Ana Laura Delgado

and 5 more

The Southwestern Atlantic Ocean (SAO), is considered as one of the most productive areas of the world, with high abundance of ecologically and economical important fish species. Yet, the biological responses of this complex region to climate variability are still uncertain. Here, using 24 years of satellite derived Chl-a datasets, we classified the SAO into coherent regions based on homogeneous temporal variability of Chl-a concentration, as revealed by the SOM (Self-Organizing Maps) analysis. These coherent biogeographical regions were the basis of our regional trend analysis in phytoplankton biomass, regional phenological indices, and environmental forcing variations. A generalized positive trend in phytoplankton concentration is observed, especially in the highly productive areas of the northern shelf-break, where phytoplankton biomass is increasing at an outstanding rate up to 0.42 ± 0.04 mg m-3 per decade associated with the sea surface temperature (SST) warming (0.11 ± 0.02 °C decade-1) and the mixed layer depth shoaling (-3.36 ± 0.13 m decade-1). In addition to the generalized increase in chlorophyll, the most sticking changes in phytoplankton dynamics observed in the SAO are related to the secondary bloom that occurs in most of the regions (15 ± 3 and 24 ± 6 days decade-1) which might be explained by the significant warming trend of SST, which would sustain the water stratification for a longer period, thus delaying the secondary bloom initialization. Consistent with previous studies, our results provided further evidences of the impact of climate change in these highly productive waters.
Effects of wind and waves on the surface dynamics of the Mediterranean Sea are assessed using a modified Ekman model including a Stokes-Coriolis force in the momentum equation. Using 25 years of observations, we documented intermittent but recurrent episodes during which Ekman and Stokes currents substantially modulate the total mesoscale dynamics by two non-exclusive mechanisms: (i) by providing a vigorous input of momentum (e.g. where regional winds are stronger) and/or (ii) by opposing forces to the main direction of the geostrophic component. To properly characterize the occurrence and variability of these dynamical regimes we perform an objective classification combining self-organizing maps (SOM) and wavelet coherence analyses. It allows proposing a new regional classification of the Mediterranean Sea based on the respective contributions of wind, wave and geostrophic components to the total mesoscale surface dynamics. We found that the effects of wind and waves are more prominent in the northwestern Mediterranean, while the southwestern and eastern basins are mainly dominated by the geostrophic component. The resulting temporal variability patterns show a strong seasonal signal and cycles of 5 - 6 years in the total kinetic energy arising from both geostrophic and ageostrophic components. Moreover, the whole basin, specially the regions characterized by strong wind- and wave- induced currents, shows a characteristic period of variability at $5$ years. That can be related with climate modes of variability. Regional trends in the geostrophic and ageostrophic currents shows an intensification of 0.058 +-1.43 10^-5 cm/s per year.