. (g-i)

show the sensitivity rank of each geometrical parameter (a, FD, L) with each parameter in

the first row as the response.
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(d)

(a) (b)

(e) (f)

(c)

(g) (h) (i)

Figure 7: Results of 3D fracture networks at phase one, where a spanning cluster is formed

in each 3D fracture network. (a-c) show I3D, P30 and P32 of 3D fracture networks averaged

over 50 realizations. (d-f) show standard deviations of each parameter in the first row. (g-i)

show the sensitivity rank of each geometrical parameter (a, FD, L) with each parameter in

the first row as the response. In subfigure (a), I3D has been corrected for the finite-size effect.

281

For phase one, there is a spanning cluster formed in 3D fracture networks.282

The number of intersections per fracture I3D has been regarded as the perco-283

lation parameter for fracture networks [43]. However, Zhu et al. [17] showed284

that this parameter is not a valid percolation parameter in complex 2D frac-285

ture networks. Here, we can further check the applicability of this parameter286

as a percolation parameter in 3D fracture networks with available data. For287
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a quantity to be a valid percolation parameter, this quantity has to fulfill two288

requirements: i, there should be finite-size effects in a system with a finite size;289

ii, the quantity should yield a constant percolation threshold in an infinitely290

large system or a finite system after correcting for finite-size effects. Percolation291

theory is used to describe the global connectivity in an infinitely large system.292

However, the fracture network we generate always have a finite size. Therefore,293

the finite-size effect should be accounted for [23]294

pc(L)− p∞c ∼ ∆pc(L), (3)

where L is the system size, pc(L) is the percolation threshold in a finite-size295

system, p∞c is the percolation threshold in a infinitely large system and ∆pc(L)296

is the standard deviation of pc(L).297

The results of I3D and its standard deviations are shown in Fig. 7(a,d). For298

most scenarios, I3D is not constant for fracture networks with different system299

sizes after accounting for the finite-size effect. Except for one region with FD =300

2.1 and exponent a = 3, meaning fracture systems are mainly composed of small301

fractures and have strong clustering effects, the variation of I3D is relatively302

small in fracture networks of different sizes (from 10 to 40). However, from303

Fig. 7(d), standard deviations of I3D have not decreased with increasing system304

sizes for this region, indicating that no finite-size effects exist. Therefore, I3D is305

not a valid percolation parameter in complex 3D fracture networks, consistent306

with the conclusion in [17]. A larger system size and a wider range of exponent307

may yield better demonstrations as done in [17]. However, the main focus308

of the work is to find percolation status in different dimensionality instead of309
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investigating the validity of I3D as a percolation parameter. In addition, the310

cluster-check operation of 2D cross-section maps has to be implemented after311

each new 3D fracture is added to the system, which is highly time-consuming.312

Therefore we limit the system size to be 40 as the maximum.313

The fracture intensities P30 and P32 have similar trends as the 2D intensity314

parameters P20 and P21. Both of them have their values decrease with increas-315

ing system sizes, indicating the scaling of the total number and total length316

of fractures is proportional to LDs , where Ds should be smaller than 3. This317

observation is consistent with observations in [23] and [44], where they consid-318

ered the fracture network following a power-law length distribution and uniform319

position distribution in both 2D and 3D.320

For P30, P32 and I3D, the exponent a positively and the system size L321

negatively correlate with them. The fractal dimension FD has a weak correla-322

tion with intensity parameters, but has a strong negative correlation with I3D,323

meaning that clustering effects can increase intersections among fractures, but324

have an insignificant impact on fracture intensities. To better explain this phe-325

nomenon, Fig. 8 shows examples of 10,000 spatial points following a uniform326

or fractal spatial density distribution with FD = 2.1. Compared with the uni-327

formly distributed points, strong clustering effects exist in the fractal case, and328

many local clusters are formed in different parts of the domain. Those local329

clusters can significantly increase intersections of fractures and enhance local330

connectivity. However, the global connectivity seems not severely affected since331

3D fractures can connect the other fractures in any direction. However, in 2D332
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Uniform Fractal

Figure 8: 10,000 3D spatial points follow a uniform (Left) or a fractal spatial density distri-

bution (Right) with the fractal dimension D = 2.1 .

fracture networks, the linkage of fractures is limited in the same plane, and333

clustering effects impact their fracture intensity and connectivity significantly.334

Those observations are consistent with the conclusion from [14], where the im-335

pact of fracture geometries on the connectivity of 2D and 3D fracture networks336

are systematically investigated.337

3.2. Results in phase two338

For phase two, a spanning cluster is formed in a 2D cross-section map. This339

scenario is more likely to happen in reality because many outcrop maps show340

good connectivity. Fig. 1 shows two examples at the Achnashellach Culmina-341

tion field area (Fig. 7B and 7D in [28]), where natural outcrop maps form342

spanning clusters, and the fracture intensity is much higher than the intensity343

at percolation. Figs. 9 and 10 have similar meanings with Figs. 6 and 7.344

Fig. 9(a,d) shows the number of intersections per fracture (I2D) in cross-345

section maps. I2D has been corrected for finite-size effect since a spanning346
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cluster is formed in the outcrop maps at phase two. However, I2D does not347

keep constant, indicating I2D is not a proper percolation parameter for complex348

fracture networks as observed in [17]. The other two intensity parameters, P20349

and P21, have similar trends as results in phase one, but with much higher values350

(almost five times higher).351

The fractal dimension here also has a negligible correlation with intensity352

parameters. However, this observation is inconsistent with conclusions in [14],353

where clustering effects have a significant impact on the connectivity of 2D354

fracture networks. It is worthwhile to mention that the fractal dimension in 3D355

fracture networks can bring clustering effects in 2D cross-section maps. How-356

ever, it is different from clustering effects in 2D fracture networks, where their357

positions of fracture centers directly follow a spatial density distribution. The358

clustering effects in the cross-section map highly depend on the position of the359

cross-sectional plane.360

For comparison, we also generate 2D fracture networks with positions of361

fracture centers following a fractal spatial density distribution with the fractal362

dimension (FD) varying between 1.2 and 2. Their lengths follow a power-law363

distribution with exponent (a) varying between 2 and 3, and orientations are364

uniformly distributed between 0 and π. The system size (L) varies between365

10 and 40. Each scenario is stabilized by averaging over 50 realizations. The366

sensitivity of P20, P21 and I2D with respect to a, FD and L are shown in Fig. 11.367

The results are systematically different from the correlations in Fig. 9(g-i). For368

I2D, exponent a and fractal dimension FD have similar results as correlations369
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in cross-section maps, but the system size has opposite results. For intensity370

parameters, P20 and P21, the fractal dimension FD has a positive correlation,371

indicating clustering effects actually can increase the fracture intensity and can372

be significant to the connectivity of 2D fracture networks.373

L=10 L=20 L=30 L=40

(d)

(a) (b)

(e) (f)

(c)

(g) (h) (i)

Figure 9: Results of 2D cross-section maps at phase two, where a spanning cluster is formed

in the cross-section map. (a-c) show I2D, P20 and P21 of 2D cross-section maps averaged over

50 realizations. (d-f) show standard deviations of each parameter in the first row. (g-i) show

the sensitivity rank of each geometrical parameter (a, FD, L) with each parameter in the first

row as the response. In subfigure (a), I2D has been corrected for the finite-size effect.

When a spanning cluster forms in the cross-section map, the corresponding374

3D fracture network is pervasive, with a much higher fracture intensity at perco-375
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(d)
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(e) (f)

(c)

(g) (h) (i)

Figure 10: Results of 3D fracture networks at phase two, where a spanning cluster is formed

in the cross-section map. (a-c) show I3D, P30 and P32 of 3D fracture networks averaged over

50 realizations. (d-f) show standard deviations of each parameter in the first row. (g-i) show

the sensitivity rank of each geometrical parameter (a, FD, L) with each parameter in the first

row as the response.

lation. In Fig. 10, intensity parameters, P30 and P32, have much higher values376

compared with the results at percolation in Fig. 7, but keep similar trends.377

However, I3D has an opposite trend compared with I3D in phase one. When378

exponent a is small, I3D has a higher value.379

Furthermore, two phases can be linked with the ratios of fracture intensity380

parameters. In particular, we show the number ratio and area ratio in Fig. 12.381
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(b)(a) (c)

Figure 11: Sensitivity ranks of the exponent (a), fractal dimension (FD) and system sizes L

on the I2D, P20 and P21 in 2D fracture networks

The number ratio is the ratio between the total number of 3D fractures at phase382

two and the number of 3D fractures at phase one. The area ratio is the ratio383

between the total areas of fractures at phase two and at phase one. These384

ratios reflect the degree of over-percolation. A larger ratio means the number385

of fractures in reality is much larger than the number of fractures required386

at percolation. There are several spikes in Fig. 12, especially in sub-figures387

(a) and (b). Those spikes usually happen with an intermediate exponent a,388

where a few large fractures can form the spanning cluster in the 3D fracture389

networks. However, many fractures are needed to form a spanning cluster in the390

cross-section map, making the ratio extremely large. A few anomalous values391

significantly increase the mean and standard deviation since only 50 realizations392

are implemented to stabilize the results. A larger number of realizations can393

make results smoother. However, it will not change the conclusion that the 3D394

fracture network has to be pervasive when a spanning cluster is formed in its395

cross-section map.396

Both number and area ratios have a weak correlation with all three param-397
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eters shown in Fig. 12, indicating that this phenomenon is common and does398

not depend on fracture geometries and system sizes. The area ratio has a rel-399

atively strong correlation with the power-law exponent, a, indicating systems400

dominated by small fractures may have a large area ratio.401

Fig. 13 provides the histogram and cumulative distribution function of mean402

ratios. For the number ratio, most cases have a value smaller than 10, and403

the mode value is 3.55. The area ratio has a relatively uniform distribution404

compared with the number ratio, and the mode value is 3.08. In the CDF plot,405

the low (P10), median (P50) and high (P90) estimates of the mean ratios are406

denoted. For the mean number ratio, those estimates are 4.54, 5.94 and 8.17,407

respectively. For the mean area ratio, they are 3.83, 4.86, 6.17, respectively.408

The minimum value of the number ratio is 3.6, which can be regarded as a409

lower limit to predict the fracture intensity of 3D fracture networks based on410

their outcrop maps. Real subsurface fracture networks have their intensities at411

least 3.6 times larger than the intensity at percolation if their outcrop maps412

show good geometrical connectivity.413

Subsurface fracture networks have to be pervasive if their outcrop maps are414

well connected. However, if their outcrop maps are not well connected, can415

we infer any information on the connectivity of 3D fracture networks? The416

number ratio or length ratio of 2D cross-section maps at two phases can provide417

a criterion to predict the formation of the spanning cluster in corresponding 3D418

fracture networks. Fig. 14 shows the mean value of number ratio and length419

ratio, their standard deviations and sensitivity analysis. The number ratio of a420
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L=10 L=20 L=30 L=40

(d)

(a) (b)

(e) (f)

(c)

Figure 12: (a,d) mean values of the number ratio and area ratio; (b,e) standard deviations of

the number ratio and area ratio; (c,f) sensitivity ranks of each geometrical parameter (a, FD,

L) with the number ratio and area ratio as the response. Number ratio/ Area ratio refer to

ratios between the total number/area of 3D fractures at phase two and the total number/area

of 3D fractures at phase one.

2D cross-section map is the ratio between the total number of fractures in the421

2D outcrop map at phase one and the number of fractures at phase two. Similar422

concepts are defined for the length ratio. For example, take 0.3 as the number423

ratio, and it means that for outcrop maps, if the fracture intensity is 0.3 times424

as large as the fracture intensity required to form the spanning cluster, there is a425

high possibility that a spanning cluster is formed in the corresponding subsurface426

3D fracture network. Therefore, if outcrops are not well connected, we can427

add fractures manually to form a spanning cluster and check the ratio between428

the original number of fractures and the number of fractures at percolation429

to predict the formation of a spanning cluster in the subsurface. The added430
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Figure 13: (a,c) The histogram of the number ratio and area ratio; (b,d) The cumulative

distribution function of the number ratio and area ratio.

fractures should follow the statistical distributions summarized from existing431

fractures.432

In Fig. 14, clustering effects and the system size have negligible impacts433

on the number ratio and length ratio. The impact of the exponent is slightly434

higher and negative, indicating that larger fractures make the ratios smaller and435

easier to form a spanning cluster in 3D fracture networks. Fig. 15 provides the436

histogram and cumulative distribution function of the mean ratios, and both the437

number and length ratios have a similar distribution. In the CDF plot, the low438

(P10), median (P50) and high (P90) estimates of the mean ratios are denoted.439
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For the mean number ratio, those estimates are 0.22, 0.29 and 0.37, respectively.440

For the mean length ratio, those estimates are 0.21, 0.27, 0.35, respectively. The441

maximum value of the number ratio is 0.43, which can be regarded as a lower442

limit to predict the formation of a spanning cluster in 3D fracture networks443

based on their outcrop maps. If the fracture intensity is 0.43 times as large as444

the intensity at percolation in the outcrop map or higher, the corresponding445

3D fracture network can form a spanning cluster in the subsurface with a high446

possibility.447

L=10 L=20 L=30 L=40

(d)

(a) (b)

(e) (f)

(c)

Figure 14: (a,d) mean values of the number ratio and length ratio; (b,e) standard deviations

of the number ratio and area ratio; (c,f) sensitivity ranks of each geometrical parameter (a,

FD, L) with the number ratio and length ratio as the response. Number ratio/ Length ratio

refer to ratios between the total number/length of 2D fractures at phase one and the total

number/length of 2D fractures at phase two.
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Figure 15: (a,c) The histogram of the number ratio and length ratio; (b,d) The cumulative

distribution function of the number ratio and length ratio.

4. Discussion448

The fracture networks concerned above have their fracture lengths, positions,449

and orientations follow a single stochastic distribution, respectively. This may450

not be true because rocks could form different sets of fractures during their451

long geological history and each fracture set has its own distributions. In this452

section, we constrain fracture networks with simple geomechanics principles and453

outcrop characteristics to make them more geologically meaningful. Similar454

approach is adopted in [13]. To this effect, we have introduced four types of455
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joints [45, 46], sketched in Fig. 16a. Type 1 joints are in blue and type 2 joints

N

Figure 16: (a) A sketch map to illustrate four types of joints in a fold structure; (b) An

outcrop map from Holland et al. [47]; (c) A cross-section map of our fracture network. Red

fractures are the largest cluster; Green fractures are local clusters.
456

are in green. These are tension joints that are, respectively, approximately457

parallel and perpendicular to the hinge line. The Type 3 conjugate shear joints458

(actually microfaults) are in red. They have dihedral angles equal to 60◦ and459

their angle bisectors are parallel to the maximum principal stress σ1. Type460

4 shear joints (microfaults) are in cyan. They have random strikes and dips461

because of the local anisotropy. The existence of random shear joints brings462

more complexity and uncertainties to the network. The system size is 1003
463

of arbitrary units. The orientations of the maximum and minimum principal464

stress σ1, σ3 are north-south and east-west, respectively. The distributions of465

fracture lengths, strike angles, dip angles and the positions of fracture centers466

are listed in Table. 4. More detailed description of procedures to construct467

realistic 3D fracture networks can be found in [13]. After generating the 3D468

fracture network, we take the cross-section map at the middle position, shown469

in Fig. 16(c). Compared with the natural outcrop in Fig. 16(b) , the cross-470
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Table 1: Distributions of each type of joints

Type of joints Probabilitya Center position Strike Dip Length

1 0.02 Uniformb
von Mises-Fisher

(µ = 90◦, κ = 300)
90◦ 2L

2 0.02 Uniform
von Mises-Fisher

(µ = 0◦, κ = 300)
90◦

Power-lawe

(Lmax = L, a = 3)

3 0.72 Uniform dN60◦E, S60◦E 90◦
Power-law

(Lmax = L, a = 2.5)

4 0.24 Fractalc
Uniform

([0, 2π])

Uniform

([0, 2π])

Power-law

(Lmax = L, a = 3)

a probability of generation.

b a uniform spatial distribution.

c a fractal spatial density distribution and the fractal dimension is 2.5 in this research.

d the dihedral angles equal to 60◦ and angle bisectors are parallel to σ1.

e Lmax is the maximum length of the fracture; a is the exponent of the power-law distribution.

section maps is not identical, but they share many common characteristics, like471

preferential fracture orientations, and different fracture sets.472

The total number of fractures in the 3D fracture networks is 49,979, and the473

entire area is 8,347,170. We also find the largest cluster in the cross-section map474

and mark them in red. The cross-section map is over-percolated. Furthermore,475

the corresponding 3D fracture network is also over-percolated. The number of476

fractures at percolation is 3,222 after checking clusters, and the total area is477

543,271. Therefore, the number ratio between the total number of 3D fractures478

and the number at percolation is 15.5. The corresponding area ratio is 15.4. 3D479

fractures is pervasive in realistic fracture networks to ensure good connectivity480
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in their cross-section maps.481

Renshaw et al. [48] used ice as a model for rock and conducted systematic ex-482

periments, where samples were subjected to uniaxial compressive loading. From483

their experiments, they observed that crack density remains nearly constant af-484

ter the onset of percolation. They concluded that only limited fracture growth485

is possible after the onset of percolation. However, from outcrop observations,486

natural fracture networks have their fracture intensities much larger than the487

intensity at percolation. Fig. 17 shows the fracture intensity of 80 outcrop maps488

collected from different parts of the world [49, 50, 51, 52, 53, 54, 55, 56, 57, 58,489

59, 28, 60, 61, 62, 63]. The scales vary from millimeters to tens of kilometers.490

The fracture intensity parameters, P20 and P21, are calculated for the entire491

map instead of local regions. Their values vary in a wide range and almost do492

not correlate with scales. The correlation coefficients between the scale and P20,493

P21 are -0.1 and -0.06, respectively. Red circles refer to outcrop maps where494

a spanning cluster is formed. Green circles refer to outcrop maps where no495

spanning cluster is formed. There are 63 out of 80 maps that have a spanning496

cluster formed. Two examples from the Achnashellach Culmination field area497

[28] are shown in Fig. 1.498

From observations of this research, the 3D fracture network has to be over-499

percolated if its cross-section map forms a spanning cluster. This conclusion500

is independent of fracture geometries and system sizes. If this conclusion is501

valid in reality, the corresponding subsurface fracture networks of those outcrop502

maps must be pervasive, which have a much higher intensity than the intensity503
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at percolation. The conclusion from Renshaw et al. [48]’s experiment is valid504

in their experimental environment, where the excess strain is accompanied by505

the opening of existing fractures rather than generating new fractures. For506

natural rocks existing for a long geological history, stress conditions changed,507

and different sets of fractures with various orientations [64, 28] were generated.508

Thus they can form complex and well-connected fracture networks.509

It is also worth mentioning that the well-connected fracture networks cannot510

ensure good hydraulic connectivity of subsurface fracture networks because: i,511

outcrops can only be regarded as relevant to the subsurface formation if the rock512

types structural settings of the surface outcrops and subsurface formations are513

similar. However, weathering, stress-release during the upward movement and514

complex surface topography can cause outcrops to differ from the subsurface515

systems significantly[2]; ii, compression and cementation can cause the closure516

and sealing of fractures over geologic time, which together significantly reduce517

the fracture permeability [65, 66]. The hydraulic connectivity of subsurface frac-518

ture networks thus depends on many factors, such as sealing patterns, current519

global and local stress states. More detailed investigations can be found in our520

previous researches [27, 67].521

34



10
-6

10
-4

10
-2

10
0

10
2

10
4

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

10
-6

10
-4

10
-2

10
0

10
2

10
4

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

Mean=0.0709

(b)(a)

Mean=0.0054

10
-6

10
-4

10
-2

10
0

10
2

10
4

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

10
-6

10
-4

10
-2

10
0

10
2

10
4

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

Mean=0.0709

(b)(a)

Mean=0.0054

Figure 17: Fracture intensities, P20 and P21, of 80 published outcrop maps. Red data points

refer to outcrops with a spanning cluster formed; Green data points refer to outcrops without

a spanning cluster formed.

5. Conclusions522

This research systematically investigates the percolation status of 3D frac-523

ture networks and their cross-section maps based on the assumption that the524

outcrop map is relevant to the subsurface structure and can be regarded as a525

cross-section map of the corresponding 3D fracture network. Several key con-526

clusions are summarized:527

• Clustering effects impact the local intersections significantly but have neg-528

ligible impacts on fracture intensities of 3D fracture networks.529

• The number of intersections per fracture, I2D or I3D, is not a proper530

percolation parameter for complex 2D and 3D fracture networks.531

• Fracture intensities are scale-dependent and usually decrease with increas-532

ing scales.533
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• The real fracture networks in the subsurface should be geometrically well-534

connected and pervasive if their outcrop maps are well connected. In535

particular, the fracture intensity of the real fracture network can be several536

times (at least 3.6 times) larger than the intensity at percolation.537

• If 2D outcrop maps are not well connected, but their intensity is large538

enough (at least 0.46 times as large as the intensity at percolation), it is539

highly possible that their corresponding 3D fracture networks can form a540

spanning cluster.541
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