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Abstract
Although past work has considered how evolution and Allee effects each shape population spread, these factors have rarely 
been considered together. We develop an integrodifference equation model that tracks individuals of multiple dispersal types 
(i.e., short- and long-distance dispersers) of male and female individuals subject to a strong Allee effect due to mate-finding 
process. We use our model to explore how mutation between different dispersal types affects the rate of population spread, 
since this evolutionary mechanism has been shown to lead to both faster and slower spread in a previous individual-based 
model. We ask, under what conditions does mutation cause the population to spread faster (or slower) than it spreads without 
mutation (from the same initial conditions)? We find that mutation can both speed up and slow down invasions. Speeding 
up occurs in a relatively small range of parameter space near the Allee threshold of the population. Slowing down occurs 
across a broad range of parameters.

Keywords  Biological invasion · Range expansion · Eco-evolutionary dynamics · Mutation · Integrodifference equation · 
Spread speed

Introduction

It is increasingly recognized that the spatial spread of popu-
lations is shaped not only by ecology, but also by evolu-
tion (Phillips 2015; Miller et al. 2020). Here, “evolution,” 
very generally, refers to a change of traits over time. Such a 
change can occur via a number of mechanisms. In spreading 
populations, these mechanisms include spatial sorting (indi-
viduals sort by dispersal ability), spatial selection (selection 

varies with population density which varies spatially), muta-
tion (changing from one type to another), and gene surf-
ing (stochasticity at the low-density population edge allows 
the persistence of types that are not otherwise favored) 
(Edmonds et al. 2004; Phillips et al. 2008; Shine et al. 2011). 
A key question is whether we can draw generalities about 
the effects of evolution on spread dynamics, and on spread 
speed in particular. A majority of modeling studies suggest 
that “evolution speeds up population spread,” based on the 
observation that, over time, individuals with higher disper-
sal ability come to dominate the population edge (Travis 
and Dytham 2002; Travis et al. 2009; Burton et al. 2010; 
Bénichou et al. 2012; Ramanantoanina et al. 2014; Williams 
et al. 2016). The generality of the statement, however, some-
times eschews which mechanism(s) of evolution (see above) 
were present in the corresponding study or responsible for 
the outcome. At least two models have found the opposite 
effect that evolution can slow population spread (Korolev 
2015; Shaw and Kokko 2015). In both of these studies, the 
population dynamics included an Allee effect. We use an 
integrodifference model to shed more light on how one par-
ticular evolutionary mechanism, mutation, interacts with 
population dynamics to result in faster or slower spread rate 
of populations.
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Arguably the most prominent example that evolution can 
increase population spread rate is the invasion of cane toads 
in Australia (Phillips et al. 2006), which has inspired more 
research and models than we can list here. Perkins et al. 
(2013) formulate and simulate a very complex model that 
combines population dynamics and dispersal in an integrodif-
ference equation with quantitative genetics and reproduces 
the patterns observed in the data. Several reaction-diffusion 
models abstract much of the complex biological processes 
and study the question more generally. In these models, the 
diffusion coefficient is a continuously distributed trait that 
evolves neutrally, modeled by a diffusion operator in trait 
space (Bénichou et al. 2012; Bouin et al. 2012; Bouin and 
Calvez 2014). Those models show that at the leading edge of 
the population front, the distribution of diffusion coefficients 
is skewed towards higher values, that the trait-structured pop-
ulation spreads faster than an unstructured population with 
the average trait value, and that the population spread rate 
may even accelerate over time (Bouin et al. 2017). Even the 
addition of moderate mortality, penalizing long-distance dis-
persers, does not significantly affect front acceleration (Bouin 
et al. 2018). An even simpler integrodifference spread model 
of only finitely many dispersal types and clonal reproduction 
(without mutation or type switching) also found front accel-
eration and spatial sorting (Ramanantoanina et al. 2014). 
Even if only very few individuals with high dispersal ability 
were initially present, those would eventually end up at the 
invasion front and determine the (high) spreading speed.

A different mechanism of increased spread rates has been 
found in reaction-diffusion and integrodifference equations 
with two or finitely many types. If types cooperate then a 
multi-type population can spread faster than any of the com-
ponent types (“anomalous spreading speed”) (Weinberger 
et al. 2007). Since a mutation process often leads to coopera-
tive dynamics between phenotypes (at least at low densities), 
the spread speed of populations with two or more dispersal 
types can be higher than the speed of each type on its own, 
even if the mutation rate between types is very small (Elliott 
and Cornell 2013; Keenan and Cornell 2021). This mecha-
nism can only occur if there is a trade-off between dispersal 
ability and fecundity (Lutscher 2019).

To date, most of the theory on spread rates with multiple 
types (in particular all the references mentioned in the pre-
ceding paragraph) has assumed that the highest population 
growth rate occurs at low density, i.e., that there is no Allee 
effect. While this assumption is very convenient for math-
ematical analysis, it is often not realistic. Allee effects are 
common in biological systems, and occur when individual 
fitness (e.g., per capita growth rate) increases with popula-
tion density (Stephens et al. 1999). Perhaps the best-studied 
class of examples is a mate-finding Allee effect, where the 
challenge of finding mates at low density can lead to lower 
growth (Gascoigne et al. 2009). Since population density 

is, by definition, low at an invasion front, and since several 
aspects of evolution are closely related to mate-finding, 
we need to consider the evolution of spread rates in multi-
phenotype populations under Allee effects.

How Allee effects impact population spread in the absence 
of evolution has been studied for a long time; e.g., Weinberger 
(1982). Similarly, the impact of mate-finding on spread rates 
has been studied with and without Allee effect (Miller et al. 
2011; Shaw et al. 2018). To examine how an Allee effect 
interacts with spread rates of different types, Korolev (2015) 
studied a pair of reaction-diffusion equations, one for each 
dispersal phenotype, and with strong Allee effect, modeled 
by a cubic nonlinearity. By linearizing the equations at a 
single-type traveling wave and studying invasion conditions 
for the other type, he showed that when the Allee threshold is 
high, types with lower dispersal rate could invade, so that the 
population spread rate decreased. The underlying mechanism 
is that a high Allee threshold disadvantages a long-distance 
disperser as their density will necessarily be below that Allee 
threshold ahead of the front. Korolev (2015) considered 
mutations to occur on a much slower time scale than eco-
logical processes and did not distinguish individuals by sex. 
Shaw and Kokko (2015) studied a similar question with very 
different means. They used an individual-based model that 
included dispersal, mate-finding, reproduction, mutation, and 
density dependence. The evolving attributes of individuals 
were related to dispersal behavior: how likely is an individual 
to settle in a certain location, given the number of individu-
als of the same or the opposite sex present at that location? 
They found that when resource competition among females 
was low, evolution acted to alleviate the mate-finding Allee 
effect and slow the rate of population spread. However, when 
resource competition among females was high the opposite 
occurred: evolution sped up the rate of population spread, 
exacerbating the Allee effect. While the model by Korolev 
(2015) abstracts much biological realism to obtain analyti-
cal results, the model by Shaw and Kokko (2015) includes 
too much detail to have such results. We present a model 
of intermediate complexity that explicitly includes mate- 
finding and evolution but assumes a much simpler dispersal 
process than the one in Shaw and Kokko (2015). While we 
do not have analytic solutions, our model is simple enough 
to draw general conclusions about how evolution can speed 
up or slow down population spread.

We develop an integrodifference equation model that 
tracks individuals of multiple dispersal types (i.e., short- and 
long-distance dispersers) of male and female individuals. We 
include mate-finding by using a submodel to describe the pair 
formation process (Veit and Lewis 1996; Shaw et al. 2018). 
This process induces a strong Allee effect. We use our model 
to explore how mutation as one specific mechanism of evolu-
tion affects the rate of population spread, in the presence of 
this mate-finding Allee effect. We focus on mutation since 
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this mechanism has been previously shown to lead to faster or 
slower population spread in a more complex individual-based 
model (Shaw and Kokko 2015). We consider the scenario of 
a population of organisms adapted to equilibrium conditions 
near their population capacity, and then explore what happens 
when a subset of individuals are introduced to a novel habitat, 
as was done by Shaw and Kokko (2015). We then ask: under 
what conditions do simulations with mutation in dispersal 
parameters spread faster (or slower) than simulations without 
mutation? We find that mutation can both speed up and slow 
down invasions. In fact, slowing down invasions occurs across 
a broad range of the considered parameter space.

Model derivation

We begin by formulating the simplest possible model that 
contains all the relevant processes. We assume a semelparous 
population whose life cycle is divided into a synchronized 
growth phase (during which spatial movement is negligible) 
and a synchronized dispersal phase (during which population 
dynamics are negligible, but see "Dispersal-induced mortal-
ity"). The order of life cycle events are the following: pair for-
mation, offspring production, death of the parent generation, 
density-dependent offspring survival, dispersal. We census the 
population immediately after the dispersal phase. We track the 
continuous density of females ( Fi ) and males ( Mi ) of dispersal 
type i = 1, 2 . We denote the total female and male population 
as F = F1 + F2 and M = M1 +M2 . The total population is 
F +M = 2N . (We will show later that the density of female 
and male individuals are the same, except possibly at the initial 
condition. Hence, we can then write N instead of either F or M.)

Reproduction

Reproduction consists of pair formation, offspring production, 
and density-dependent survival. We use the same mechanis-
tic approach to pair formation as Veit and Lewis (1996), and 
Shaw et al. (2018). Females and males, independent of dis-
persal type, search for monogamous mating partners locally 
according to a mass-action law. If there are initially F female 
and M male individuals, then the number of pairs formed after 
� time units is given by

and

Each pair will produce b offspring with a 1:1 sex ratio. 
Hence, the number of female and male offspring is bP/2 each. 

(1)P(F,M) =
FM(1 − exp((M − F)�))

F −M exp((M − F)�)
, if M ≠ F

(2)

P(F,M) =
(F +M)2

F +M + 1∕�
=

N2

N + 1∕�
= P(N), if M = F = N.

The parents die after offspring production. There is a local 
limiting density of n surviving offspring. Hence, the number 
of surviving female and male offspring from F female and 
M male parents is 1

2
min{bP(F,M), n} each. This process of 

searching for mates introduces a potential mate-finding Allee 
effect (Stephens et al. 1999; Shaw et al. 2018).

Inheritance

Individuals differ with respect to dispersal. We assume a hap-
loid system with only two types ( i = 1, 2 ). Mating then occurs 
in four possible pairs: (1,1), (1,2), (2,1), and (2,2), where the 
first (second) entry indicates the female (male) type. We intro-
duce the proportions of females (males) of type 1 as f = F1∕F 
( m = M1∕M ). Hence, under random mating, the frequency 
of (1,1) pairs is given by fm and similarly for the other cases. 
Each offspring inherits its dispersal type from one of its two 
parents at random with equal probability. If there is mutation, 
then an offspring of any type may switch to the other type with 
a mutation probability that we denote by � . The fraction of 
offspring of type 1, T1 , is then given by

Inheritance is assumed to be independent of sex, so that 
females and males are equally likely to be of dispersal type 
1 or type 2.

Dispersal

We consider an infinite one-dimensional landscape and 
denote spatial location by x. Dispersal is modeled by a dis-
persal kernel, K̃(x, y) , so that K̃(x, y)Δx is the probability that 
an individual moves from location y to [x, x + Δx) . Since we 
assume a homogeneous landscape, dispersal depends only 
on distance. We therefore write K(x − y) = K̃(x, y) . Many 
different dispersal kernels have been suggested in the litera-
ture (Nathan et al. 2012; Bullock et al. 2017). We shall not 
be concerned with the effects of different dispersal kernels, 
but we shall assume throughout that all kernels are exponen-
tially bounded. In all our simulations, we consider Gaussian 
kernels. We shall characterize different types by different 
dispersal distances. Hence, we use

with variance di > 0 , i = 1, 2 . Without loss of generality,  
we may choose d1 < d2 , so that type-1 individuals are 

(3)

T1 = T1(f ,m) = (1 − �)fm + f (1 − m)∕2

+ (1 − f )m∕2 + �(1 − f )(1 − m)

=
f + m

2
+ �(1 − f − m).

(4)Ki(x) =
1√
2�di

exp

�
−x2

2di

�
,
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short-distance dispersers (hereafter “short type”) and type-2 
individuals are long-distance dispersers (“long type”).

The full model

To project the densities of short type and long type females 
and males from one generation to the next, we put all the 
preceding steps together. We denote by F(t)

i
(x) and M(t)

i
(x) 

densities of female and male individuals of type i immedi-
ately after the dispersal phase in generation t. Then the den-
sities of the two types of females in the next generation are

with pair formation and type frequency given by

as in (1) or (2) and (3) and

(5)F
(t+1)

1
(x) =

1

2 ∫ Ki(x − y)min{bP(y), n}T1(y)dy

(6)F
(t+1)

2
(x) =

1

2 ∫ Ki(x − y)min{bP(y), n}(1 − T1(y))dy,

(7)P(y) = P(Ft(y),Mt(y)),

(8)T1(y) = T1(f (y),m(y)),

(9)Ft(y) = Ft
1
(y) + Ft

2
(y), Mt(y) = Mt

1
(y) +Mt

2
(y),

(10)f (y) =
Ft
1
(y)

Ft(y)
, m(y) =

Mt
1
(y)

Mt(y)
.

Since we assumed a 1:1 offspring ratio and since sex and 
dispersal type are independent, the densities of males of each 
type in subsequent generations equals the densities of females 
in that type, even if this is not true in the initial generation. 
Hence, M(t)

i
= F

(t)

i
 for i = 1, 2 and t > 1 , and pair formation is 

given by the simpler formula P(F,M) = P(N) in (2).

Nonspatial dynamics

Before we explain the setup that we use to determine how 
mutation affects population spread in our system, we con-
sider a few model simplifications to understand the most 
basic properties of our model. In the absence of spatial struc-
ture, when there is no difference between dispersal types 
(i.e., d1 = d2 ), the model collapses to the very simple dif-
ference equation

with P = P(N) as in (2); see Fig. 1, left plot. This model 
has a strong Allee effect: There are three steady states. 
The extinction state ( N = 0 ) and the carrying capacity 
( N = n ) are locally stable, the (intermediate) Allee thresh-
old (N = (�(b − 1))−1 ) is unstable. Since P is a monotone 
function of N, solutions of (11) are monotone. Populations 
decay to extinction if their initial density is below the Allee 
threshold and increase to carrying capacity if the initial con-
dition is above.

Vice versa, when we set the total population to carrying 
capacity we can consider the trait dynamics independently. 

(11)N(t+1) = min{bP(N(t)), n}
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Fig. 1   Left: The blue curve represents the single-population growth 
function min{bP(N), n} . The red line is the 45 degree line. The trave-
ling wave speed is positive if the signed area between the two curves 
is positive. Right: The threshold in b-n-space that separates popula-

tion advance (above the curve) from population retreat (below the 
curve). The star indicates the parameters on the left: b = 2 and n = 3 . 
We fixed � = 1
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Since the fraction of females and males of the two types are 
the same after the initial generation, we consider only the 
fraction of short type females, denoted by f. According to 
(3), this fraction changes according to

from one generation to the next. The function T1 has f = 1∕2 
as the only fixed point when � ∈ (0, 1) . This point is stable. 
Hence, if there is some mutation, then the two types will 
approach equal densities. If there is no mutation, the fre-
quencies will not change.

When we combine the two preceding observations, we 
find that if � ∈ (0, 1) , our nonspatial model of two types and 
two sexes will either converge to the extinction state or to 
the state where each of the four densities (female/male, type 
1/2) is exactly n/4. We will use this result later to set initial 
conditions for the simulations of spreading populations.

Spread of a single type

When we include space and dispersal into the simple model 
(11), we obtain

with P(N) = N2∕(N + 1∕�) as in (2). The spatial spread 
behavior of this model is known (Weinberger 1982; Wang 
et al. 2002). If the initial population density is too low or 
the initial extent of the population is too small, the popula-
tion will go extinct. If the initial density is high enough on 
a large enough spatial extent, the population will spread in 
space. The equation has constant-speed traveling wave solu-
tions that connect the carrying capacity with the extinction 
state. If

then these waves have positive speed, i.e., the population 
advances. If the reverse inequality holds, the speed is nega-
tive and the population retreats. The value of the integral is 
increasing in b and n. The threshold, in b–n parameter space, 
between spread and retreat is plotted in Fig. 1, right plot. 
By rescaling b and n, we can achieve � = 1 , which we shall 
assume from hereon.

Setup of the simulations

In the case without Allee effect, the asymptotic speed of 
spread is typically linearly determined and given by a rela-
tively simple explicit formula (Weinberger 1982; Girardin 
2017). Unfortunately, there is no such formula in the case 
with Allee effect (for a rare exception, see Kot et al. (1996)). 

T1(f ) = f + �(1 − 2f )

(12)N(t+1)(x) = ∫ K(x − y)min{bP(Nt), n}dy,

(13)∫
n

0

min{bP(N), n}dN > n2∕2,

We will therefore rely on numerical simulations. We use the 
convolution approach, combined with fast Fourier transform 
to simulate the model until a constant-speed traveling wave 
is established and calculate its speed; see Lutscher (2019), 
chapter 8.

The important question is how to choose initial condi-
tions. Since our model has an Allee effect, these initial con-
ditions can affect the final simulation outcome. We choose 
our initial conditions following the work by Shaw and Kokko 
(2015) with our specific question in mind (see "Introduc-
tion"). We assume that the population is well adapted locally 
and then introduced into novel territory, and we test whether 
the spread speed in the novel territory is higher with or with-
out mutations. Hence, we initialize population densities at 
the stable positive state of the nonspatial model in the pres-
ence of mutation. This is also the state that we expect to 
arise in the wake of a spreading population with mutation.

We consider a localized initial condition, where the den-
sities are initially positive only on a small interval, and a 
wave-like initial condition, where the densities are positive 
on a half line. In both cases, the initial densities are constant 
over the interval where they are positive. In the simplest 
case, as described above, each of the four types has density 
n/4. We then run two simulations: one with mutation ( 𝜇 > 0 ) 
and one without ( � = 0 ), and we compare the two speeds.

Results

Spreading speed(s), with and without mutation

In all our simulations, we observed two possible behaviors. 
With mutations ( 𝜇 > 0 ), the entire population developed 
into a single traveling wave, i.e., all four components (short 
and long type females and males) eventually traveled at the 
same speed. This observation is not too surprising. Biologi-
cally speaking, since each type generates the other type by 
mutation, it seems obvious that neither can evade the other. 
Mathematically, results of this type have been proven for 
cooperative systems (Lui 1989), and a positive mutation 
probability gives rise to cooperative elements in our model, 
although the overall model is not cooperative. Without muta-
tion, however, we never observed the two types spreading 
together. Eventually, there was always one type that raced 
ahead while the other stalled. While we cannot prove it, 
our many simulations lead us to conjecture that the joint 
speed of propagation of two types with mutation is bounded 
between the speeds of either type in isolation.

Which type dominates the front?

Which of the types managed to outrun the other in the 
absence of mutation depended on parameters. By way of 
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example, when reproduction (b) was low and carrying 
capacity (n) was high (left column in Fig. 2), the short type 
outran the long type without mutation (bottom row) and set-
tled at its single-type speed. With mutation, the two types 
spread together at a higher joint speed (top left). When 
reproduction was high and carrying capacity was low (right 
column), the long type outran the short type without muta-
tion (bottom plot) and settled at its single-type speed. With 
mutation, both types spread together at a lower joint speed 
(top right). Hence, mutations increased invasion speed in 
the first scenario but decreased it in the second. Overall, 
when the two types spread jointly (with mutation) the popu-
lation spread faster when reproduction was high and carry-
ing capacity was low than when reproduction was low and  
carrying capacity was high.

The question of whether mutation will speed up or slow 
down the invasion of a population of two types can then be 
answered seemingly easily: if the short type outruns the long 
type in the absence of mutation, then mutation will increase 
the speed but if the long type will outrun the short type in the 
absence of mutation, then mutation will decrease the speed.

But how can the short type outrun the long type? It is the 
combination of a population-level Allee effect, introduced 

by mate-finding, and the inheritance scheme (Fig. 3). Ini-
tially, both types are equally present. After the first dispersal 
event, the short type density (solid) is higher than that of 
the long type (dashed) inside the original extent but lower 
outside (top panel). The total population increases where the 
total population density exceeds the Allee threshold (bottom 
panel). The Allee threshold is high (horizontal dashed line) 
when b is low and low (solid) when b is high. In the absence 
of mutations, the dominant dispersal type of the offspring 
will be that of the dominant parent type. Hence, inside the 
original population extent, the short type will dominate and 
outside the long type. But if the Allee threshold is high the 
region in space where the long type reproduces dominantly 
is very small. If, at the same time, the carrying capacity is 
low, the density of long type offspring is low. In subsequent 
dispersal events, the long type then spreads its density so 
thinly that it is likely to be below the Allee threshold, which 
continues the decline of the long type. Alternatively, if the 
Allee threshold is low and the carrying capacity is high, the 
long type can take advantage of its higher dispersal abili-
ties and establish a high density ahead of the short type. 
Once this dominance is established, the type dominant at 
the population edge spreads unperturbed by the other type.

Fig. 2   Four scenarios of spread. 
Each scenario consists of two 
plots: density 1 denotes the 
short type and density 2 the 
long type. Plots (a) and (b) are 
with mutation, whereas (c) and 
(d) are without. Plots (a) and 
(c) have low reproduction and 
high carrying capacity, whereas 
(b) and (d) have the reverse 
case. Other parameters are 
d1 = 0.1 < d2 = 0.5 and � = 1 . 
Initial conditions are uniform on 
[−10, 10] . Spread is symmetric 
in both directions but only the 
positive direction is shown. 
Densities are plotted every 40 
generations (left column) and 
every 10 generations (right 
column). The resulting speeds 
are 0.19 (top left), 0.14 (bottom 
left), 0.45 (top right) and 0.51 
(bottom right)

(a) (b)

(c) (d)
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How frequently and under which conditions does it hap-
pen that the short type outruns the long type in the absence 
of mutation so that mutation will speed up the invasion? And 
when does the reverse effect occur? Increasing b favors the 
long type, all else being equal, and increasing n does the 
same (Fig. 4). The short type only outruns the long type near 
the extinction threshold in b–n space below which the over-
all population fails to spread; see Fig. 1. The likelihood that 
the short type outruns the long type increases as the differ-
ence in the variance of the corresponding dispersal kernels 
increases and as the spatial extent of the initial introduction 
decreases.

The role of initial conditions

The importance of initial conditions is also evident in 
the following numerical experiment where initial condi-
tions are allowed to differ slightly between the two types 
(Fig. 5). We consider the region of parameter space where 
the long type dominates the invasion front and sets the 
speed, while the short type appears at the front through 
mutation (top panel), whenever the initial conditions are 
identical for both types (as we generally assume). How-
ever, when the short type has a small headstart, it contin-
ues to dominate the invasion front and it sets the speed, 
while the long type cannot break through the dominance of 
the other type at the front (bottom panel). Since all model 
parameters are identical in the two simulations, we are 
led to conjecture that there may not be a unique spread-
ing speed in this system and not a unique traveling wave 

profile, even when the mutation probability is positive. 
A mathematical proof of uniqueness or nonuniqueness is 
beyond the scope of this paper. Instead, we eliminate the 
question of initial conditions by choosing identical initial 
spatial extent for all types, as motivated by the biological 
question of interest (see "Introduction").

Fig. 3   Schematic illustration for how a short type can dominate a 
long type. Top panel: The (identical) initial conditions for both types 
(step function) and the resulting densities of the short (solid) and long 
(dashed) type after the first dispersal event. Bottom panel: The total 
population density initially (step function) and after the first dispersal 
event (solid curve), together with the Allee threshold (horizontal line) 
in the case of low b (dashed) and high b (solid)
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mutation spreads faster. The value of zero for b, n small indicates that 
the population is not viable in this regions of parameter space. Dis-
persal parameters are d1 = 1 < d2 = 5
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Fig. 5   Different wave profiles and speeds arise as the initial extent 
of one type changes. The curves show the short type fraction of the 
total density (where positive). Top panel: both types are initially 
present for x < −100 . The short type has lower density at the front 
that moves at speed 0.29. Bottom panel: the short type has a head-
start over the long type who is initially present only for x < −110 . 
The short type establishes the higher density at the front that moves 
at speed 0.16. Parameters are b = 2 , n = 5.1 , d1 = 0.1 , d2 = 0.5 , and 
� = 0.01 . Simulations ran for 1000 generations; profiles are plotted 
every 100 generations
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Model extensions

Dispersal‑induced mortality

Model modifications

Dispersal is risky and costs energy (Bonte et al. 2012). 
Most models for evolution and range expansion assume 
that individuals experience mortality during dispersal 
(Phillips et al. 2008; Travis et al. 2009; Burton et al. 2010; 
Shaw and Kokko 2015). We include dispersal-induced 
mortality into our model from the previous section and 
study the effects. More specifically, we assume that there is 
a constant per unit time probability of mortality during the 
dispersal process (see Lutscher (2019), chapter 12), and 
we assume that mortality increases with expected disper-
sal distance. We model these assumptions by multiplying 
the Gaussian dispersal kernel with the survival probability 
e−dim < 1 , where di is the dispersal parameter (variance) of 
type i and m is a scaling factor. The resulting kernel,

does not integrate to unity.
However, we can include the survival probability into 

the growth function and continue to operate with dispersal 
kernels that integrate to unity. This view allows us to adapt 
some of the preliminary observations from "Spread of a sin-
gle type" to this new situation. The curve in b–n space that 
separates population spread from retreat (Fig. 1) now depends 
on the dispersal type. A type with high di has a lower survival 
probability and therefore requires larger values of b and/or 
n to persist and spread, compared to a type with low di . The 
speed at which a single type in isolation spreads decreases as 
the dispersal mortality factor (m) increases to the point that at 
large enough m the single type retreats rather than advances.

We also need to adapt our initial conditions for spread 
simulations with two types. When dispersal behavior has 
no impact on demography, the equal distribution of both 
types is a steady state of the nonspatial equations. When we 
include dispersal-induced mortality, this is no longer true. 
Since higher dispersal implies larger mortality, the steady-
state density of the type with higher dispersal is lower than 
that with lower dispersal. We were not able to find an ana-
lytic expression of the coexistence state for two types, but 
we can determine the densities that we use for initial condi-
tions numerically very easily.

Comparison to results with no dispersal mortality

When simulating the two types spreading from their ini-
tial conditions as described in the setup, there are some 

(14)Ki(x) =
e−dim√
2�di

exp

�
−

x2

2di

�
,

similarities and some differences between the case with 
and without dispersal-induced mortality. In the absence 
of mutation ( � = 0 ), there is still eventually only one type 
present at the invasion front and this type sets the speed. 
With mutation ( 𝜇 > 0 ), both types are present at the inva-
sion front and spread at the same speed. If the long type 
dominates the population edge without mutation, then 
including mutation will slow down the overall spread of 
the population, as it did in the previous section. However, 
because of the additional dispersal-induced mortality, it is 
harder for the long type to dominate the population edge in 
the absence of mutation. Even if the long type dominates 
the population edge without mutation, the short type is not 
stalled but will slowly invade and replace the long type in 
a second wave; see Fig. 6. This phenomenon is related to 
stacked waves that have been observed in other contexts 
in reaction-diffusion equations (Iida et al. 2011) and in 
integrodifference equations; see Marculis and Lui (2016) 
and references therein.

As in the case without dispersal mortality, it appears that 
also with dispersal mortality, the spread rate with mutation 
( 𝜇 > 0 ) is bounded between the single-type spread rates 
without mutation. What is different now is that the spread 
rate of the long type can be slower than that of the short 
type because of the additional mortality. In particular, as 
explained above, each type has its own extinction boundary 
in b–n space and there is a range in that space where the long 
type retreats (i.e., has a negative spread rate) and the short 
type advances (i.e., has a positive spread rate); see condition 
(13). In this case, the short type will outrun the long type 
without mutation, and adding mutation will slow down the 
total population because the increase in dispersal distance 
is less than the decrease due to the higher mortality (Fig. 6).

Effect of mutation probability

So far, we only compared spread rates with and without 
mutation. Now, we investigate how spread rates depend 
on mutation probabilities. Since mutation probabilities are 
typically small, we limit our simulations to 0 ≤ � ≤ 0.2 . 
We find four distinct patterns (Fig. 7). When the long type 
dominates the population edge in the absence of muta-
tion, then the population spread rate decreases monotoni-
cally with increasing mutation probability (green curve 
at the top). Because of the increased mutation probabil-
ity, a larger number of long types turns into short types, 
which slows the advance of the front. When the short type 
dominates the population edge in the absence of muta-
tion while the long type is faster in isolation, then the 
population spread rate increases monotonically with muta-
tion probability (red curve in the middle). The underlying 
mechanism is the same as above: an increase in muta-
tion probability this time leads to an increase in the faster 
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type, so that the entire population speeds up. Because of 
dispersal-related mortality, it is possible that the long 
type in isolation has a slower spread rate than the short 
type in isolation (see above). If this is the case and if the 
short type dominates the population edge in the absence 
of mutation, then increasing mutation will decrease the 
overall speed (blue curve at the bottom).

The behavior of the black curve (second from the top) 
is the most surprising. Here, the short type dominates the 

population edge without mutation. A very small muta-
tion probability leads to a slightly higher spread rate since 
the long type is now present at the front but at relatively 
small density. But a small increase in mutation probability 
(here from � = 0.01 to � = 0.02 ) leads to a jump of overall 
spread rate. Then as the mutation probability increases 
further, the spread rate decreases again. It turns out that 
the small increase in mutation probability enables the long 
type to dominate the population edge and thereby increase 
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Fig. 6   Left: The long type (solid) spreads quickly to the right but is 
slowly replaced by the short type (dashed). There is dispersal-induced 
mortality ( m = 0.1 ) but no mutation ( � = 0 ). Initially, both types 
are present for x < 150 ; densities are plotted every 100 generations. 
Other parameters are b = 3 , n = 5 , d1 = 0.1 , and d2 = 0.5 . Right: 
The joint (rightward) spread of both types with mutation ( � = 0.1 , 

top panel) can be slower than the spread of the short type (dashed) 
in isolation ( � = 0 , bottom panel) when dispersal-induced mortality 
( m = 0.3 ) has a strong impact on the long type. Initially, both types 
are present for x < 0 ; densities are plotted every 100 generations. 
Other parameters are b = 1.7 , n = 4 , d1 = 0.1 , and d2 = 0.5

Fig. 7   Four patterns of popula-
tion spread rate as a function 
of mutation probability � . For 
each pattern, the two stars on 
the vertical axis indicate the 
spread rates of the two types in 
isolation and the curve in the 
corresponding color shows the 
joint spread rate with mutation. 
In blue, the short type spreads 
faster in isolation; in all other 
cases, the long type spreads 
faster in isolation. Green: 
b = 4 , m = 0.1 . Black: b = 4 , 
m = 0.3 . Red: b = 2.5 , m = 0.3 . 
Blue: b = 1.6 , m = 0.3 . Other 
parameters are: n = 5 , d1 = 0.1 , 
and d2 = 0.5

0 0.05 0.1 0.15 0.2
-0.2

0

0.2

0.4

0.6

0.8

mutation probability

sp
ee

d



	 Theoretical Ecology

1 3

the speed significantly. A further increase in mutation 
probability only leads to an increase in the short type at 
the edge, and hence a slowing down. The abrupt increase 
in spread rate with mutation probability could be another 
indicator of bistability in the system (see above). To test 
this possibility, we ran simulations with mutation prob-
ability high enough to give the long type an advantage 
(here � = 0.02 ) until the wave profile was established. 
Then we reduced the mutation probability to where the 
above simulations indicate a slow overall spread rate (here 
� ≤ 0.01 ). Instead of the wave slowing down, we observed 
that it sped up and approached the speed of the long type 
in isolation as � → 0 (plots not shown). Hence, we have a 
second numerical indicator that we can have two different 
stable traveling wave solutions with different speeds for 
the same parameter set.

Effect of dispersal parameters

As the final aspect in this section, before we consider three 
and more different types, we investigate how the spread of 
two types depends on the dispersal parameters d1,2 . For all 
simulations so far, we had a constant ratio d2∕d1 = 5 . We 
now choose dispersal parameters di = 0.05, 0.1, 0.2,… , 0.6 
and run simulations for each pair to compare the speed 
with and without mutation (Fig. 8). Positive values indi-
cate that the speed with mutation is higher, i.e., that muta-
tion increases the spread rate; negative values indicate that 
mutation decreases speed. When the difference in dispersal 
parameter between the two types is large, then the shorter 
type outcompetes the other in the absence of mutation, so 
that including mutation increases the spread rate. When 
the difference in dispersal parameters is small, it depends. 
When both di are small, the long type has an advantage 
and dominates the population edge in the absence of muta-
tion, so that mutation slows the joint spread. When both di 
are large, the shorter type has the advantage and mutation 
speeds up the joint spread. The critical value between the 
two cases seems to be around di = 0.4 for the parameters 
chosen here.

Korolev (2015) obtains a related but somewhat differ-
ent result. In his work, the fitness of a mutant whose dis-
persal ability differs only slightly from the dominant type 
changes in a nonmonotone way and changes sign. When the 
Allee threshold is high, slower (but not too slow) mutants 
can invade, whereas when the Allee threshold is low, faster 
(but not too fast) mutants can invade. As mentioned in the 
introduction, Korolev (2015) uses adaptive dynamics and 
linearizes around a single-type traveling wave to calculate 
invasion fitness, whereas we consider both types to be ini-
tially present at the two-type steady state.

Multiple dispersal types

Model modifications

In this section, we generalize the model to more than two 
dispersal types while keeping all other assumptions in place. 
We pick dispersal parameters

and denote the frequency of females (males) with disper-
sal parameter di by fi ( mi ). The total number of female 
(male) individuals with dispersal parameter di is Fi = Ffi 
( Mi = Mmi ), where the total number of female (male) indi-
viduals is F (M), as before. Also as before, since there is 
no assortative mating with respect to dispersal distance, 
the pair formation process depends only on the total num-
ber of females and males. Hence, P = P(F,M) is the total 
number of pairs formed according to (1) and (2), depend-
ing on whether F = M (locally) or not. The total number 
of offspring produced is bP(F, M) and the sex ratio is 
1/2. The maximum number of offspring supported by the 
environment is n. Hence the number of female offspring 
equals the number of male offspring and is again given by 
1

2
min{bP(F,M), n}.
In the absence of mutation, offspring inherit their trait 

value from either parent with equal probability. Hence, 
the probability that an offspring has trait value i is simply 

d1 < d2 < ⋯ < dk
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Fig. 8   Results of pairwise simulation runs for two dispersal types 
with different dispersal parameters di . The heatmap shows the differ-
ence of the speed with mutation and the speed without mutation. Pos-
itive values indicate that the speed with mutation is higher. Param-
eters are b = 2.5 , n = 5 , � = 1 , � = 0.05 , m = 0.1 . The simulations 
ran for 1000 generations, except the case d1 = 0.4 and d2 = 0.5 where 
more generations were necessary for the short type to exclude the 
long type and establish the spread rate. Only the values for d2 ≥ d1 
are shown; the situation is symmetric
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1

2
(fi + mi) . We assume that this value changes with mutation 

probability � ∈ (0, 1) . We consider simple nearest neighbor 
mutations only. Hence, an offspring that has inherited trait 
value i will switch to trait value i ± 1 with probability �∕2 , 
as long as i ≠ 1, k . For offspring who inherit the smallest 
or largest trait value, there are several options. We pick the 
simple case that all mutations from the lowest (highest) trait 
go to the next higher (lower) trait. If we write the vector 
of trait distributions � = (f1,… fk) , then the next-generation 
distribution of traits is obtained from the current distribution 
via matrix multiplication �next = A� , where

With this choice, the stationary distribution is propor-
tional to [1∕2, 1,… , 1, 1∕2].

We observe that just like in the case of two trait values, 
the numbers of female and male individuals after a reproduc-
tion event are the same (i.e., F = M ), as are their distribu-
tions with respect to trait value (i.e., fi = mi for all i). Hence, 
it is again sufficient to track females in our model.

Comparison to results with two types

Our model now has too many parameters to explore every 
possible behavior by simulations. Instead, we show that 
many of the mechanisms that led to the qualitative results 
with two types carry over to multiple types. First, we note 
that when there is no mutation ( � = 0 ), then all our simula-
tions showed that there is eventually only one type leading 
the front. If the difference in dispersal parameter are small, 
two or more types can coexist in long transients (see above), 
but eventually one of them dominates the population edge. 
That type then determines the asymptotic speed of spread, 
namely the speed of this type in isolation. If there is no 
dispersal-induced mortality, all other types will eventually 
stop spreading. If there is dispersal-induced mortality, we 
observe again secondary invasions of types with lower dis-
persal parameter but higher effective reproduction. A type 
with lower dispersal parameter replaces the one with higher 
parameter but is itself replaced by another one with even 
lower parameter. On the other hand, if there is mutation 
( 𝜇 > 0 ), then all types are present at the leading edge and 
their densities converge to the nonspatial coexistence state 
behind the wave front. Hence, as was the case for two types, 
whether mutation speeds up or slows down spread comes 
down to comparing the speed set by a single type when 
� = 0 with the speed determined by all types when 𝜇 > 0 . 
We illustrate all these three behaviors in Fig. 9.

A =

⎡
⎢⎢⎢⎢⎢⎣

1 − � �∕2 0 … …

� 1 − � �∕2 0 …

0 �∕2 1 − � �∕2 ⋱

⋮ ⋱ ⋱ ⋱ �

0 0 0 �∕2 1 − �

⎤
⎥⎥⎥⎥⎥⎦

.

Which of the types dominates the population edge in the 
absence of mutation depends on all parameters and on the 
number of types present. Higher values of b (number of off-
spring) and n (carrying capacity) favor types with higher 
dispersal parameter; higher values of m (dispersal-induced 
mortality) favor types with lower dispersal parameter. In 
fact, by varying any one of these parameters, one can select 
which of the types will dominate the population edge in the 
absence of mutation.

When a lower (higher) dispersal type dominates the popu-
lation edge in the absence of mutation, including mutation 
speeds up (slows down) spread. One example with varying 
mortality is shown in Table 1. For large dispersal mortality, 
types 1 or 2 dominate the population edged, and mutation 
speeds up spread. When there is no mortality, type 4 domi-
nates the population edge and mutation slows the spread. 
Surprisingly, at intermediate values, type 3 dominates the 
population edge without mutation, and mutation can either 
increase or decrease the speed. In both cases, mutation will 
allow lower and higher dispersal types to persist, but since 
higher dispersal also carries higher mortality, the outcome 
depends on a trade-off and is difficult to predict.

Similar results arise when varying parameters b or n inde-
pendently. Increasing the number of types within a given 
range tends to produce longer transients where multiple 
types are present at the leading edge in the absence of muta-
tion. The overall qualitative results, however, do not change.

Discussion

Predicting the speed of invasion or range expansion is of 
fundamental importance for ecosystem management, yet 
the interplay between concurrent ecological and evolu-
tionary processes makes the prediction of invasion speeds 
difficult (Phillips 2015). We studied how mutation (one 
mechanism for evolutionary change) affects the rate of 
population spread. We studied the case of an Allee effect 
in part because Allee effects are ubiquitous in nature and 
have their greatest effect at low population densities that 
arise at an invasion front, and in part because the two (very 
different) studies that had previously challenged the con-
ventional wisdom that “evolution speeds up invasions” 
both include an Allee effect. For a concrete mechanism, we 
chose a mate-finding Allee effect. We developed an inte-
grodifference equation model with two sexes and two types 
(short- and long-distance dispersers, later extended to mul-
tiple types). We found that, in the absence of mutation, 
one type comes to dominate the population edge: the long 
type dominates when fecundity (b) and/or local carrying 
capacity (n) are high and the short type dominates when 
b and/or n are small. Mutation ensures that all types are 
present at the invasion front. Consequently, mutation tends 
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to slow spread when the long type dominates the edge in 
absence of mutation, and mutation speeds up spread when 
the short type dominates the edge in absence of mutation. 
Furthermore, adding dispersal mortality induces a trade-
off and increases the region of b-n parameter space where 
the short type is favored at edge (and thus where mutation 
speeds up spread).

Our model is closely related to the work by Shaw and 
Kokko (2015), who used an individual-based model and a 
complicated dispersal process where the probability of an 
individual to move and to stop moving depends on the den-
sity of other individuals of the same and opposite sex. They 
had shown that mutation can slow down invasions, contrary 
to previous theoretical findings. Our result shows that this 
slowing down does not require a complicated dispersal pro-
cess but can happen with simple density-independent disper-
sal as well. Korolev (2015) had also concluded that “evolu-
tion can slow down an invasion” in the presence of an Allee 
effect. His work is based on separation of ecological and 
evolutionary time scales in that he shows that under certain 
conditions, a mutation to a slower disperser can successfully 
invade at a traveling wave of a single type. In contrast to this 
work, our work does not assume a separation of time scales 
and an initially low density of a mutant population. Instead, 
we have two or more types present at equilibrium densities 
in a confined region in space and observe how their interac-
tion is organized as they all begin to spread in space.
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Fig. 9   Simulation outcomes for five types. Top left: without mutation 
( � = 0 ) and in the absence of mortality ( m = 0 ), an intermediate dis-
persal type takes over the front edge ( d = 0.4 , green). Shorter types 
are stalled ( d = 0.1 , black, and d = 0.2 , blue) or declining ( d = 0.3 , 
red), just as the longer type ( d = 0.5 , magenta). They will eventually 
stall as well. Top right: Without mutation but with dispersal-related 
mortality ( m = 0.02 ), an intermediate type controls the edge ( d = 0.3 , 

red) but a slower type ( d = 0.2 , blue) replaces it, only to be replaced 
by an even slower type ( d = 0.1 , black). The longer types are elimi-
nated. Bottom: With mutation ( � = 0.05 ), all five types are present at 
the front and spread with a joint speed (colors and dispersal param-
eters as in the other two plots). In the top row, densities are plotted 
every 50 generations from 1050 to 1200. The bottom shows the pro-
file at generation 1050. Parameters are: b = 2 , n = 5 , � = 1

Table 1   Outcomes of spread simulations with 5 types ( dk = 0.1 ∗ k ) 
with varying dispersal-induced mortality m. The second row indicates 
which type wins (dominates the population edge) in the absence of 
mutation. The third row has the corresponding speed. The last row 
has the speed with mutation ( � = 0.05 ). Other parameters are b = 2 , 
n = 5 , and � = 1 . Simulations were run for 1200 generations to cap-
ture possibly long transients

m 0.1 0.05 0.02 0.01 0
winning type 1 2 3 3 4
speed without mutation 0.137 0.194 0.239 0.241 0.280
speed with mutation 0.181 0.204 0.234 0.243 0.250
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This brings us to an important point. The statement that 
“evolution speeds up invasions” is not only too general to be 
true (because there are so many evolutionary mechanisms 
that could be at work), it also depends on how changes in 
spread rate are measured. The results arising from reaction-
diffusion equations state that the population structured by 
dispersal rate spreads faster than an unstructured population 
whose dispersal rate is the average trait value (Bénichou 
et al. 2012; Bouin et al. 2012). But Fig. 3a in Bénichou et al. 
(2012) also shows that the asymptotic speed of the structured 
population is a decreasing function of mutation rate (at least 
for the range of values shown). The mechanism that they 
identify for this decrease is the same that we found: as the 
mutation rate increases, the trait distribution at the leading 
edge goes from being heavily to only moderately skewed 
towards high dispersal rates, so that the overall spread rate 
slows. In fact, as the mutation rate becomes very high, the 
trait distribution flattens to a uniform distribution and the 
overall speed approaches that of the unstructured popula-
tion with mean trait value (Bénichou et al. 2012). From this 
point of view, an Allee effect does not seem necessary for 
“evolution to slow invasions”.

Spatial sorting is a fundamental phenomenon when a 
spreading population can evolve (Miller et al. 2020). It can 
happen in the presence (Bénichou et al. 2012) or absence 
(Ramanantoanina et al. 2014) of mutations. In the absence 
of an Allee effect, faster dispersers tend to be found at the 
leading edge of a population, where they tend to mate with 
other fast dispersers, so that the offspring is, again, likely 
to be a fast disperser. As mutations occur, some of the fast-
disperser parents will have slower disperser offspring, which 
then slows the overall invasion. Spatial sorting occurs in our 
model as well, but it is not necessarily the fastest disperser 
that accumulates at the leading edge. Because of the Allee 
effect, the density of the long type might be too far below 
the Allee threshold to produce enough offspring, and a short 
type might take over the leading edge; see Fig. 3. Once the 
short type dominates the leading edge, the mate-finding 
Allee effect prohibits the long type to break through and 
take the lead. In that sense, and in a curious turn of events, 
one could say that an Allee effect is necessary for muta-
tion to speed up an invasion. But as mentioned above, this 
statement is also too general to be true and depends on how 
one measures changes in speeds. It does not apply for the 
approach by Korolev (2015).

Our model makes a number of assumptions that could 
be changed in future work to explore their effects. First we 
assume haploidy and a single locus; future models could 
explore the effects of diploidy and/or multiple loci with 
recombination. We expect that these changes would per-
haps dampen the effect of mutation (since both diploidy 
and recombination serve to shuffle heritability, like muta-
tion does), but would not qualitatively change our results. 

Second, our model assumes that competition happens at 
birth (pre-dispersal); future extensions could explore the 
effect of competition after dispersal. This change could 
potentially change which dispersal type dominates the pop-
ulation edge. Finally, our model abstracts much of the dis-
persal process of the individual-based model by Shaw and 
Kokko (2015). It is a future challenge to include increasingly 
more details of their model (e.g., density-dependent and con-
ditional dispersal) into the integrodifference model and com-
pare, at each stage, how similar or different the two models 
behave. We expect our core results (that mutation can lead to 
faster or slower spread) will hold, but that where these out-
comes occur in parameter space will depend on the details 
of dispersal; thus potentially explaining the discrepancies 
between our results and those of Shaw and Kokko (2015).

We made two intriguing mathematical observations that 
warrant more detailed investigation in future work. First, 
the joint speed of two types with mutation was always 
bounded between the speeds of either type in isolation. In 
other words, we did not see an anomalous speed in the sense 
of Weinberger et al. (2007) or Keenan and Cornell (2021). 
Since such an anomalous speed requires some trade-off 
between long-distance dispersal and reproduction success 
(Lutscher 2019), and since long-distance dispersal does 
not confer an advantage when there is a mate-finding Allee 
effect, it seems plausible that anomalous speeds would not 
appear here. Future work should prove this analytically. Sec-
ond, we have strong numerical evidence for nonuniqueness 
of a traveling wave profile and speed, but no mathematical 
proof. Given that each type in isolation can spread at some 
given speed (which is unique because of the Allee effect), it 
is tempting to think of a perturbation argument that a small 
amount of mutation would lead to a joint spread with a speed 
close to the individual speed from which the perturbation 
occurred. Clearly, an Allee effect would be necessary for 
nonunique speeds since cooperative (Lui 1989) and mixed 
systems that are cooperative near zero (Girardin 2017) have 
a unique speed of propagation.

What implications do our findings have for biological 
applications? First, and probably foremost, is the insight 
that general statements on evolution speeding up or slow-
ing down spread are to be taken cautiously. There are many 
evolutionary processes that act in different ways. Mutation 
is one of them and it acts simultaneously to change traits in 
the population over time, while also disrupting the effects 
of other evolutionary processes (e.g., selection). Another 
concept that relates mutation with slowing the speed of 
spread is that of mutational load, i.e., the accumulation of 
deleterious mutations over time; see Miller et al. (2020) and 
references therein. Our model does not keep track of muta-
tion accumulation, and our results show that mutation can 
decrease or increase speed of spread. It will be interesting to 
combine models for mutation accumulation with our ideas 
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and consider the joint effect on the speed of spread. We 
also found that initial conditions are important in shaping 
which type dominates at the edge. This finding provides one 
potential explanation for why invasions into new regions are 
so hard to predict. Our study of the multiple-trait model con-
centrated on which of the features from the two-trait model 
extend to multiple traits, but was by no means a complete 
investigation of that case. It would be interesting to eventu-
ally consider a continuum of traits, similar to the reaction-
diffusion models.
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