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Introduction This document contains supplementary figures and table. Figure S1 shows

the observed and modelled InSAR phase for the synthetic case 1. Figures S2-S3 show the

observed and modelled InSAR phase for synthetic case 2 (pulse-like ruptures). Figure S4-

S5 show the observed and modelled InSAR phase for synthetic case 2 (crack-like ruptures).

Figure S6 shows the wrapped and unwrapped InSAR phase for the descending ENVISAT
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interferogram. Figure S7 shows the estimation of the covariance function from the non-

deformed region. Figure S8 shows the inversion for two subfaults in the 2011 Hawthorne

swarm, including the southern subfault in the pre-M4.6 stage, and the northern subfault

during the co- and post-M4.6 stage. Figure S9 shows the modelled InSAR phases based

on the fault geometry from nonlinear inversion (WGBIS). Figure S10 shows the degree of

similarity between idealised one-ellipse crack model and published finite slip distribution

datasets as a function of magnitudes. Table S1 summarised the parameters of slow slip

listed in Section 5.2. For each event the table lists the event location, date, type and the

reference from which the information was obtained.
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Observation
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Model
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(One-ellipse model)

Residual
(Laplacian smoothing)

Model
(von Karman smoothing)

Residual
(von Karman smoothing)

Figure S1. Synthetic and modelled InSAR phases for a synthetic case. The observed InSAR

phase is forward calculated on the basis of the synthetic fault slip in Figure 2(a). The modelled

InSAR phases are forward calculated on the basis of modelled slip distributions in Figure 2(b)-(c)

estimated by the one-ellipse model and the laplacian smoothing. The bottom images show the

residual phases.
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Figure S2. Synthetic and modelled InSAR phases for synthetic case 2 (pulse-like ruptures).

The observed InSAR phase is forward calculated on the basis of the synthetic fault slip in

Figure 3(a). The modelled InSAR phases are forward calculated on the basis of modelled slip

distributions in Figure 3(b)-(d) with various methods: the one-ellipse model, the von Karman

smoothing, and the two-ellipse model with different centres.
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Figure S3. Residual InSAR phases for synthetic case 2 (pulse-like ruptures).
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Figure S4. Synthetic and modelled InSAR phases for synthetic case 2 (crack-like ruptures).

The observed InSAR phase is forward calculated on the basis of the synthetic fault slip in

Figure 4(a). The modelled InSAR phases are forward calculated on the basis of modelled slip

distributions in Figure 4(b)-(e) with various methods: the one-ellipse model, the von Karman

smoothing, and the two-ellipse model with different centres and with the same centre.
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Figure S5. Residual InSAR phases for synthetic case 2 (crack-like ruptures).
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Wrapped phase of
descending ENVISAT interferogram

20110320-20110618

Unwrapped phase of
descending ENVISAT interferogram

20110320-20110618

Figure S6. Wrapped and unwrapped phase in the descending ENVISAT interferogram

2011/03/20-2011/06/18.

May 15, 2022, 7:55am



: X - 13

RS2-20110226-20110415 RS2-20110315-20110526 ES-20110320-20110618

RS2-20110322-20110415 RS2-20110322-20110720 RS2-20110415-20110626

ES-20110419-20110618

u
n

it
: 

ra
d

ia
n

/k
m

u
n

it:
 r

a
d

ia
n

/k
m

u
n

it
: 

ra
d

ia
n

/k
m

u
n

it:
 r

a
d

ia
n

/k
m

u
n

it:
 r

a
d

ia
n

/k
m

u
n

it:
 r

a
d

ia
n

/k
m

u
n

it
: 

ra
d

ia
n

/k
m

u
n

it:
 r

a
d

ia
n

/k
m

u
n

it
: 

ra
d

ia
n

/k
m

u
n

it:
 r

a
d

ia
n

/k
m

u
n

it
: 

ra
d

ia
n

/k
m

u
n

it:
 r

a
d

ia
n

/k
m

u
n

it
: 

ra
d

ia
n

/k
m

u
n

it:
 r

a
d

ia
n

/k
m

Figure S7. Covariance function estimation from the phase in the nondeformed region of the

interferograms used in the 2011 Hawthorne seismic swarm. The chosen region for covariance esti-

mation is the undeformed region. For each panel, images on the left are the downsampled phase

gradients in X-direction and Y-direction; images on the right side show the experimental (rect-

angular) and theoretical (solid line) semivariograms are shown for phase gradients in X-direction

and Y-direction, estimating from the downsampled phase gradients according to equation 9 in

Jiang and González (2020).
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Observation Model Residual

RS2-20110322-20110415

RS2-20110415-20110626

Figure S8. Observed and modelled InSAR displacements with WGBIS. Images at the top

row show the observed, modelled and residual phases for ascending RADARSAT-2 interferogram

2011/03/22-2011/04/15, covering the pre-M4.6 stage of the 2011 Hawthorne swarm. Images at

the bottom row show the observed, modelled and residual phases for ascending RADARSAT-2 in-

terferogram 2011/04/15-2011/06/26, covering the co- and post-M4.6 stage of the 2011 Hawthorne

swarm.
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Observation Model Residual

RS2-20110226-20110415

RS2-20110315-20110526

ES-20110320-20110618

RS2-20110322-20110415

RS2-20110322-20110720

RS2-20110415-20110626

ES-20110419-20110618

Figure S9. Observed and modelled InSAR displacements of the 2011 Hawthorne swarm by

using the discretized fault geometry retrieved from WGBIS. The modelled phases are forward

calculated on the basis of the modelled slip distributions in Figure 8(a) and discretized fault

geometry in Figure 7(d).
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Figure S10. This figure shows the degree of similarity between idealised one-ellipse crack

model and published finite slip distribution datasets as a function of magnitudes. A one-ellipse

crack model is used to approximate the finite slip distributions in SRCMOD for each dataset

containing 25 fault patches or more. We obtain a best fitting model for each selected dataset.

We estimate the misfit between the best fitting crack model and SRCMOD estimated fault slips

as the RMSE. Top image presents the ratio between RMSE and peak slip for each case in the

SRCMOD dataset. Lower values of the ratio indicate better agreement. Bottom images present

an example for comparison of a SRCMOD event (2011 Mw 4.6 Lorca earthquakes, Spain, López-

Comino et al. (2016)) and its best-fitting ellipse model.
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Table S1. Parameters of slow slip phenomena considered in this study
Name Type Value Source location and date (Reference)

Peak slip rate
(cm/day)

SSE

0.27
[124◦W, 49◦N],

Cascadia subduction zone,
2013

(Bletery & Nocquet, 2020)

0.3
[149◦W, 62◦N],

Central Alaska Megathrust,
2010

(Rousset et al., 2019)

0.6-1.1
[132.5◦E, 33.5◦N],

Western Shikoku, Japan,
2002-2007

(Hirose & Obara, 2010)

1.1-2.8
[141◦E, 35◦N],

Boso peninsula, Japan,
1996-2018

(Ozawa et al., 2019)

Seismic swarm 0.26
[22◦E, 37.24◦N],

Peloponnese peninsula, Greece,
2011

(Kyriakopoulos et al., 2013)

Fluid injection experiments 35 France, ? (Guglielmi et al., 2015)

Fault creep

0.001
[122.25◦W, 37.5◦N],
Hayward fault, USA,

1992-2000
(Schmidt et al., 2005)

0.001
[105◦E, 36.5◦N],

Haiyuan fault, China,
2003-2010

(Jolivet et al., 2012);
(Song et al., 2019)

0.002
[32.5◦E, 40.75◦N],

North Anatolia fault, Turkey,
2003-2010

(Hussain et al., 2016)

0.005
[121.4◦W, 36.8◦N],

San Anreas fault, USA,
2001-2003

(Johanson & Bürgmann, 2005)

0.008
[121◦W, 36.2◦N],

Central segment of San Andreas fault, USA,
2003-2011

(Khoshmanesh et al., 2015)

0.007
[121◦W, 36.4◦N],

Central segment of San Andreas fault, USA,
2012-2020

(Scott et al., 2020)

Average rate of slip increment
(cm/day)

SSE 0.03-0.14
[100◦W, 18◦N],

Mexican subduction zone,
2006

(Radiguet et al., 2011)

Seismic swarm 0.1
[16◦E, 39.9◦N],

Pollino gap, Southern Italy,
2010-2014

(Cheloni et al., 2017)

Repeating earthquakes
0.01

[116.7◦W, 36.7◦N],
San Andreas fault, USA,

1994
(Nadeau & McEvilly, 1999)

0.003
[121.6◦W, 36.8◦N],

San Anreas fault, USA,
2003-2006

(Turner et al., 2013)

0.0006
[22◦E, 38.4◦N],

Corinth Gulf, Greece,
2008-2014

(Mesimeri & Karakostas, 2018)

Migration velocity
(km/day)

SSE ∼10
[132.5◦E, 33.5◦N],

Western Shikoku, Japan,
2002-2007

(Hirose & Obara, 2010)

ETS ∼10
[123.5◦W, 48.5◦N],

Cascadia subduction zone,
2004-2008

(Wech et al., 2009)

RTR 160-400
[123◦W, 48◦N],

Cascadia subduction zone,
2004-2009

(Houston et al., 2011)

Seismic swarm
0.5-14

[18.6◦W, 66.3◦N],
North Iceland,
1997-2015

(Passarelli et al., 2018)

2-10
[22◦E, 38.4◦N],

Corinth Gulf, Greece,
2015

(De Barros et al., 2020)
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