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1 Geometry

Taking median values from Anderson et al. (2019) we specify:

a b d µ ν

1.11 km 0.92 km 1.9 km 3 GPa 0.25

2 Scaling of the deformation

The pre-collapse displacements can be written as

upre(x) =
∆ppreV

µ
f(x;m) (1)

where f(x;m) is function of the model parameters m that characterize the
chamber, and has units of 1/l2) (for example for Mogi source is proportional
1/d2). Independent constraint on the pressure reduction from the retreating
lava lake allowed the pre-collapse data to resolve the ratio V/µ and the
chamber geometry.

The co-collapse displacements depend on fault slip and the slip-induced
pressurization of the magma chamber,

uco(x) =
∆pcoV

µ
f(x;m) + sg(x;m, δ), (2)

where g(x;m, δ) is a dimensionless function that maps fault slip to displace-
ment at constant chamber pressure, and δ is fault dip. Following notation
in Segall et al. (2019) the co-collapse pressure increase at constant mass is
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∆pco =
−Φs

V (βm + βc)
, (3)

where Φ ≡ ∂V/∂s at constant p, and has units of l2. βm is magma compress-
ibility and βc is the chamber compressibility, defined by βc ≡ (1/V )∂V/∂p.

Combining (2) and (3)

uco(x) = s

[
−Φ(m, δ)f(x;m)

µ (βm + βc)
+ g(x;m, δ)

]
. (4)

Note that Φf is dimensionless. Thus, by fixing the geometry (including V
and µ, which also determines βc,Φ) to that estimated from the pre-collapse
data, we can search over the space (δ, βm) to optimize fit to the co-collapse
data.

3 Different Compressibility

Figure 1 shows observed and predicted displacements with different com-
pressibilities.
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Figure 1: Predicted and observed radial and vertical displacements during a col-
lapse event. 1-sigma error bars. Predictions are shown for a range of dips and
compressibility in title.

4 Uncertainty in Chamber Geometry

Figure 2 illustrates the range of pressure change for a range of magma cham-
ber geometries consistent with pre-collapse deformation. These models are
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restricted to vertical ring fault.
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Figure 2: Range of properties for vertical ring-fault system from resampling the
posterior distribution of magma chamber geometries based on pre-collapse deflation
from Anderson et al. (2019). a) Pressure change. Red curve shows Gaussian fit; b)
Magma compressibility; c) Chamber compressibility.

5 Point Source Model

Figure 3 shows posterior distribution of point source parameters, location
and moment tensor components, based on MCMC analysis of the co-collapse
displacement data. Figure 4 illustrates the point source on a “Hudson plot”
and as three orthogonal double forces.
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Figure 3: Posterior distribution for point source moment tensor fit to co-collapse
displacements.

Figure 4: A) Hudson plot showing point source model is largely isotropic expan-
sion. B) Double forces; max (red), intermediate (green) and minimum (blue).
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