REFERENCES
Aghajan, Z. M., Schuette, P., Fields, T. A., Tran, M. E., Siddiqui, S. M., Hasulak, N. R., … & Fried, I. (2017). Theta Oscillations in the Human Medial Temporal Lobe during Real-World Ambulatory Movement. Current Biology27 (24), 3743-3751.s
Agster, K. L., & Burwell, R. D. (2009). Cortical efferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. Hippocampus19 (12), 1159-1186.
Agster, K. L., & Burwell, R. D. (2013). Hippocampal and subicular efferents and afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. Behavioural brain research254 , 50-64. Ahmed, O. J., & Mehta, M. R. (2009). The hippocampal rate code: anatomy, physiology and theory. Trends in neurosciences32 (6), 329-338.
Ahmed, O. J., & Mehta, M. R. (2012). Running speed alters the frequency of hippocampal gamma oscillations. Journal of Neuroscience32 (21), 7373-7383.
Ainsworth, M., Lee, S., Cunningham, M. O., Traub, R. D., Kopell, N. J., & Whittington, M. A. (2012). Rates and rhythms: a synergistic view of frequency and temporal coding in neuronal networks. Neuron75 (4), 572-583.
Alonso, A., & Köhler, C. (1984). A study of the reciprocal connections between the septum and the entorhinal area using anterograde and retrograde axonal transport methods in the rat brain. Journal of Comparative Neurology225 (3), 327-343. Amaral, D.G. and Witter, M.P. (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571–591 Arnolds, D. A., Da Silva, F. L., Aitink, J. W., & Kamp, A. (1979). Hippocampal EEG and behaviour in dog. II. Hippocampal EEG correlates with elementary motor acts. Electroencephalography and clinical neurophysiology46 (5), 571-580. Arriaga, M., & Han, E. B. (2017). Dedicated hippocampal inhibitory networks for locomotion and immobility. Journal of Neuroscience37 (38), 9222-9238.
Ayaz, A., Saleem, A. B., Schölvinck, M. L., & Carandini, M. (2013). Locomotion controls spatial integration in mouse visual cortex. Current Biology23 (10), 890-894.
Barlow JS (1964) Inertial navigation as a basis for animal navigation. J Theor Biol 6:76 –117.
Barter, J. W., Li, S., Lu, D., Bartholomew, R. A., Rossi, M. A., Shoemaker, C. T., … & Yin, H. H. (2015). Beyond reward prediction errors: the role of dopamine in movement kinematics. Frontiers in integrative neuroscience9 .
Beier, K. T., Steinberg, E. E., DeLoach, K. E., Xie, S., Miyamichi, K., Schwarz, L., … & Luo, L. (2015). Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell162 (3), 622-634.
Bender, F., Gorbati, M., Cadavieco, M. C., Denisova, N., Gao, X., Holman, C., … & Ponomarenko, A. (2015). Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway. Nature communications6 .
Bieri, K. W., Bobbitt, K. N. & Colgin, L. L. Slow and fast gamma rhythms coordinate different spatial coding modes in hippocampal place cells. Neuron  82 , 670–681 (2014)
Bland, B. H., Colom, L. V. 1993. Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex. Prog Neurobiol, 41:157–208.
Bland, B. H., Bird, J., Jackson, J., & Natsume, K. (2006). Medial septal modulation of the ascending brainstem hippocampal synchronizing pathways in the freely moving rat. Hippocampus16 (1), 11-19.
Bouwman, B. M., Van Lier, H., Nitert, H. E. J., Drinkenburg, W. H. I. M., Coenen, A. M. L., & Van Rijn, C. M. (2005). The relationship between hippocampal EEG theta activity and locomotor behaviour in freely moving rats: effects of vigabatrin. Brain research bulletin64 (6), 505-509. Börgers, C., Epstein, S., & Kopell, N. J. (2005). Background gamma rhythmicity and attention in cortical local circuits: a computational study. Proceedings of the National Academy of Sciences of the United States of America102 (19), 7002-7007.
Bragin, A., Jandó, G., Nádasdy, Z., Hetke, J., Wise, K., & Buzsáki, G. (1995). Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. Journal of Neuroscience15 (1), 47-60.
Brankačk, J., Stewart, M., & Fox, S. E. (1993). Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators. Brain research ,615 (2), 310-327.
Buetfering, C., Allen, K., & Monyer, H. (2014). Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nature neuroscience17 (5), 710-718.
Burwell, R. D., & Amaral, D. G. (1998). Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. Journal of Comparative Neurology398 (2), 179-205.
Buzsáki, G., Czopf, J., Kondakor, I., & Kellenyi, L. (1986). Laminar distribution of hippocampal rhythmic slow activity (RSA) in the behaving rat: current-source density analysis, effects of urethane and atropine.Brain research , 365 (1), 125-137. Buzsáki, G., Leung, L.W., & Vanderwolf, C. H. (1983). Cellular bases of hippocampal EEG in the behaving rat. Brain Research Reviews6 (2), 139-171.
Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron33 (3), 325-340.
Buzsáki, G. (2005). Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus15 (7), 827-840.
Buzsáki, G., & Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature neuroscience16 (2), 130.
Buzsáki, G. (2015). Hippocampal sharp wave‐ripple: A cognitive biomarker for episodic memory and planning. Hippocampus25 (10), 1073-1188
Campbell, M. G., Ocko, S. A., Mallory, C. S., Low, I. I., Ganguli, S., & Giocomo, L. M. (2018). Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation. Nature neuroscience21 (8), 1096.
Campbell, M. G., & Giocomo, L. M. (2018). Self-motion processing in visual and entorhinal cortices: inputs, integration, and implications for position coding. Journal of neurophysiology120 (4), 2091-2106.
Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., … & Moore, C. I. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature459 (7247), 663-667.
Carpenter, F., Burgess, N., & Barry, C. (2017). Modulating medial septal cholinergic activity reduces medial entorhinal theta frequency without affecting speed or grid coding. Scientific reports7(1), 14573.
Carvalho, M. M., Tanke, N., Kropff, E., Witter, M. P., Moser, M-B, & Moser, E. I. (Unpublished results). A circuit for neuronal coding of locomotion speed: from the pedunculopontine tegmental nucleus to the medial entorhinal cortex. In Society for Neuroscience Abstracts, Program (Neuroscience 2017).
Casali, G., Bush, D., & Jeffery, K. (2019). Altered neural odometry in the vertical dimension. Proceedings of the National Academy of Sciences116 (10), 4631-4636.
Chen, Z., Resnik, E., McFarland, J. M., Sakmann, B., & Mehta, M. R. (2011). Speed controls the amplitude and timing of the hippocampal gamma rhythm. PLoS One6 (6), e21408.
Chen, G., King, J. A., Burgess, N., & O’Keefe, J. (2013). How vision and movement combine in the hippocampal place code. Proceedings of the National Academy of Sciences110 (1), 378-383.
Chen, G., Manson, D., Cacucci, F., & Wills, T. J. (2016). Absence of visual input results in the disruption of grid cell firing in the mouse. Current Biology26 (17), 2335-2342. Chevaleyre, V., & Siegelbaum, S. A. (2010). Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. Neuron66 (4), 560-572.
Chrastil, E. R. (2013). Neural evidence supports a novel framework for spatial navigation. Psychonomic bulletin & review20 (2), 208-227.
Christopher, M., & Butter, C. M. (1968). Consummatory behaviors and locomotor exploration evoked from self-stimulation sites in rats. Journal of comparative and physiological psychology66 (2), 335..
Chorev, E., Preston-Ferrer, P., & Brecht, M. (2016). Representation of egomotion in rat’s trident and E-row whisker cortices. Nature Neuroscience .
Christensen, A. J., & Pillow, J. W. (2017). Running reduces firing but improves coding in rodent higher-order visual cortex. bioRxiv , 214007.
Cole, A. E., & Nicoll, R. A. (1983). Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells. Science221 (4617), 1299-1301.
Colgin, L. L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., … & Moser, E. I. (2009). Frequency of gamma oscillations routes flow of information in the hippocampus. Nature462 (7271), 353-357.
Colgin, L. L., & Moser, E. I. (2010). Gamma oscillations in the hippocampus. Physiology25 (5), 319-329.
Colgin, L. L. (2013). Mechanisms and functions of theta rhythms. Annual review of neuroscience36 , 295-312.
Colgin, L. L. (2016). Rhythms of the hippocampal network. Nature Reviews Neuroscience .
Colom, L. V., Castaneda, M. T., Reyna, T., Hernandez, S., & Garrido‐sanabria, E. (2005). Characterization of medial septal glutamatergic neurons and their projection to the hippocampus. Synapse58 (3), 151-164.
Csicsvari, J., Jamieson, B., Wise, K. D., & Buzsáki, G. (2003). Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron37 (2), 311-322.
Cullen, Kathleen E. ”The vestibular system: multimodal integration and encoding of self-motion for motor control.” Trends in neurosciences  35.3 (2012): 185-196.
Czurkó, A., Hirase, H., Csicsvari, J., & Buzsáki, G. (1999). Sustained activation of hippocampal pyramidal cells by ‘space clamping’in a running wheel. European Journal of Neuroscience11 (1), 344-352.
Dadarlat, M. C., & Stryker, M. P. (2017). Locomotion enhances neural encoding of visual stimuli in mouse V1. Journal of Neuroscience37 (14), 3764-3775.
Darwin, C. (1873). Origin of certain instincts. Nature7 (179), 417-418.
Davidson, T. J., Anderson, E. B., Lerner, T. N., Ramakrishnan, C., Mattias, J., Grosenick, L. M., … & Deisseroth, K. (Unpublished data). Subsecond cholinergic dynamics underlying hippocampal network state in freely-behaving rats. In Society for Neuroscience Abstracts, Program  (Neuroscience 2014).
De Almeida, L., Idiart, M., Villavicencio, A. & Lisman, J. Alternating predictive and short-term memory modes of entorhinal grid cells. Hippocampus  22 , 1647–1651 (2012)
Domnisoru, C., Kinkhabwala, A. A., & Tank, D. W. (2013). Membrane potential dynamics of grid cells. Nature495 (7440), 199-204.
Dragoi, G., & Buzsáki, G. (2006). Temporal encoding of place sequences by hippocampal cell assemblies. Neuron50 (1), 145-157.
Dudek, S. M., Alexander, G. M., & Farris, S. (2016). Rediscovering area CA2: unique properties and functions. Nature Reviews. Neuroscience17 (2), 89.
Ekstrom, A. D., Meltzer, J., McNaughton, B. L., & Barnes, C. A. (2001). e receptor antagonism blocks experience-dependent expansion of hippocampal “place fields”. Neuron31 (4), 631-638.
Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top–down processing. Nature Reviews Neuroscience2 (10), 704.
Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in cognitive sciences5 (1), 16-25.
Etienne, A. S., & Jeffery, K. J. (2004). Path integration in mammals. Hippocampus14 (2), 180-192.
Ferbinteanu, J. & Shapiro, M. L. Prospective and retrospective memory coding in the hippocampus. Neuron  40 , 1227–1239 (2003)
Freund, T. F., & Antal, M. (1988). GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature336 (6195), 170-173.
Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science291 (5508), 1560-1563.
Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in cognitive sciences9 (10), 474-480.
Fries, P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual review of neuroscience32 , 209-224.
Fuhrmann, F., Justus, D., Sosulina, L., Kaneko, H., Beutel, T., Friedrichs, D., … & Remy, S. (2015). Locomotion, theta oscillations, and the speed-correlated firing of hippocampal neurons are controlled by a medial septal glutamatergic circuit. Neuron86 (5), 1253-1264.
Furtak, S. C., Ahmed, O. J., & Burwell, R. D. (2012). Single neuron activity and theta modulation in postrhinal cortex during visual object discrimination. Neuron76 (5), 976-988.
Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., & Moser, M. B. (2004). Spatial representation in the entorhinal cortex. Science305 (5688), 1258-1264.
Garcia-Rill, E. (1986). The basal ganglia and the locomotor regions. Brain Research Reviews11 (1), 47-63.
Geisler, C., Robbe, D., Zugaro, M., Sirota, A., & Buzsáki, G. (2007). Hippocampal place cell assemblies are speed-controlled oscillators. Proceedings of the National Academy of Sciences104 (19), 8149-8154.
Geisler, C., Diba, K., Pastalkova, E., Mizuseki, K., Royer, S., & Buzsáki, G. (2010). Temporal delays among place cells determine the frequency of population theta oscillations in the hippocampus. Proceedings of the National Academy of Sciences107 (17), 7957-7962.
Geisler, S., & Wise, R. A. (2008). Functional implications of glutamatergic projections to the ventral tegmental area. Reviews in the Neurosciences19 (4-5), 227-244.
Gereke, B. J., Mably, A. J., & Colgin, L. L. (2017). Experience-dependent trends in CA1 theta and slow gamma rhythms in freely behaving mice. Journal of neurophysiology119 (2), 476-489.
Geva-Sagiv, M., Las, L., Yovel, Y., & Ulanovsky, N. (2015). Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nature Reviews Neuroscience16 (2), 94.
Gil, M., Ancau, M., Schlesiger, M. I., Neitz, A., Allen, K., De Marco, R. J., & Monyer, H. (2018). Impaired path integration in mice with disrupted grid cell firing. Nature neuroscience21 (1), 81.
Góis, Z. H. T., & Tort, A. B. (2018). Characterizing Speed Cells in the Rat Hippocampus. Cell reports25 (7), 1872-1884.
Goutagny, R., Jackson, J., & Williams, S. (2009). Self-generated theta oscillations in the hippocampus. Nature neuroscience12 (12), 1491.
Gray, C. M., König, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature338 (6213), 334-337.
Green, J. D., & Arduini, A. A. (1954). Hippocampal electrical activity in arousal. J. neurophysiol17 (6), 533-557.
Grieves, R. M., & Jeffery, K. J. (2017). The representation of space in the brain. Behavioural processes135 , 113-131.
Grillner S., Georgopoulos A. P., Jordan L. M. (1997). “Selection and initiation of motor behavior,” in Neurons, Network and Motor Behavior, eds Stein P. S. G., Selverston A. I., Stuart D. G., editors. (Cambridge, MA: MIT Press; ), 3–19.
Gupta, A. S., van der Meer, M. A., Touretzky, D. S. & Redish, A. D. (2012). Segmentation of spatial experience by hippocampal theta sequences. Nature neuroscience15 (7), 1032.
Haam, J., Zhou, J., Cui, G., & Yakel, J. L. (2018). Septal cholinergic neurons gate hippocampal output to entorhinal cortex via oriens lacunosum moleculare interneurons. Proceedings of the National Academy of Sciences , 201712538.
Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature436 (7052), 801. Hangya, B., Borhegyi, Z., Szilágyi, N., Freund, T. F., & Varga, V. (2009). GABAergic neurons of the medial septum lead the hippocampal network during theta activity. Journal of Neuroscience29 (25), 8094-8102. Hardcastle, K., Maheswaranathan, N., Ganguli, S., & Giocomo, L. M. (2017). A Multiplexed, Heterogeneous, and Adaptive Code for Navigation in Medial Entorhinal Cortex. Neuron94 (2), 375-387.
Hargreaves, E. L., Rao, G., Lee, I., & Knierim, J. J. (2005). Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science308 (5729), 1792-1794.
Harris, K. D. (2005). Neural signatures of cell assembly organization. Nature Reviews Neuroscience6 (5), 399-407.
Heys, J. G., Rangarajan, K. V., & Dombeck, D. A. (2014). The functional micro-organization of grid cells revealed by cellular-resolution imaging. Neuron84 (5), 1079-1090.
Heys, J. G., & Dombeck, D. A. (2018). Evidence for a subcircuit in medial entorhinal cortex representing elapsed time during immobility. Nature Neuroscience21 (11), 1574.
Hinman, J. R., Penley, S. C., Long, L. L., Escabí, M. A., & Chrobak, J. J. (2011). Septotemporal variation in dynamics of theta: speed and habituation. Journal of neurophysiology105 (6), 2675-2686.
Hinman, J. R., Penley, S. C., Escabí, M. A., & Chrobak, J. J. (2013). Ketamine disrupts theta synchrony across the septotemporal axis of the CA1 region of hippocampus. Journal of neurophysiology109 (2), 570-579.
Hinman, J. R., Brandon, M. P., Climer, J. R., Chapman, G. W., & Hasselmo, M. E. (2016). Multiple Running Speed Signals in Medial Entorhinal Cortex. Neuron91 (3), 666-679.
Hirase, H., Czurkó, A., Csicsvari, J., & Buzsáki, G. (1999). Firing rate and theta‐phase coding by hippocampal pyramidal neurons during ‘space clamping’. European Journal of Neuroscience11 (12), 4373-4380.
Hosp, J. A., Pekanovic, A., Rioult-Pedotti, M. S., & Luft, A. R. (2011). Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. Journal of Neuroscience31 (7), 2481-2487.
Huh, C. Y., Goutagny, R., & Williams, S. (2010). Glutamatergic neurons of the mouse medial septum and diagonal band of Broca synaptically drive hippocampal pyramidal cells: relevance for hippocampal theta rhythm. Journal of Neuroscience30 (47), 15951-15961.
Jacob, P. Y., Poucet, B., Liberge, M., Save, E., & Sargolini, F. (2014). Vestibular control of entorhinal cortex activity in spatial navigation.
Jacobson, T. K., Howe, M. D., Schmidt, B., Hinman, J. R., Escabí, M. A., & Markus, E. J. (2013). Hippocampal theta, gamma, and theta-gamma coupling: effects of aging, environmental change, and cholinergic activation. Journal of neurophysiology109 (7), 1852-1865. Jai, Y. Y., Kay, K., Liu, D. F., Grossrubatscher, I., Loback, A., Sosa, M., … & Frank, L. M. (2017). Distinct hippocampal-cortical memory representations for experiences associated with movement versus immobility. eLife6 , e27621.
Jeewajee, A., Barry, C., O’Keefe, J., & Burgess, N. (2008). Grid cells and theta as oscillatory interference: electrophysiological data from freely-moving rats. Hippocampus18 (12), 1175. Jung, M. W., Wiener, S. I., & McNaughton, B. L. (1994). Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. Journal of Neuroscience14 (12), 7347-7356.
Justus, D., Dalügge, D., Bothe, S., Fuhrmann, F., Hannes, C., Kaneko, H., … & Schoch, S. (2017). Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections. Nature Neuroscience20 (1), 16-19.
Kay, K., Sosa, M., Chung, J. E., Karlsson, M. P., Larkin, M. C., & Frank, L. M. (2016). A hippocampal network for spatial coding during immobility and sleep. Nature531 (7593), 185-190.
Keller, G. B., Bonhoeffer, T., & Hübener, M. (2012). Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron74 (5), 809-815.
Kemere, C., Carr, M. F., Karlsson, M. P., & Frank, L. M. (2013). Rapid and continuous modulation of hippocampal network state during exploration of new places. PloS one8 (9), e73114.
Kim, N., Barter, J. W., Sukharnikova, T., & Yin, H. H. (2014). Striatal firing rate reflects head movement velocity. European Journal of Neuroscience40 (10), 3481-3490.
King, C., Recce, M., & O’keefe, J. (1998). The rhythmicity of cells of the medial septum/diagonal band of Broca in the awake freely moving rat: relationships with behaviour and hippocampal theta. European Journal of Neuroscience10 (2), 464-477.
Kjelstrup, K. B., Solstad, T., Brun, V. H., Hafting, T., Leutgeb, S., Witter, M. P., … & Moser, M. B. (2008). Finite scale of spatial representation in the hippocampus. Science321 (5885), 140-143.
Knierim, J. J. (2015). The hippocampus. Current Biology25 (23), R1116-R1121. Kohara, K., Pignatelli, M., Rivest, A. J., Jung, H. Y., Kitamura, T., Suh, J., … & Wickersham, I. R. (2014). Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nature neuroscience17 (2), 269-279.
Korotkova, T., Ponomarenko, A., Monaghan, C. K., Poulter, S. L., Cacucci, F., Wills, T., … & Lever, C. (2018). Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neuroscience & Biobehavioral Reviews85 , 65-80.
Kramis, R., & Vanderwolf, C. H. (1980). Frequency-specific RSA-like hippocampal patterns elicited by septal, hypothalamic, and brain stem electrical stimulation. Brain research192 (2), 383-398.
Kreitzer, A. C., & Malenka, R. C. (2008). Striatal plasticity and basal ganglia circuit function. Neuron60 (4), 543-554.
Kropff, E., Carmichael, J. E., Moser, M. B., & Moser, E. I. (2015). Speed cells in the medial entorhinal cortex. Nature523 (7561), 419-424.
Kumar, A., Rotter, S., & Aertsen, A. (2010). Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nature reviews neuroscience11 (9), 615.
Kunori, N., Kajiwara, R., & Takashima, I. (2014). Voltage-sensitive dye imaging of primary motor cortex activity produced by ventral tegmental area stimulation. Journal of Neuroscience34 (26), 8894-8903.
Lalla, L., Orozco, P. E. R., Jurado-Parras, M. T., Brovelli, A., & Robbe, D. (2017). Local or Not Local: Investigating the Nature of Striatal Theta Oscillations in Behaving Rats. eNeuro4 (5), ENEURO-0128.
Lee, A. M., Hoy, J. L., Bonci, A., Wilbrecht, L., Stryker, M. P., & Niell, C. M. (2014). Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion. Neuron83 (2), 455-466.
Leinweber, M., Ward, D. R., Sobczak, J. M., Attinger, A., & Keller, G. B. (2017). A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions. Neuron95 (6), 1420-1432.
Long, L. L., Hinman, J. R., Chen, C. M., Escabi, M. A., & Chrobak, J. J. (2014). Theta dynamics in rat: speed and acceleration across the Septotemporal axis. PLoS One9 (5), e97987.
Long, X., & Zhang, S. J. (2018). A novel somatosensory spatial navigation system outside the hippocampal formation. bioRxiv , 473090.
Lopes-dos-Santos, V., van de Ven, G. M., Morley, A., Trouche, S., Campo-Urriza, N., & Dupret, D. (2018). Parsing hippocampal theta oscillations by nested spectral components during spatial exploration and memory-guided behavior. Neuron100 (4), 940-952.
Mallory, C. S., Hardcastle, K., Bant, J. S., & Giocomo, L. M. (2018). Grid scale drives the scale and long-term stability of place maps. Nature neuroscience21 (2), 270.
Manns, I. D., Mainville, L., & Jones, B. E. (2001). Evidence for glutamate, in addition to acetylcholine and GABA, neurotransmitter synthesis in basal forebrain neurons projecting to the entorhinal cortex. Neuroscience107 (2), 249-263.
Masimore, B., Schmitzer-Torbert, N. C., Kakalios, J., & Redish, A. D. (2005). Transient striatal γ local field potentials signal movement initiation in rats. Neuroreport16 (18), 2021-2024.
Maurer, A. P., VanRhoads, S. R., Sutherland, G. R., Lipa, P., & McNaughton, B. L. (2005). Self-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampus. HIPPOCAMPUS-NEW YORK-CHURCHILL LIVINGSTONE-15 (7), 841.
Maurer, A. P., & McNaughton, B. L. (2007). Network and intrinsic cellular mechanisms underlying theta phase precession of hippocampal neurons. Trends in neurosciences30 (7), 325-333.
Maurer, A. P., Burke, S. N., Lipa, P., Skaggs, W. E., & Barnes, C. A. (2012). Greater running speeds result in altered hippocampal phase sequence dynamics. Hippocampus22 (4), 737-747. McBain, C.J. (2008), Differential mechanisms of transmission and plasticity at mossy fiber synapses. Prog. Brain Res. 169, 225-240
McFarland, W. L., Teitelbaum, H., & Hedges, E. K. (1974). Relationship between hippocampal theta activity and running speed in the rat  (No. AFRRI-SR74-6). ARMED FORCES RADIOBIOLOGY RESEARCH INST BETHESDA MD.
McNaughton, B. L., Barnes, C. A., & O’keefe, J. (1983). The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Experimental Brain Research52 (1), 41-49.
McNaughton BL, Barnes CA, Gerrard JL, Gothard K, Jung MW, Knierim JJ, Kudrimoti H, Qin Y, Skaggs WE, Suster M, Weaver KL (1996) Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J Exp Biol 199:173–185.
McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci 7:663–678.
Mehta, M. R., Lee, A. K., & Wilson, M. A. (2002). Role of experience and oscillations in transforming a rate code into a temporal code. Nature417 (6890), 741.
Miao, C., Cao, Q., Moser, M. B., & Moser, E. I. (2017). Parvalbumin and somatostatin interneurons control different space-coding networks in the medial entorhinal cortex. Cell171 (3), 507-521.
Middleton, S. J., & McHugh, T. J. (2016). Silencing CA3 disrupts temporal coding in the CA1 ensemble. Nature neuroscience .
Mikulovic, S., Restrepo, C. E., Siwani, S., Bauer, P., Pupe, S., Tort, A. B., … & Leão, R. N. (2018). Ventral hippocampal OLM cells control type 2 theta oscillations and response to predator odor. Nature communications9 (1), 3638.
Miller, M. W., & Vogt, B. A. (1984). Direct connections of rat visual cortex with sensory, motor, and association cortices. Journal of Comparative Neurology226 (2), 184-202.
Mitchell, S. J., Rawlins, J. N., Steward, O., & Olton, D. S. (1982). Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats. Journal of Neuroscience2 (3), 292-302.
Mittelstaedt, M. L., & Mittelstaedt, H. (1980). Homing by path integration in a mammal. Naturwissenschaften67 (11), 566-567.
Mizumori, S. J. Y., Barnes, C. A., & McNaughton, B. L. (1990). Behavioral correlates of theta-on and theta-off cells recorded from hippocampal formation of mature young and aged rats. Experimental Brain Research80 (2), 365-373.
Mogenson, G. J., Jones, D. L., & Yim, C. Y. (1980). From motivation to action: functional interface between the limbic system and the motor system. Progress in neurobiology14 (2-3), 69-97.
Montgomery, S. M., Betancur, M. I., & Buzsáki, G. (2009). Behavior-dependent coordination of multiple theta dipoles in the hippocampus. Journal of Neuroscience29 (5), 1381-1394.
Mori, S., Nishimura, H., Kurakami, C., Yamamura, T., & Aoki, M. (1978). Controlled locomotion in the mesencephalic cat: distribution of facilitatory and inhibitory regions within pontine tegmentum. Journal of Neurophysiology41 (6), 1580-1591.
Moser, E. I., Kropff, E., & Moser, M. B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci.31 , 69-89.
Moser, E. I., Moser, M. B., & McNaughton, B. L. (2017). Spatial representation in the hippocampal formation: a history. Nature neuroscience20 (11), 1448.
Muller, R. U., & Kubie, J. L. (1989). The firing of hippocampal place cells predicts the future position of freely moving rats. Journal of Neuroscience9(12), 4101-4110.
Nagode, D. A., Tang, A. H., Karson, M. A., Klugmann, M., & Alger, B. E. (2011). Optogenetic release of ACh induces rhythmic bursts of perisomatic IPSCs in hippocampus. PLoS One6(11), e27691.
Nauta, W. J. H., & Kuypers, H. G. J. M. (1958). Some ascending pathways in the brain stem reticular formation. In H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, & R. T. Costello (Eds.), Reticular formation of the brain  (pp. 3-30). Oxford, England: Little, Brown.
Newman, E. L., Gillet, S. N., Climer, J. R., & Hasselmo, M. E. (2013). Cholinergic blockade reduces theta-gamma phase amplitude coupling and speed modulation of theta frequency consistent with behavioral effects on encoding. Journal of Neuroscience33 (50), 19635-19646.
Niell, C. M., & Stryker, M. P. (2010). Modulation of visual responses by behavioral state in mouse visual cortex. Neuron65 (4), 472-479.
Niell, C. M. (2015). Cell types, circuits, and receptive fields in the mouse visual cortex. Annual review of neuroscience38 , 413-431. Nitz, D. A., & McNaughton, B. L. (1999). Hippocampal EEG and unit activity responses to modulation of serotonergic median raphe neurons in the freely behaving rat. Learning & Memory6 (2), 153-167.
Nitz, D., & McNaughton, B. (2004). Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. Journal of neurophysiology91 (2), 863-872.
Nitz, D. A. (2006). Tracking route progression in the posterior parietal cortex. Neuron49 (5), 747-756.
Noga, B. R., Sanchez, F. J., Villamil, L. M., O’Toole, C., Kasicki, S., Olszewski, M., … & Jordan, L. M. (2017). LFP oscillations in the mesencephalic locomotor region during voluntary locomotion. Frontiers in neural circuits11 .
Norton, A. B., Jo, Y. S., Clark, E. W., Taylor, C. A., & Mizumori, S. J. (2011). Independent neural coding of reward and movement by pedunculopontine tegmental nucleus neurons in freely navigating rats. European Journal of Neuroscience33 (10), 1885-1896.
O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain research34 (1), 171-175.
Parker, S. M., & Sinnamon, H. M. (1983). Forward locomotion elicited by electrical stimulation in the diencephalon and mesencephalon of the awake rat. Physiology & behavior .
Parron, C., & Save, E. (2004). Evidence for entorhinal and parietal cortices involvement in path integration in the rat. Experimental Brain Research159 (3), 349-359.
Patel, J., Fujisawa, S., Berényi, A., Royer, S., & Buzsáki, G. (2012). Traveling theta waves along the entire septotemporal axis of the hippocampus. Neuron75 (3), 410-417.
Patterson, C. M., Wong, J. M. T., Leinninger, G. M., Allison, M. B., Mabrouk, O. S., Kasper, C. L., … & Myers Jr, M. G. (2015). Ventral tegmental area neurotensin signaling links the lateral hypothalamus to locomotor activity and striatal dopamine efflux in male mice. Endocrinology156 (5), 1692-1700.
Perez-Escobar, J. A., Kornienko, O., Latuske, P., Kohler, L., & Allen, K. (2016). Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex. Elife5 , e16937.
Peyrache, A., Lacroix, M. M., Petersen, P. C., & Buzsáki, G. (2015). Internally organized mechanisms of the head direction sense. Nature neuroscience18 (4), 569.
Pinto, L., Goard, M. J., Estandian, D., Xu, M., Kwan, A. C., Lee, S. H., … & Dan, Y. (2013). Fast modulation of visual perception by basal forebrain cholinergic neurons. Nature neuroscience16 (12), 1857-1863.
Puryear, C. B., Kim, M. J., & Mizumori, S. J. (2010). Conjunctive encoding of movement and reward by ventral tegmental area neurons in the freely navigating rodent. Behavioral neuroscience124 (2), 234.
Quirk, G. J., Muller, R. U., Kubie, J. L., & Ranck, J. B. (1992). The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. Journal of Neuroscience12 (5), 1945-1963. Ray, S., & Maunsell, J. H. (2010). Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron67 (5), 885-896.
Reifenstein, E. T., Ebbesen, C. L., Tang, Q., Brecht, M., Schreiber, S., & Kempter, R. (2016). Cell-type specific phase precession in layer II of the medial entorhinal cortex. Journal of Neuroscience36 (7), 2283-2288.
Richard, G. R., Titiz, A., Tyler, A., Holmes, G. L., Scott, R. C., & Lenck‐Santini, P. P. (2013). Speed modulation of hippocampal theta frequency correlates with spatial memory performance. Hippocampus23 (12), 1269-1279.
Rivas, J., Gaztelu, J. M., & Garcia-Austt, E. (1996). Changes in hippocampal cell discharge patterns and theta rhythm spectral properties as a function of walking velocity in the guinea pig. Experimental Brain Research108 (1), 113-118.
Robinson, J., Manseau, F., Ducharme, G., Amilhon, B., Vigneault, E., El Mestikawy, S., & Williams, S. (2016). Optogenetic activation of septal glutamatergic neurons drive hippocampal theta rhythms. Journal of Neuroscience36 (10), 3016-3023.
Ropert, N. (1985). Modulation of inhibition in the hippocampus in vivo. Canadian journal of physiology and pharmacology63 (7), 838-842.
Roseberry, T. K., Lee, A. M., Lalive, A. L., Wilbrecht, L., Bonci, A., & Kreitzer, A. C. (2016). Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell164 (3), 526-537.
Roth, M. M., Dahmen, J. C., Muir, D. R., Imhof, F., Martini, F. J., & Hofer, S. B. (2016). Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex. Nature neuroscience19 (2), 299-307.
Ryczko, D., & Dubuc, R. (2013). The multifunctional mesencephalic locomotor region. Current pharmaceutical design19 (24), 4448-4470.
Saleem, A. B., Ayaz, A., Jeffery, K. J., Harris, K. D., & Carandini, M. (2013). Integration of visual motion and locomotion in mouse visual cortex. Nature neuroscience16 (12), 1864-1869.
Sanes, J. N., & Donoghue, J. P. (1993). Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proceedings of the National Academy of Sciences90 (10), 4470-4474.
Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B. L., Witter, M. P., Moser, M. B., & Moser, E. I. (2006). Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science312 (5774), 758-762.
Scaplen, K. M., Ramesh, R. N., Nadvar, N., Ahmed, O. J., & Burwell, R. D. (2017). Inactivation of the lateral entorhinal area increases the influence of visual cues on hippocampal place cell activity. Frontiers in systems neuroscience11 .
Schneider, D. M., Nelson, A., & Mooney, R. (2014). A synaptic and circuit basis for corollary discharge in the auditory cortex. Nature513 (7517), 189-194.
Segal, M. (1978). A correlation between hippocampal responses to interhemispheric stimulation, hippocampal slow rhythmic activity and behaviour. Electroencephalography and clinical neurophysiology45 (3), 409-411.
Sharp, P. E., Blair, H. T., & Cho, J. (2001). The anatomical and computational basis of the rat head-direction cell signal. Trends in neurosciences24 (5), 289-294.
Shen, J., Barnes, C. A., McNaughton, B. L., Skaggs, W. E., & Weaver, K. L. (1997). The effect of aging on experience-dependent plasticity of hippocampal place cells. Journal of Neuroscience17 (17), 6769-6782.
Sheremet, A., Burke, S. N., & Maurer, A. P. (2016). Movement enhances the nonlinearity of hippocampal theta. Journal of Neuroscience36 (15), 4218-4230.
Shik, M. L., Severin, F. V., & Orlovskiĭ, G. N. (1966). Control of walking and running by means of electric stimulation of the midbrain. Biofizika11 (4), 659-666.
Shin, J., & Talnov, A. (2001). A single trial analysis of hippocampal theta frequency during nonsteady wheel running in rats. Brain research897 (1), 217-221.
Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations?. Neuron24 (1), 49-65. Sirota, A., Montgomery, S., Fujisawa, S., Isomura, Y., Zugaro, M., & Buzsáki, G. (2008). Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron60 (4), 683-697.
Skinner, R. D., & Garcia-Rill, E. (1984). The mesencephalic locomotor region (MLR) in the rat. Brain research323 (2), 385-389.
Sławińska, U., & Kasicki, S. (1998). The frequency of rat’s hippocampal theta rhythm is related to the speed of locomotion. Brain research796 (1), 327-331.
Smythe, J. W., Colom, L. V., & Bland, B. H. (1992). The extrinsic modulation of hippocampal theta depends on the coactivation of cholinergic and GABA-ergic medial septal inputs. Neuroscience & Biobehavioral Reviews16 (3), 289-308.
Strange, B. A., Witter, M. P., Lein, E. S., & Moser, E. I. (2014). Functional organization of the hippocampal longitudinal axis. Nature Reviews Neuroscience15 (10), 655-669.
Sotty, F., Danik, M., Manseau, F., Laplante, F., Quirion, R., & Williams, S. (2003). Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity. The Journal of physiology551 (3), 927-943.
Stackman, R. W., Clark, A. S., & Taube, J. S. (2002). Hippocampal spatial representations require vestibular input. Hippocampus12 (3), 291-303.
Stewart, D. J., & Vanderwolf, C. H. (1987). Hippocampal rhythmical slow activity following ibotenic acid lesions of the septal region. I. Relations to behavior and effects of atropine and urethane. Brain research423 (1), 88-100.
Sun, Y., Nguyen, A. Q., Nguyen, J. P., Le, L., Saur, D., Choi, J., … & Xu, X. (2014). Cell-type-specific circuit connectivity of hippocampal CA1 revealed through Cre-dependent rabies tracing. Cell reports7 (1), 269-280.
Sun, C., Kitamura, T., Yamamoto, J., Martin, J., Pignatelli, M., Kitch, L. J., … & Tonegawa, S. (2015). Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells. Proceedings of the National Academy of Sciences112 (30), 9466-9471.
Swanson, L. W., & Cowan, W. M. (1979). The connections of the septal region in the rat. Journal of Comparative Neurology186 (4), 621-655.
Takakusaki, K. (2008). Forebrain control of locomotor behaviors. Brain research reviews57 (1), 192-198.
Tanke, N., Carvalho, M. M., Kropff Causa, E., Witter, M. P., Moser, M-B, & Moser, E. I. (Unpublished results). A brainstem/basal forebrain/cortical circuit for the neuronal coding of locomotion speed. In Society for Neuroscience Abstracts, Program (Neuroscience 2017).
Taube, J. S., Muller, R. U., & Ranck, J. B. (1990a). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience10 (2), 420-435.
Taube, J. S., Muller, R. U., & Ranck, J. B. (1990b). Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. Journal of Neuroscience10 (2), 436-447.
Taube, J. S. (2007). The head direction signal: origins and sensory-motor integration. Annu. Rev. Neurosci.30 , 181-207.
Terrazas, A., Krause, M., Lipa, P., Gothard, K. M., Barnes, C. A., & McNaughton, B. L. (2005). Self-motion and the hippocampal spatial metric. Journal of Neuroscience25 (35), 8085-8096.
Tóth, K., Freund, T. F., & Miles, R. (1997). Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. The Journal of physiology500 (2), 463-474.
Traub, R. D., Jefferys, J. G., & Whittington, M. A. (1999). Fast oscillations in cortical circuits . MIT press.
Tsao, A., Sugar, J., Lu, L., Wang, C., Knierim, J. J., Moser, M. B., & Moser, E. I. (2018). Integrating time from experience in the lateral entorhinal cortex. Nature561 (7721), 57.
Unal, G., Joshi, A., Viney, T. J., Kis, V., & Somogyi, P. (2015). Synaptic targets of medial septal projections in the hippocampus and extrahippocampal cortices of the mouse. Journal of Neuroscience35 (48), 15812-15826.
Vandecasteele, M., Varga, V., Berényi, A., Papp, E., Barthó, P., Venance, L., ... & Buzsáki, G. (2014). Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proceedings of the National Academy of Sciences111(37), 13535-13540.
Vanderwolf, C. H. (1969). Hippocampal electrical activity and voluntary movement in the rat. Electroencephalography and clinical neurophysiology26 (4), 407-418.
Vinck, M., Batista-Brito, R., Knoblich, U., & Cardin, J. A. (2015). Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron86 (3), 740-754.
von Nicolai, C., Engler, G., Sharott, A., Engel, A. K., Moll, C. K., & Siegel, M. (2014). Corticostriatal coordination through coherent phase-amplitude coupling. Journal of Neuroscience34 (17), 5938-5948.
Wall, N. R., De La Parra, M., Callaway, E. M., & Kreitzer, A. C. (2013). Differential innervation of direct-and indirect-pathway striatal projection neurons. Neuron79 (2), 347-360.
Wang, D. V., & Tsien, J. Z. (2011). Conjunctive processing of locomotor signals by the ventral tegmental area neuronal population. PLoS One6 (1), e16528.
Whishaw, I. Q., & Vanderwolf, C. H. (1973). Hippocampal EEG and behavior: Change in amplitude and frequency of RSA (Theta rhythm) associated with spontaneous and learned movement patterns in rats and cats. Behavioral biology8 (4), 461-484.
Whishaw IQ, McKenna JE, Maaswinkel H (1997) Hippocampal lesions and path integration. Curr Opin Neurobiol 7:228 –234. Whishaw, I. Q., Hines, D. J., & Wallace, D. G. (2001). Dead reckoning (path integration) requires the hippocampal formation: evidence from spontaneous exploration and spatial learning tasks in light (allothetic) and dark (idiothetic) tests. Behavioural brain research127 (1), 49-69.
Whishaw, I. Q., & Wallace, D. G. (2003). On the origins of autobiographical memory. Behavioural Brain Research138 (2), 113-119.
Whitlock, J. R., Pfuhl, G., Dagslott, N., Moser, M. B., & Moser, E. I. (2012). Functional split between parietal and entorhinal cortices in the rat. Neuron73 (4), 789-802.
Widmer, H., Ferrigan, L., Davies, C. H., & Cobb, S. R. (2006). Evoked slow muscarinic acetylcholinergic synaptic potentials in rat hippocampal interneurons. Hippocampus16 (7), 617-628.
Wiener, S. I., Paul, C. A., & Eichenbaum, H. (1989). Spatial and behavioral correlates of hippocampal neuronal activity. Journal of Neuroscience9 (8), 2737-2763.
Wilber, A. A., Skelin, I., Wu, W., & McNaughton, B. L. (2017). Laminar organization of encoding and memory reactivation in the parietal cortex. Neuron95 (6), 1406-1419.
Wills, T. J., Barry, C., & Cacucci, F. (2012). The abrupt development of adult-like grid cell firing in the medial entorhinal cortex. Frontiers in neural circuits6 , 21.
Wilson, M. A., & McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble code for space. Science261 (5124), 1055-1059.
Winne, J., Franzon, R., de Miranda, A., Malfatti, T., Patriota, J., Mikulovic, S., ... & Leão, R. N. (2019). Salicylate induces anxiety‐like behavior and slow theta oscillation and abolishes the relationship between running speed and fast theta oscillation frequency. Hippocampus29(1), 15-25.
Winson, J. (1978). Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science201 (4351), 160-163.
Winson, J., & Abzug, C. (1978). Neuronal transmission through hippocampal pathways dependent on behavior. Journal of Neurophysiology41 (3), 716-732.
Winter, S. S., Mehlman, M. L., Clark, B. J., & Taube, J. S. (2015). Passive transport disrupts grid signals in the parahippocampal cortex. Current Biology25 (19), 2493-2502. Witter, M.P. and Amaral, D.G. (2004) Hippocampal Formation. In The Rat Nervous System (3rd edn) (Paxinos, G., ed.), pp. 637–703, Elsevier Academic Press
Wolbers, T., Wiener, J. M., Mallot, H. A., & Büchel, C. (2007). Differential recruitment of the hippocampus, medial prefrontal cortex, and the human motion complex during path integration in humans. Journal of Neuroscience27 (35), 9408-9416.
Wyble, B. P., Hyman, J. M., Rossi, C. A., & Hasselmo, M. E. (2004). Analysis of theta power in hippocampal EEG during bar pressing and running behavior in rats during distinct behavioral contexts. Hippocampus14 (5), 662-674.
Yang, F. C., Jacobson, T. K., & Burwell, R. D. (2017). Single neuron activity and theta modulation in the posterior parietal cortex in a visuospatial attention task. Hippocampus27 (3), 263-273.
Ye, J., Witter, M. P., Moser, M. B., & Moser, E. I. (2018). Entorhinal fast-spiking speed cells project to the hippocampus. Proceedings of the National Academy of Sciences115 (7), E1627-E1636.
Yoder, R. M., & Taube, J. S. (2014). The vestibular contribution to the head direction signal and navigation. Frontiers in integrative neuroscience8 , 32.
Yu, J. Y., Kay, K., Liu, D. F., Grossrubatscher, I., Loback, A., Sosa, M., … & Frank, L. M. (2017). Distinct hippocampal-cortical memory representations for experiences associated with movement versus immobility. eLife6 .
Zhang, K., Ginzburg, I., McNaughton, B. L., & Sejnowski, T. J. (1998). Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. Journal of neurophysiology79 (2), 1017-1044.
Zheng, C., Bieri, K. W., Trettel, S. G., & Colgin, L. L. (2015). The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats. Hippocampus25 (8), 924-938.
Zhou, M., Liang, F., Xiong, X. R., Li, L., Li, H., Xiao, Z., … & Zhang, L. I. (2014). Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nature neuroscience17 (6), 841-850.
Zhou, T. L., Tamura, R., Kuriwaki, J., & Ono, T. (1999). Comparison of medial and lateral septal neuron activity during performance of spatial tasks in rats. Hippocampus9 (3), 220-234.