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Key Points:

The STONE curve, an event detection sweeping-threshold data-model comparison
metric, reveals thresholds where the model matches the data

STONE curves can be nonmonotonic, revealing the location and size of clusters of model
under- or over-estimations of the observations

STONE curve features are analyzed, quantifying the shape of nonmonotonicities relative
to distribution characteristics and other metrics

AGU Index Terms:

e 1984 Statistical methods: Descriptive (4318)

o 4318 Statistical analysis (1984, 1986)

o 7924 Forecasting (1922, 2722, 4315)

e 0550 Model verification and validation

e 0820 Techniques applicable in three or more fields
Keywords:

ROC curve, STONE curve, data-model comparison, model validation, forecasting


mailto:liemohn@umich.edu

29

30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46
47

48
49

50
51
52
53
54
55
56
57
58
59
60
61

62

63

64
65
66
67
68
69
70
71

Confidential manuscript submitted to Space Weather

Abstract

We apply idealized scatter-plot distributions to the sliding threshold of observation for numeric
evaluation (STONE) curve, a new model assessment metric, to examine the relationship between
the STONE curve and the underlying point-spread distribution. The STONE curve is based on
the relative operating characteristic (ROC) curve but is developed to work with a continuous-
valued set of observations, sweeping both the observed and modeled event identification
threshold simultaneously. This is particularly useful for model predictions of time series data, as
is the case for much of terrestrial weather and space weather. The identical sweep of both the
model and observational thresholds results in changes to both the modeled and observed event
states as the quadrant boundaries shift. The changes in a data-model pair’s event status result in
nonmonotonic features to appear in the STONE curve when compared to a ROC curve for the
same observational and model data sets. Such features reveal characteristics in the underlying
distributions of the data and model values. Many idealized datasets were created with known
distributions, connecting certain scatter-plot features to distinct STONE curve signatures. A
comprehensive suite of feature-signature combinations is presented, including their relationship
to several other metrics. It is shown that nonmonotonic features appear if a local spread is more
than 0.2 of the full domain, or if a local bias is more than half of the local spread. The example of
real-time plasma sheet electron modeling is used to show the usefulness of this technique,
especially in combination with other metrics.

Plain Language Summary

Many statistical tools have been developed to aid in the assessment of a numerical model’s
quality at reproducing observations. Some of these techniques focus on the identification of
events within the data set, times when the observed value is beyond some threshold value that
defines it as a value of keen interest. An example of this is whether it will rain, in which events
are defined as any precipitation above some defined amount. A method called the sliding
threshold of observation for numeric evaluation (STONE) curve sweeps the event definition
threshold of both the model output and the observations, resulting in the identification of
threshold intervals for which the model does well at sorting the observations into events and
nonevents. An excellent data-model comparison will have a smooth STONE curve, but the
STONE curve can have wiggles and ripples in it. These features reveal clusters when the model
systematically overestimates or underestimates the observations. This study establishes the
connection between features in the STONE curve and attributes of the data-model relationship.

1. Introduction

Given a data set of continuous values and model output that is trying to reproduce that set
of observations, there are many ways to conduct a quantitative comparison between these two
number sets. Metrics, equations or techniques for comparing model output with a corresponding
data set, come in many forms, but all are statistical analysis tools that help numerically specify
what can usually be seen qualitatively from a scatterplot of the number sets against each other.
Many well-known and useful metrics exist, as summarized by research studies such as Murphy
(1991), Kubo et al. (2017), and Morley et al. (2018), or as reviewed in books, such as those by
Joliffe & Stephenson (2012) and Wilks (2019). Each metric distills some aspect of the data-
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model relationship down to a single number or curve, which can then be interpreted with respect
to the particular assessment being conducted. It is important to choose metrics that focus on the
facet of the data-model relationship that matters, and combinations of metrics can often lead to
additional insights (e.g., Potts, 2012, Liemohn et al., 2021). The decisions resulting from metrics
usage could range anywhere along the Application Usability Level process (Halford et al., 2019),
from a scientific conclusion at level 1 to a validation assessment at level 3 or 6 to an operational
task at level 9.

One style of data-model comparison is event detection, in which the otherwise
continuous number sets are reduced to yes-no binary designations depending on the number’s
value relative to some threshold value defining “events” (see, e.g., the review by Hogan and
Mason, 2012). Because of the transformation from real values into yes-no labels, this technique
is sometimes called categorical evaluation. Given event identification thresholds for the two
number sets, the scatterplot is converted into a 2x2 matrix, called a contingency table or
confusion matrix, counting the points within each quadrant of the scatterplot above and below
each threshold. That is, the exact values no longer matter, only the event status matters, and
values just barely beyond the threshold are counted as events equally with those that are far
beyond the threshold. This is useful if the assessment being conducted is not concerned with
matching the exact values but rather cares more about the model’s ability to sort the observations
according to event status. Many metrics have been created from these four count values to assess
the quality of the model at achieving a good separation of observed events and nonevents.

An extension of event detection methods that more fully utilizes the continuous aspects
of the two original number sets is the technique of sliding the thresholds of event identification.
These two thresholds, one for the observations and one for the model output, do not have to be
the same number. When the observed event identification threshold is held constant and the
model threshold is swept, this yields a new contingency table at each modeled event
identification threshold setting, from which metrics as a function of threshold setting can be
calculated (e.g., Mason, 1982). These curves of metrics reveal the threshold settings where
certain metrics are optimized, allowing users to choose the model threshold that best suits their
needs.

The usefulness of sweeping the threshold extends beyond these metrics curves, though,
with the technique of plotting the metrics against each other. A technique that has found
particular usefulness across Earth and space science is the relative operating characteristic (ROC)
curve (see, e.g., Hogan & Mason, 2012). Originally known as the receiver-operator characteristic
curve because of its development by the radar community, the ROC curve plots two metrics
against each other: probability of detection (POD) and probability of false detection (POFD). By
holding the observed threshold fixed and sweeping the modeled threshold, the resulting POD and
POFD curves monotonically vary from one to zero (from low to high threshold setting,
respectively), resulting in a ROC curve that monotonically progresses from (1,1) to (0,0) in
POFD-POD space. The area under the curve (AUC), sometimes converted into the ROC skill
score (Swets, 1986), is then used as an overall measure of the quality of the model at correctly
sorting the observations into events and nonevents.

The technique of holding the observed events fixed and sliding the model threshold
through a continuous model output number set has been done for many Earth and space science
applications. The study by Mathieu & Aires (2018) swept model thresholds in order to determine
the best settings for certain climate-based predictors (e.g., rainfall, temperature, drought
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conditions) of corn yield, specifically assessing which predictors were best at determining corn
yield losses. Another example of the usage of sliding threshold technique is the study by
Manzato (2005), who swept the model threshold to optimize weather forecast model usage. They
conclude that the odds ratio metric is particularly useful for maximizing another metric, the
Heidke skill score. A planetary science example is that of Azari et al. (2018), who swept
thresholds to determine the optimal settings for classifying hot plasma injection events in
Saturn’s magnetosphere. Their follow-up study (Azari et al., 2020) assessed their injection event
determination model against several machine learning approaches, showing that the ROC curves
for their model are as good or better than “black box” approaches (that is, including physics
often helps with event classification). Sliding thresholds are used in earth science studies, too, for
example when Meade et al. (2017) swept model event settings to determine which stress metrics
are most effective at predicting aftershocks following major earthquakes.

All of the example usages mentioned above held the observed events fixed and varied
only the model event threshold setting. This is very useful when the observed events are known;
e.g., either an earthquake was recorded or one wasn’t. In addition, this technique is powerful
when the “model” is actually a driver parameter and has a different value range and perhaps even
different units than the observations that it is trying to sort. In these cases, sliding only the model
event identification threshold is possible.

Sometimes, however, the data are real numbers; to use a space weather example,
magnetic perturbation values as a function of time at a particular ground station. Furthermore,
you might have a model that is attempting to exactly reproduce this number set. In this particular
case, there is no need to keep the observed event identification threshold constant; it can be
swept along with the model event identification threshold. Such a technique was conducted by
Liemohn et al. (2020) to introduce the analysis method they called the sliding threshold of
observations for numeric evaluation (STONE) curve. The STONE curve is like the ROC curve in
that it is a plot of POD versus POFD, but the underlying contingency tables for each point on the
curve are created by sliding both event identification thresholds simultaneously. They showed
that this can result in a STONE curve that varies like the ROC curve from (1,1) to (0,0) but is
less restricted in its path between these endpoints. Specifically, the STONE curve does not have
to be monotonic but might double back on itself in either the x or y axis direction. This is because
all of the data-model paired points in the scatterplot begin in the “hits” quadrant of the
contingency table when both thresholds are set very low but end in the “correct negatives”
quadrant when the sweep is done and both thresholds are set very high. In between, the points
usually pass through the “misses” or “false alarms” quadrants along the way as the thresholds are
changed. This leads to the misses and false alarms cell counts increasing and decreasing
throughout the threshold sweep, possibly resulting in times where the POD or POFD metrics
temporarily increase.

Liemohn et al. (2020) showed two space weather examples of the usage of the STONE
curve. The resulting nonmonotonicities were qualitatively interpreted as intervals when clusters
of points were quite far from the “ideal fit” diagonal line through the data-model scatterplot. That
study hinted that the size of the nonmonotonic feature in the STONE curve could be related to
the size or location of the cluster of overestimated or underestimated values.

In this study, a systematic quantification is conducted of the relationship between features
of the STONE curve and features of the data-model scatterplot. This is done by imposing known
features into the scatterplot, varying the magnitude of the nonideal aspects of the distribution and
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assessing the impact on the resulting STONE curve. The newfound quantitative relationships of
the STONE curve to scatterplot features is applied to real-time space weather model results from
the Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM), compared with
satellite data, and used in conjunction with other data-model comparison metrics.

2. Methodology

Our main method of analysis for this study is the creation of idealized distributions with
randomly assigned points in both the x and y axis directions. The distributions will be known and
therefore the appearance of features in the STONE curve can be systematically quantified against
the imposed features of these distributions. All distributions are created using the skew norm
distribution of Azzalini & Capitanio (1999), as implemented in Python. Each distribution to be

analyzed is constructed with 2000 paired
data-model points per scatterplot, defined

Modeled Modeled
nonevents events

Red line:
perfect data-
~ Mmodel fit
\

with a linear relationship confined to the A ~/ i

Misses (M) : Hits (H) : .‘..).
I
4

zero-to-one range along the x axis. The full
data set is created by concatenating 10
subsets of 200 points each, each with a
uniform width in the x axis direction. The
points along that axis are randomly
distributed within each narrow range, while -
the values in the other axis are set with a 2 Kol - I

. . <% < Correct Negatives (C) False Alarms (F)
random sampling from a Gaussian - - - - - "
distribution with a specified mean and Model Values
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04
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Figure 1. Data-versus-model scatterplot with

slope, zero-offset “perfect fit” line.

Figure 1 shows an example
scatterplot, created with random values
along the x axis and a Gaussian distribution
in the y direction of spread 0.1 that follows
the y = x perfect data-model fit (shown as

event identification thresholds drawn. The
arrows indicate the sweep conducted to
generate a collection of contingency tables as a
function of threshold setting, moving both
thresholds simultaneously.

the red diagonal line on the plot). All of the x-axis “model values” are contained within the [0,1]
range; the Gaussian spread in the y-axis “data values” yields some points that are below zero,
especially at low x values. Both number sets have a mean of 0.500 and the root-mean-square
error (RMSE) between them is 0.099, a score very close to the imposed spread of 0.100.

Two event identification threshold lines are also drawn in Figure 1 (as black dashed
lines), one for the model values and the other for the data values. These two thresholds divide the
scatterplot into quadrants, labeled in Figure 1 as hits (H), misses (M), false alarms (F), and
correct negatives (C). The contingency table is created by simply counting the points within each
quadrant. In this example, most of the points are in the two correct cells (H and C), with very few

points in the two error cells (M and F).

In the creation of the STONE curve, the two thresholds are swept simultaneously from
very low to very high values. As the sweep continues, the cross-over point of the two thresholds
will always occur at a value along the red perfect fit line. With each increment of the threshold
setting, some points will move from H into the other quadrants. A few points that are very close
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to the red perfect fit line will jump directly from H into C, but most will pass first through an
error cell of H or F and then on to C at some higher threshold setting.

Figure 2 shows the quadrant counts for H, M, Quadrant Counts vs Threshold
F, and C as a function of the threshold setting. The -
sweep is conducted with a step size of 0.01. The + 1500
threshold sweep starts well below the range for either g s
the data or model number sets, so at the very low 1000
settings, all points are in the H cell. The sweep
extends beyond the top of both ranges, so at the very .
high settings, all of the 2000 points in the scatterplot 0
are in the C quadrant. In between, H decreases e o
monotonically and C increases monotonically, but M
and F rise and fall as points enter from the H cell and Figure 2. Quadrant counts for H, C,

leave to join the C cell. Because this example F, and M as a function of sweeping
scatterplot has a rather tight spread around the perfect | the data and model event

fit line, the counts for the F and M quadrants never a identification thresholds

large fraction of the total, but right near zero, F is simultaneously through the example
larger than C, and near one, M is larger than H. scatterplot shown in Figure 1.

Metrics can be calculated from the resulting
quadrant counts. For the STONE curve, the two metrics to be plotted against each other are
POD, defined as hits over observed events:

POD =
H+M
(1)
and POFD, defined as false alarms over observed nonevents:
POFD = F
CF+C
(2)

The resulting POD and POFD values as a function of threshold are shown in the middle
panel of Figure 3. Because the scatterplot is fairly tight along the perfect fit line, these two
curves are mostly monotonic, but not entirely. There are small intervals where one or the other of
these two metrics increase during the upward sweep of the thresholds. The resulting STONE
curve is then created by plotting POD versus POFD, as shown in the upper panel of Figure 3. As
a reference to help the interpretation of this plot relative to the two above it, red dots are included
every 0.1 along the threshold sweep. The small increases in POD and POFD seen in Figure 3b
are barely visible in the STONE curve in Figure 3a. With 2000 points in the number set and a
few points in the F quadrant at a threshold setting of zero, on average there are roughly 19 points
moving out of the H quadrant at each of the threshold increments between zero and one. About
half of these move to M and the other half moving to F, with perhaps one or two converting
directly to the C quadrant. A similar number is being converted out of M and F each threshold
step. Poisson counting uncertainty dictate that there could be small fluctuations, on the order of
3, in the exact number of points moving between the quadrants. It happens occasionally, then,
that this Poisson noise results a larger number of points converted out of M than into M, which
would cause an increase in POD. A similar situation could arise for F, resulting in a very small
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increase in POFD. For this particular number set,
the maximum increase in POD is 0.0094 and the
maximum increase in POFD is 0.0038, with the
majority of the increases below 0.002. Increases on
the order of Poisson noise fluctuations are not
significant and should not be interpreted as a
meaningful feature of the STONE curve.

Figure 3a shows the STONE curve comes
very close to the upper left (0,1) corner of POFD-
POD space. This indicates that these imposed x-axis
“model” values are very good at sorting the y-axis
“observations” into events and nonevents,
regardless of the event threshold setting. It is well
above the pink-dashed unity-slope line, drawn for
reference (here and on all of the STONE curve plots
below) to provide a comparison against the case
when the model is equivalent to random chance.

Several additional metrics will be included
in the analysis below. Because any single metric is
designed to assess a specific aspect of the data-
model relationship, several metrics are needed to
fully quantify the goodness of the fit between two
number sets. Categories for metrics have been
defined by Murphy (1991), and a mapping of many
event detection metrics to these categories has been
provided by Liemohn et al. (2021). An accuracy
metric is useful for determining the overall
goodness of the fit between the two number sets.
The F1 score will be used in this study:

g 2H
' 2H+M+F
3)
At the lowest threshold settings, everything is a hit,
so F1 will be one, its perfect score. As the thresholds
sweep to higher values, hits are converted to either
misses or false alarms, and F1 will drop. This

(a) STONE Curve

0.0 0.2 0.4 0.6 0.8 1.0
POFD

(b) POD & POFD vs Threshold

o
o

Metric Value
o
B

=
¥

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

(C) Other Metrics vs Threshold

=
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— FB

- ORSS
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U

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

Figure 3. For the example scatterplot
shown in Figure 1 with simultaneously
threshold sweeps, (a) POD and (b)
POFD scores as a function of threshold
and (c) the resulting STONE curve,
with a red dot shown every 0.1 along
the threshold sweep.

decrease does not have to be monotonic, however; it could increase if there is a cluster of points
that leave the M or F quadrants for the C quadrant. At the highest threshold setting, it usually
drops to zero when H = 0 and then becomes undefined when all points are in the C quadrant. For
example, an F1 of 0.5 could be achieved with H equal to the average of M and F while a score of
0.67 could be attained with H equal to the sum of M and F.

Accuracy metrics are nearly always symmetric, comparing the point count in H (perhaps
also with C) against the combined value of M + F, all points in the error cells. To understand the
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asymmetry of the contingency table, a metric from the bias category is needed. For this study,
frequency bias, FB, will be adopted:

H+F

FB =
H+M

(4)

This metric compares the points with the model value in its event state to the points with the
observed value in its event state. The ideal value for FB is one, with larger value indicating that
the model overpredicts events and smaller values indicating an underprediction of events. The H
is both the numerator and denominator acts to mitigate the influence of small but different F and
M counts; if H is much larger than both error cell counts, then FB will be close to one regardless
of the imbalance between F and M. A value of FB of 0.75 can be arrived at if H = F = 2M, while
a score of 1.33 could be from H = M = 2F.

Another useful category to include in the analysis is association, which in the case of
event detection metrics is assessing the balance of the contingency table and how well that
balance favors the two good quadrants. We will use the odds ratio skill score, ORSS, which is
typically written in this form:

H-C)—(F-M)

RS = O+ F-m

)

ORSS varies from a perfect score of +1 to a worst-case score of -1, with scores above zero
indicating that the model is better than random chance. If the H times C product is double the
value of the F times M product, then ORSS will be 0.33. If H and C are equal and double the
values of F and M (also equal), then this combination yields ORSS = 0.6.

The final metric to be considered in this analysis is the Heidke skill score, HSS. Skill
scores compare a metric score of the data-model comparison against that same metric for a
reference model. In the case of HSS, the metric is “proportion correct” and the reference model
is random chance, as given by the expected values for the contingency table cells given the same
column and row totals. The formula for HSS is this:

2[(H-C)— (F-M)]
(H+M)(M+C) + (H+F)(F+0)

HSS =

(6)

If F =M =0, then HSS will be one, its perfect score. If H = C =0, then HSS reverts to -
FM/(F?>+M?), which is either zero if one or the other of F or M is zero and drops to its lowest
value of -1 if F and M are equal. Any HSS score greater than zero indicates that the model is
better than random chance. While this is sometimes taken as the threshold for a good HSS value,
it is a relatively low bar to satisfy. If H = C = 2F = 2M, the case of a well-balanced contingency
table with hits equal to the sum of the error cell counts, then HSS = 0.33.

These four additional metrics will be reported along with POD, POFD, and the STONE
curve to assess the connection between known features in the scatterplot and calculated
signatures in the metric values. They are shown in Figure 3c for the example distribution being
considered in this section. At a threshold setting of zero, nearly all of the points are in the H
quadrant, a few (those with negative y values) are in the F quadrant, and M = C = 0. This results
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in F1 very close to one, FB slightly larger than one, an undefined ORSS, and HSS = 0. The
values for these 4 metrics are close to one for most of the threshold sweep, until the threshold
approaches a setting of one, in which case three of the four metrics plunge to zero. At a threshold
setting of one, nearly all of the points are in the C quadrant, a few are in the M quadrant (those
with y values above one), and H = F = 0. For these values, F1, FB, and HSS are all zero and
ORSS is undefined.

To conduct an assessment of how the STONE curve relates to features in the underlying
scatterplot, two parameters are adjusted to this baseline data-model number set collection. The
first is the spread of the distribution around the perfect-fit line, which will be systematically
increased in either all or part of the x domain. The second parameter is the deviation of the local
mean of the data minus model error distribution away from the perfect fit line. This change will
be made for specific intervals of the x domain.

3. Results

Here we present the resulting STONE curves from the systematic variation of the data-
model scatterplots. In all of the plots below, 2000 data-model pairs are used, with a threshold
step size of 0.01. For each threshold setting, the points in each quadrant are counted, a
contingency table is created, and the metrics listed above are calculated.

3.1. Variations in spread

Figure 4 shows a set of distributions with different settings for RMSE between the
y-axis “data” and x-axis “model” number sets. The same RMSE is applied across the full (0,1) x
domain. The top row presents the scatterplot, the second row the resulting STONE curve, the
third row shows the underlying POD and POFD curves used to make the STONE curve, and the
fourth row presents several other data-model comparison metrics.

It is seen that the STONE curves are very close to a perfect value in the upper-left
corner (see Figure 4b), but pull away from this ideal as RMSE is increased. None of the STONE
curves, however, include significant nonmonotonic features. This is revealed by the nearly
monotonic curves of POD and POFD; while some very small increases are seen in every curve
due to Poisson counting noise, the POD and POFD curves steadily decrease throughout the
threshold sweep from low to high values. For the largest RMSE case, the POD and POFD curves
(see in Figure 40) lack the steep slopes seen for the other RMSE settings, indicating that this
spread is seriously degrading the quality of the data-model comparison. The POD values are still
larger than the POFD values for all threshold settings, though, so the STONE curve in Figure 4n
is above the unity-slope “random chance” reference line.

The additional metrics in the lower row are shown for context. When the STONE curve is
very close to the upper-left corner, all four of the chosen metrics are close to one for most of the
zero-to-one threshold setting range. As the RMSE increases, these metrics worsen in some or all
of the threshold setting range. For example, for the smallest RMSE setting used in Figure 4, HSS
peaks at 0.93 (seen in Figure 4d), while for largest RMSE, HSS only reaches a maximum value
of 0.45 (Figure 4p). This is still a number indicating substantial skill relative to random chance,
but the interpretation of such a value for HSS depends on the specific data-model comparison
being conducted.
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Figure 4. Scatterplots (top row), the corresponding STONE curves (second row), its
underlying POD and POFD values as a function of threshold (third row), as well as several
other metrics versus threshold (fourth row). The formats of the plots are identical to those in
Figures 1 and 3. The four columns have data-model errors with Gaussian distributions with no
offset but different spreads, as indicated. Note that the y-axis scales in the top row are
different for each panel.

Figure 5 shows a slightly different case, in which RMSE is only increased at the high end
of the x domain. To create these distributions, the x domain was segmented into 10 equal
intervals, each with 200 randomly distributed values. The corresponding y values are a Gaussian
spread around the x axis value, with an imposed RMSE of 0.1 for the first 6 bins and then
incrementally increasing the RMSE in the remaining 4 bins. For the left column, the increase
increment is 0.01, so the final x-axis bin has an imposed RMSE of 0.14. The second column has
an increment of 0.02 (maximum RMSE in the last bin of 0.18), the third column has an
increment of 0.03 (maximum RMSE of 0.22), and the fourth column has an increment of 0.04
(maximum RMSE of 0.26). The panels of Figure 5 are in the same format as those of Figure 4.

For this group of distributions, the STONE curves in the second row show the
progression from monotonicity to a curve containing a nonmonotonic wiggle. Here, a “wiggle” is
defined as a statistically significant increase in the x-axis value, POFD, while the y-axis value,
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POD, continues to decrease. That is, a wiggle is a left-to-right oscillation in the STONE curve.
This is the case for the two column on the right, seen in Figures 5j and 5n. These increases are
seen in the POFD values displayed in Figures 5k and 50. The wiggle is very subtle in Figure 5j,
but it exists for a relatively large number of threshold steps. For a threshold setting of 0.58, the
POFD value in Figure 5j is 0.089; at a threshold of 0.67 (9 steps later), POFD has risen to 0.102.
This increase is larger than the Poisson noise fluctuations and indicates a response to a real

Increasing the standard deviation @ x > 0.6
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Figure 5. Like Figure 4, but systematically varying the width of the distribution but only for x
> 0.6. All distributions have ¢ = 0.10 for x < 0.6, then increase within each 0.1 interval by a
given increment: left column by 0.01, second column by 0.02, third column by 0.03, and right
column by 0.04. Again note that the y-axis ranges in the top row are all slightly different.

feature in the relationship between the two number sets. The increase in POFD is even more
dramatic in Figure 50, rising from a relative minimum of 0.097 at a threshold of 0.41 up to a
relative maximum of 0.135 at a threshold of 0.57. This results in a small but noticeable wiggle in
the STONE curve, just at the moment of its closest approach to the upper-left corner.

The wiggle can be related to features in other metric values as a function of threshold
setting. It is particularly seen in FB, which increases slightly above unity in the vicinity of the
wiggle. As seen in equation (4), FB includes F in the numerator, indicating that at these
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threshold settings, there is an imbalance in the contingency table between the two error cells,
specifically an excess of F counts relative to M. As points preferentially move from H to F
(instead of equally to M), FB and POFD systematically increase. As the threshold continues to
increase, eventually these points will move from F to C, and both FB and POFD will be reduced.
The other metrics, in particular ORSS and HSS, show slight downward kinks beginning at the
same threshold as the increase in FB and POFD.

3.2. Variations in both spread and offset

Another test is to not only vary the spread but also impose a slight shift of the bias
between the y values relative to the x values. The plots from this experiment are shown in Figure
6. The distributions are constructed in the same manner as those in Figure 5, but in addition to an
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Figure 6. Like Figure 5, but also varying the offset of the Gaussian error distribution away
from the unity-slope line. All distributions have ¢ = 0.10 and Ay = 0 for x < 0.6, then increase
the spread within each 0.1 interval by 0.03. Each column has a different negative Ay shift at
high x: left column by 0.01 bin, second column by 0.02, third column by 0.03, and right
column by 0.04. Note that the y-axis ranges are unique for each panel in both the first and last
rows.
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incremental increase in RMSE for the last 4 x-axis bins, an increment shift in the mean value
between the 200 x and y values in that bin is also imposed. Because Figure 5 reveals a slight
wiggle for an incremental RMSE change of 0.03, this RMSE increment is imposed for all of the
distributions in Figure 6. The bias increment, always downward for this set, is varied from -0.1 in
the first column (for a maximum offset of -0.4 in the final x-axis bin) up to an increment of -0.4
(for a maximum offset of -0.16).

The wiggle in the STONE curves is visible in every panel of the second row of Figure 6.
For the smallest offset increment, the STONE curve (seen in Figure 6b) wiggle is small and the
increase in POFD occurs near a threshold setting of 0.6 (seen in Figure 6c). For the other three
bias increment settings, the STONE curve wiggle is clear, with the POFD increase beginning at a
threshold setting around a value of 0.4. This is because the points in the final two x-axis bins
have a spread and bias setting that allows some points to be at y values at low as 0.4. This begins
the imbalance of the conversion of points out of the H quadrant, now favoring F over M.

The additional metrics shown in the lower row reflect this imbalance of F over M. It is
most clearly seen in the FB metric, peaking at a value of 1.87 for the largest imposed offset
increment (Figure 6p). As seen in Figure 5, the other metrics have a downward change in slope
at the same threshold setting as the initial increase in FB and POFD. Before this downward trend,
though, the metrics have very good scores because the imposed spread is small for the left
section of the distribution.

Figure 7 shows a very similar experiment as that shown in Figure 6 but this time
imposing a positive bias between the y and x values in the four highest x-axis bins. Exactly the
same settings are used for this set of distributions, with a 0.1 spread for x below 0.6, then a 0.3
RMSE setting for x greater than 0.6. The offsets are incremented in these bins of increased
spread, with imposed increments of +0.01, +0.02, +0.03, and +0.04 for the four distributions,
respectively.

In this case, only the first distribution has a STONE curve with a very subtle but
statistically significant wiggle. From Figure 7c, at a threshold setting of 0.48, POFD is 0.092; it
then rises to 0.107 at a threshold of 0.58. This is a similar feature to what was seen in the third
column of Figure 5. The other three STONE curves in the second row of Figure 7 have no
significant features beyond Poisson noise fluctuations. The metrics in the last row of Figure 7
reflect this subtle or nonexistent feature set in the STONE curves. In Figure 4d, the first
distribution with the smallest imposed offset has a slight increase in FB. All of the distributions,
though, have an FB curve that drops below unity at lower x values than previously seen in
Figures 4 — 6. The other three metrics (F1, ORSS, and HSS) have nearly identical curves for the
four distributions.

The distributions used in Figure 7 are included to illustrate the point that not all offsets
result in nonmonotonic features in the STONE curve. This set has an offset that is positive, so
the increased spread at large x does not result in additional points in the F quadrant. They remain
in the H quadrant until the final threshold steps of the sweep. In fact, the F quadrant has a
reduced count for high x values for these distributions, causing the early downward shift in FB.
The upward shift of the distributions does not, however, result in an increased count in M until
the very last threshold steps of the sweep. So POD never undergoes an increase for these
distributions. In short, this upward offset at high x values is not revealed by the STONE curve.
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Increasing o and shifting positive @ x > 0.6
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Figure 7. Like Figure 6 except with positive shifts in the Gaussian peak relative to the unity
slope line.

As another test case to further reveal features of the STONE curve, Figure 8 shows a set
of distributions that are essentially the inverse of those used in Figure 6. That is, an increased
spread (RMSE of 0.3) and upward offset are applied at low x values (below 0.4), while the
distribution above x = 0.4 has no offset and an imposed RMSE of 0.1 (the nominal case). The
offset values are incremented the same as in Figure 6, but now upward so the distributions
remain more within the (0,1) range in the y values. The offset is largest in the lowest x-axis bin.

The STONE curves in the second row of Figure 8 all include a ripple feature. A “ripple”
is defined here as a statistically significant increase in the y-axis value, POD, while the x-axis
value, POFD, continues to decrease. More plainly, a ripple is an up-and-down oscillation in the
STONE curve. The POFD curves in the third row of Figure 8 include small fluctuations due to
Poisson noise in the distributions but the increases in POD that is seen in these plots exist over a
larger span of thresholds and reveal an important feature of the underlying data-model
comparison. In particular, they show that there is a cluster of points in the M quadrant that are
being quickly converted into the C quadrant, faster than new points are entering the M quadrant.
Remembering equation (1), this causes a systematic decrease in the denominator of POD and
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therefore an increase in this metric. The larger the spread and upward offset in the points at low x
values, the larger the cluster in the M quadrant that is not removed until high threshold settings,
resulting in a clear increase in POD and therefore a ripple in the STONE curve.

For the first distribution with the smallest imposed offset, the ripple is subtle. The POD
curve in Figure 8c reaches a relative minimum value of 0.871 at a threshold of 0.41 and a relative
maximum of 0.899 11 bins later at a threshold of 0.52. The change in POD for the next-largest
offset increment (Figure 4f) is already more clearly seen, with a relative minimum of 0.867 at a
threshold of 0.34, rising to a POD value of 0.901 at a threshold of 0.58. Because it occurs over a
longer interval of threshold settings, the ripple is more apparent in the STONE curve of Figure 8f
than the one in Figure 8b. The largest setting for the imposed offset has a very clear ripple, with
a POD change of 0.051 from relative minimum to maximum, but the span of x values over which
this occurs is nearly identical to the other cases in this set.

The additional metrics shown in the last row of Figure 8 are somewhat different than
their counterparts in earlier figures. The F1 metric scores decrease sooner (at lower threshold
settings) than earlier cases, although they remain quite good through most of the threshold
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