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1 Abstract16

Our ability to understand population spread dynamics is complicated by rapid evolution, which renders

simple ecological models insufficient. If dispersal ability evolves, more dispersive individuals may arrive at18

the population edge than less dispersive individuals (spatial sorting), accelerating spread. If individuals at the

low-density population edge benefit (escape competition), high dispersers have a selective advantage (spatial20

selection). These two processes are often described as forming a positive feedback loop; they reinforce each

other, leading to faster spread. Although spatial sorting is close to universal, this form of spatial selection22

is not: low densities can be detrimental for organisms with Allee effects. Here, we present two conceptual

models to explore the feedback loops that form between spatial sorting and spatial selection. We show that24

the presence of an Allee effect can reverse the positive feedback loop between spatial sorting and spatial

selection, creating a negative feedback loop that slows population spread.26
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2 Introduction

Since ‘nothing in biology makes sense except in the light of evolution’ (Dobzhansky, 1973), it is somewhat28

surprising that we are still grappling with understanding how evolution plays out in ecological contexts like

population spread (Phillips, 2015; Miller et al., 2020). In spreading populations, evolution can take the form30

of four processes, each with a parallel to the four typical evolutionary processes. First, under gene surfing,

akin to genetic drift in a non-spreading population, stochastic events at the typically low-density edge of the32

population lead to some alleles reaching high frequency by chance, as the population spreads (Edmonds et al.,

2004; Klopfstein et al., 2006). Second, under spatial sorting, akin to gene flow by phenotype, individuals sort34

by dispersal phenotype within a population, because more dispersive individuals are more likely to arrive at

the population edge and thus mate with other highly dispersive individuals (Cwynar & MacDonald, 1987;36

Shine et al., 2011). Third, under spatial selection, akin to natural selection, selection can vary spatially e.g.

if individuals at the low-density population edge experience a reproductive benefit compared to individuals38

at the high-density population core (Phillips et al., 2008). The fourth process, mutation, acts just as it

would in a non-spreading context. Currently, we are grappling with how these processes interact: when and40

how feedbacks occur, under what conditions one process might override another, and when each process acts

most strongly (Miller et al., 2020).42

A widespread outcome across theoretical and empirical studies is that spatial sorting and spatial selection

can interact to promote faster population spread (Phillips et al., 2008; Perkins et al., 2013; Kubisch et al.,44

2013; Williams et al., 2016; Ochocki & Miller, 2017). Under spatial selection, if individuals experience a

selective benefit by escaping competition at low density (and population density varies spatially across the46

range), then selection varies spatially, which favors individuals that arrive at the low-density population edge

(Travis & Dytham, 2002). Under spatial sorting, more dispersive individuals are more likely to arrive at a48

population’s edge (purely by their tendency to travel further) than less dispersive individuals (Cwynar &

MacDonald, 1987; Hanski et al., 2002). The most dispersive individuals at the population edge will tend50
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to mate with each other (Olympic Village effect; Phillips et al. 2008), which could in turn generate novel

phenotypes that are even more dispersive (Shine et al., 2011). Thus, acting together, spatial sorting and52

spatial selection can form a positive feedback loop: more dispersive individuals arrive at the population edge

where they have a selective advantage. This feedback loop favors increasingly dispersive individuals and54

leads to faster population spread (Phillips et al., 2008). However, this logic relies on the assumption that

organisms benefit from being at the low density edge of the population. What if this is not the case?56

Being at low population density is not always the paradise it seems, in that individuals may not always

experience an overall benefit at low density. For example, difficulty finding mates, reduced facilitation,58

increased inbreeding, loss of heterozygosity, and increased demographic stochasticity are all widespread

costs of low density (Courchamp et al., 1999; Gascoigne et al., 2009). Each of these mechanisms can lead60

to an Allee effect, where per capita growth decreases at low density, which can translate into an increased

chance of local extinction at the population level (Stephens & Sutherland, 1999). In the case of a strong62

Allee effect, there is a threshold population density, the Allee threshold, below which population growth is

negative. Models of spatial spread that have included Allee effects have found that the presence of an Allee64

effect can slow population spread compared to its absence (Travis & Dytham, 2002) or even reverse the

effect of de novo evolution on spread, favoring individual dispersal that causes slower population spread over66

time (Shaw & Kokko, 2015), by disfavoring individuals that are at low density (Korolev, 2015). However,

how Allee effects interact with spatial sorting, and under what conditions an Allee effect may be sufficiently68

strong to override accelerating effects of spatial sorting on spread, remains an open question (Miller et al.,

2020).70

Here, we show how the presence of an Allee effect can flip the positive feedback loop between spatial

sorting and spatial selection into a negative feedback loop. To illustrate our point, we develop a pair of72

conceptual models and use them to explore scenarios with and without spatial sorting. We find that if the

Allee threshold is sufficiently small, spatial sorting and spatial selection interact via a positive feedback loop74
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to speed up population spread. However, if the Allee threshold is sufficiently large, these two processes create

a negative feedback loop: spatial sorting pushes higher dispersers to the population edge, where they are76

selected against by the Allee effect, thus slowing population spread. In this case, populations spread slower

in the presence of spatial sorting than in its absence.78

3 Methods

Here we consider a population-based model in continuous one-dimensional space x and discrete time t (years)80

which tracks the density of individuals with dispersal strategy i as ni(x, t). The processes of dispersal and

growth occur sequentially within each year. For simplicity, we focus on evolution from standing variation,82

and ignore de novo evolution via mutation or recombination. Below, we provide a description of the general

model framework, and then details about the two implementations that we considered: simulations of the84

full model, and an analytic approximation of the model.

3.1 Framework86

Dispersal occurs according to a dispersal strategy i with i = 1, ..., τ . A fraction pi of the individuals with

dispersal strategy i disperse while the remaining fraction (1−pi) stay in place. Dispersing individuals follow88

the same dispersal kernel, k, which gives the probability of traveling from a location y to a location x. We

assume that the kernel is symmetric and denote by v its variance. A proportion µ of all dispersing individuals90

die.

Growth is density-dependent with an Allee effect. The density-dependence part of the growth function92

is given by

g(N) =


0, if N(x, t) < a

b
b+N(x,t) , otherwise

(1a)94
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where96

N(x, t) =

τ∑
i=1

ni(x, t) (1b)

98

is the total number of individuals in location x in year t, a is the Allee threshold, and b is a density-dependence

parameter.100

We considered two scenarios for determining newborn dispersal strategy: with and without evolution

via spatial sorting. For simulations with spatial sorting, offspring inherit their parent’s dispersal strategy102

exactly. Thus, the number of individuals after growth (offspring are born, parents die) is given by

f(ni, N) = λg(N)ni(x, t) (2a)104

where λ is the growth rate. This scenario results in a gradient of dispersal strategies across the population,106

with more dispersive strategies (high pi) at the population edge and less dispersive strategies (low pi) at the

core – i.e., spatial sorting. For simulations without spatial sorting, offspring inherit a dispersal strategy from108

a uniform distribution, so the number of individuals is given by

f(N) =

(
1

τ

)
λg(N)N(x, t) . (2b)110

This scenario results in no gradient of dispersal strategies across the population; all locations have the same112

even distribution of dispersal strategies – i.e., no spatial sorting.

Concatenating the processes of growth and dispersal, the population density next year (t+1) is given by114

the integrodifference equation

ni(x, t+ 1) = (1− pi)f
(
ni(x, t)

)
+ pi(1− µ)

∫ ∞

−∞
k(x− y)f

(
ni(y, t)

)
dy (3)116

for each strategy i.
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3.2 Simulation approach118

First, we ran numerical simulations of the full model. We used a Laplace dispersal kernel

k(x− y; v) =
1√
2v

exp

[
−
√

2(x− y)2

v

]
(4)120

and initialized each simulation with individuals present only in the center of space (ni(x, t) = 1 for i = 1, ...τ ,122

|x| < 0.5; 0 otherwise). By scaling space and density, we can fix parameters b and v without losing generality

of the results. We iterated the model forward 150 years (t = 150), recording the population density at124

each year (t) over space (x). To quantify the population spread rate, we first found the location of the

population edge (the farthest point where the population density exceeded a threshold of 0.001) for each126

year t. Then, we took the difference in population edge location from one year to the next as the spread rate.

We held most parameters constant (see Table S1 for all model variables, parameters and default values for128

simulations), and varied two parameters: the Allee threshold (a) and the dispersal mortality (µ). For each

parameter combination we ran one simulation with spatial sorting (offspring inherit their parent’s dispersal130

strategy) and one without spatial sorting (offspring inherit a dispersal strategy from a fixed distribution)

and compared the results.132

3.3 Analytic approximation

Second, we derived an analytic approximation of the model that is explicitly solvable. We summarize our134

approach here and give details in the Supporting Information. The approach is based on a separation of time

scales. Without spatial sorting, we have only two time scales. We assume that reproduction is fast compared136

to dispersal. Then the population density in the next year is at carrying capacity (resp. at extinction) if it is

above (resp. below) the Allee threshold in the current year (Kot et al., 1996). Combined with the non-sorting138
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scenario that offspring traits are uniformly distributed, we obtain the growth function

f(N) =


0, if N < a

1/τ, otherwise

(5)140

for the integrodifference equation (3). (The carrying capacity is scaled to unity.)142

The spreading behavior of this model can be analyzed completely (Lutscher, 2019). The population will

spread if the average dispersal strategy p̄ =
∑

pi/τ satisfies p̄(1 − µ) > 2a, and the spread rate c∗ is given144

implicitly by

F (c∗) = 1− a

p̄(1− µ)
, (6)146

where F is the cumulative density function of k.148

In the case with spatial sorting, we only consider two types for simplicity (τ = 2). We assume that

competition happens at an intermediate time scale: slower than reproduction but faster than dispersal.150

When dispersers spread from the current extent of the range, three zones emerge. Behind is the current

extent of the range, whereas far ahead is the region where the total disperser density is below the Allee152

threshold. In between is the newly occupied region where the density is above the Allee threshold. In the

far ahead region, the population density is zero in the next year because of the Allee effect. In the current154

extent, we consider a “winner takes all” competition where the lower disperser eventually wins because it

does not move as much. In between, the total population reaches carrying capacity while the ratio of the two156

types corresponds to the ratio of the dispersers in this region. For this model, we can derive equations for the

length of the in-between zone and the frequency of the high disperser there (see Supporting Information).158

4 Results

First, imagine the case of a population with no Allee effect (a = 0) and no dispersal mortality (µ = 0), and160

where all individuals disperse (p = 1), shown in Figure 1 (dashed line) in year t = 0. In the next year (t = 1),
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in the absence of other factors, the population would spread further under a more dispersive strategy than162

under a less dispersive one (Figure 1, dark grey solid line vs light grey solid line). However, in the presence

of an Allee effect, the low-density edge of the population is not viable; the edge of the viable population164

is defined by where the Allee threshold (Figure 1 horizontal dotted lines) intersects the population density

(Figure 1 solid lines), marked in Figure 1 by the vertical dotted lines. For a small Allee threshold (alo) the166

population edge (elo) will occur where the more dispersive type is most abundant. In contrast, for a large

Allee threshold (ahi) the population edge (ehi) will occur where the less dispersive type is most abundant.168

Dispersal mortality has a similar effect: more dispersive types by definition more often suffer from mortality

during dispersal, which reduces their density at the population edge. Thus, dispersal mortality, by lowering170

the population density, alters where the population density edge intersects the Allee threshold. Overall then,

the combination of the Allee threshold (a) and dispersal mortality (µ) determine where the population edge172

occurs.

Over time, one of two outcomes occurred in simulations with spatial sorting. When the population edge174

occurred where a more dispersive type was abundant (e.g., low enough µ for a given a), the most dispersive

strategies became more abundant on the population edge (Figure 2a-c). But when the population edge176

occurred where a less dispersive type was abundant (e.g., high enough µ for a given a), the most dispersive

strategies were removed from (selected out of) the population (Figure 2d-f). Thus, although the most178

dispersive individuals were always pushed to the population edge (via spatial sorting), these individuals were

favored at the edge only under some conditions.180

Which dispersal strategy was favored at the simulated population edge in turn scaled up to affect how fast

the population spread (Figure 3). When higher dispersal strategies were favored at the edge, spatial sorting182

accelerated invasions, leading to faster spread than simulations without spatial sorting (Figure 3a). However,

when lower dispersal strategies were favored at the edge (and higher dispersal strategies were removed from184

the population), spatial sorting decelerated invasions and led to slower spread than simulations without
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spatial sorting (Figure 3b).186

Which pattern emerged in simulations was determined by the specific values of the Allee threshold a and

dispersal mortality µ. Simulations with (Figure 4a) and without (Figure 4b) spatial sorting both spread188

fastest for small Allee thresholds and low dispersal mortalities. In cases where a and µ were sufficiently low,

more dispersive individuals were favored at the edge and population spreads faster with spatial sorting than190

without (Figure 4c-d). However, for slightly larger values of either a or µ, more dispersive individuals were

disfavored at the edge and the population spread slower with spatial sorting than without (Figure 4c-d).192

Finally, if either a or µ were too big, the population did not spread (white regions in Figure 4). Thus, spatial

sorting slowed down population spread on the ‘edge of extinction’ (Figure 4), i.e., when the population was194

on the edge of not being able to spread at all. However, in the absence of an Allee effect (a = 0), simulations

with spatial sorting always spread faster. Our simulated results are quite robust: changing the number of196

dispersal strategies (τ), the type of dispersal kernel used (k), or initial conditions does not qualitatively

change our results (Supporting Information Figure S1).198

Our analytic results match these simulated results. When the population is close to extinction, the spread

rate without spatial sorting is higher, but when the population is far from extinction, the spread rate with200

spatial sorting is higher (Figure 5). Thus, the comparison of the analytic spread rates with and without

spatial sorting (Figure 5) shows the same pattern as with the simulation model (Figure 4c).202

5 Discussion

Here we show that spatial sorting (of individuals by dispersal type) and spatial selection (with an Allee204

effect) combine in a feedback loop that can act either to accelerate or decelerate population spread; this

finding contrasts with the current narrative in the literature of spatial sorting only as an accelerator of206

population spread. Specifically, we find that this feedback loop leads to slower population spread (compared

to simulations without spatial sorting and thus without a feedback loop) only when there is a large enough208
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Allee threshold (Figure 4d). Spatial sorting leads to an accumulation of higher dispersers on the population

edge, where they are unable to survive (due to the Allee effect) and are removed from the population, thus210

causing the overall rate of population spread to slow down over time. These results answer the recent call

by Miller et al. (2020) for theory to understand under what conditions Allee effects override positive effects212

of spatial sorting on dispersal.

Our findings provide important nuance to the interaction between spatial sorting and spatial selection214

that was overlooked by past theory. Indeed, existing models of dispersal evolution during population spread

have often assumed no Allee effects (Phillips et al., 2008; Travis et al., 2009; Burton et al., 2010; Bénichou216

et al., 2012; Deforet et al., 2019) despite their ubiquity in biological populations. Consistently building models

with same assumptions limits our ability to understand biological phenomena (Shaw, 2022); a diversity of218

modeling assumptions brings greater understanding than each alone can provide (Levins, 1966). As a result

of the theory, we have ended up with a framing in the literature that faster population spread will always220

arise either from spatial sorting alone or in the feedback loop formed with spatial selection. Moving beyond

this narrow view requires separately considering the processes of spatial sorting and spatial selection and the222

diversity of ways they can combine in feedback loops.

We suggest that a broader definition of ‘spatial selection’ be adopted, based on our findings. To date,224

spatial sorting has been used as meaning that selection benefits individuals at the low-density edge of the

population. The logic here is that individuals benefit at low density, population density varies spatially,226

and so selection varies spatially. With an Allee effect, selection no longer benefits low-density individuals.

However, since Allee effects are felt most acutely at low density, and population density varies spatially,228

Allee effects should thus be considered a form of spatial selection, although in the opposite direction of that

traditionally considered in the literature. Thus, we argue that it is more intuitive to define spatial selection230

broadly as cases where selection varies spatially, regardless of in which direction.

Our results also tie in to past theory on life history tradeoffs and spreading populations. We find that232
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spatial sorting slows population spread when being at the low-density population edge is sufficiently bad for

individuals (i.e., a high Allee threshold). One could also imagine that spatial sorting might slow population234

spread if getting to the low-density edge is sufficiently costly. This could be captured by a mortality cost

to dispersal (as in our model); the process of dispersal itself is costly, in terms of energy, time, risk, and236

opportunity (Bonte et al., 2012). The costs of dispersal can scale with distance traveled, such that dispersing

further comes with higher cost (Rousset & Gandon, 2002; Johnson et al., 2009). Alternatively, this could be238

captured by a tradeoff between dispersal and other life history traits like fecundity and competitive ability

(as in Burton et al. 2010; Deforet et al. 2019; Ochocki et al. 2020).240

Intriguingly, the outcome that spatial sorting and spatial selection can slow the rate of population spread

has not, to our knowledge, been reported in any empirical study (Miller et al., 2020). There are several242

reasons why this may be the case. First, survivorship bias: if evolutionary processes substantially slow down

an invasion, they may prevent the population from spreading altogether. Failed invasions are a common244

outcome that we still are unable to understand or predict. Indeed, in our model we were most likely to see

that spatial sorting slowed down populations that were already spreading quite slow and near the ‘edge of246

extinction’; perhaps empirical systems are pushed over this edge by other factors. Second, parameter values

for lab systems. All lab studies that have disrupted spatial sorting directly have found that doing so slows248

down population spread (Williams et al., 2016; Ochocki & Miller, 2017; Szűcs et al., 2017; Weiss-Lehman

et al., 2017). Most of these systems used have ‘weedy’ life histories and thus reside far from the ‘edge of250

extinction’ and in parameter space where spatial sorting should indeed typically speed up spread. Similarly,

many of the sources of dispersal mortality present in field conditions (e.g., predation) are absent from lab252

systems. Third, mechanisms: it is challenging to control for de novo mutation in field studies; a factor we

excluded from our model. Our results suggest that if spatial sorting can indeed slow down population spread254

in empirical systems, it would do so in those that have slower growing life histories, a large Allee threshold,

and/or high dispersal mortality.256
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Spatial sorting may indeed be close to universal, but it will not always lead to faster invasions over time

when combined with spatial selection, as we show here. Our focus has been evolution from standing variation;258

future theory is needed to understand how the feedback loops between spatial sorting and spatial selection are

affected when mutation is included and there is de novo evolution. Future empirical work targeting systems260

with Allee effects and high dispersal mortality are needed to determine whether evolutionary feedbacks that

lead to slower spread are seen in empirical systems. Finally, we call for future studies to consider spatial262

selection as capturing the idea that selection can vary spatially across a population, rather than just the

idea that selection favors individuals at the low-density population edge.264
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Figure 1: Schematic showing the how the Allee effect shapes the population edge. The dashed line shows

population distribution in year t = 0, and the solid lines shows what the population distribution would be in

year t = 1 under two different dispersal strategies, a higher dispersal probability (p = 0.9, dark grey) and a

lower dispersal probability (p = 0.6, light grey). The Allee threshold a (horizontal dotted lines) determines

the edge of the viable population e (vertical dotted lines). Two scenarios are shown: for Allee threshold alo,

high dispersers are more abundant at the population edge elo, but for Allee threshold ahi, low dispersers are

more abundant at the population edge ehi. Both have no dispersal mortality (µ = 0).
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Figure 2: Simulations. Two examples of how the distribution of dispersal strategies (shown immediately

after dispersal) across space changes over time (t = 1, 5, 10) for simulations with spatial sorting with Allee

threshold a = 0.02 and (a-c) low dispersal mortality (µ = 0.2) and (d-f) high dispersal mortality (µ = 0.4).

Colors indicate the fraction dispersing from 0.1 (yellow) to 1 (dark blue).

19



0 50 100 150

time

0

0.05

0.1

0.15

0.2

0.25

0.3

s
p

e
e

d

with

without

0 50 100 150

time

0

0.05

0.1

0.15

0.2

0.25

0.3

s
p

e
e

d

a)

b)

Figure 3: Simulations. The instantaneous rate of population spread over time for simulations with (light

grey) and without (dark grey) spatial sorting for two cases, where the presence of spatial sorting (a) speeds

up spread and (b) slowing down spread. Parameters: a = 0.02, (a) µ = 0.2 and (b) µ = 0.4.
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Figure 4: Simulations. The rate of population spread for simulations (a) with and (b) without spatial sorting,

as a function of dispersal mortality (µ; x-axes) and Allee threshold (a; y-axes); white regions indicate where

the populations failed to spread. The (c) difference in spread rate for simulations with spatial sorting minus

without spatial sorting, and (d) the overall effect of spatial sorting on spread rate.
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Figure 5: Analytic. The analytic difference in spread rate with spatial sorting minus without spatial sorting.

Negative values indicate that spread rate without spatial sorting is faster. Parameters are p1 = 0.6, p2 = 0.7

and v = 0.25, which gives b =
√

v/2 ≈ 0.35355.
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Supporting Information
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Figure S1: Caption on the next page.
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Figure S1: (Previous page.) Parameter variants – same as Fig. 4c-d but with different parameter values.

The (left column) difference in spread rate for simulations with spatial sorting minus without spatial sorting,

and (right column) the overall effect of spatial sorting on spread rate, as a function of dispersal mortality

(µ; x-axes) and Allee threshold (a; y-axes). White regions indicate where the populations failed to spread.

In the right column, yellow indicates where spatial sorting speeds up spread, teal indicates where spatial

sorting slows down spread. Parameters: (a-b) half as many dispersal types (τ = 5), (c-d) twice as many

dispersal types (τ = 20), (e-f) a different (gaussian) dispersal kernel, (g-h) different initial conditions: skewed

towards the lowest dispersal type n1(x, t) = 5 and ni(x, t) = 5/9 for for i = 2, ...τ , |x| < 0.5; 0 otherwise,

(i-j) different initial conditions: skewed towards the highest dispersal type n10(x, t) = 5 and ni(x, t) = 5/9

for for i = 1, ...τ − 1, |x| < 0.5; 0 otherwise.
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Table S1: Model variables and parameters, meaning, and default values for simulations (where applicable).

Meaning Default

value

a Allee threshold varied

b density-dependence parameter 1

f growth function eqn. 1

g density-dependence function eqn. 2

i dispersal strategy i = 1, ..., τ

k dispersal kernel function eqn. 4

pi proportion of individuals with strategy i that dis-

perse

0 ≤ pi ≤ 1

v variance of dispersal kernel 0.25

t time (year) -

x space -

y space -

N population density -

λ growth rate 2

µ dispersal mortality varied

τ number of dispersal strategies 10
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Derivation and analysis of the analytical approximation344

In this section, we give a detailed derivation and description of the analytical approximation of our model,

and we present the analytical results.346

Spread models with Allee effect are notoriously difficult to analyze, and explicit results are almost never

available. A notable exception is the integrodifference model in Kot et al. (1996). The authors consider348

a step function to model the Allee effect: the population density in the next year is at carrying capacity

(resp. at extinction) if it is above (resp. below) the Allee threshold in the current year. Their model can be350

explicitly solved and the speed of a spreading population can be determined by using the cumulative density

function of the dispersal kernel (Lutscher, 2019). We begin by showing that the model by Kot et al. (1996)352

can be understood in terms of a time-scale separation and then use the ideas in Lutscher (2019) to calculate

the speed for our extended model.354

The case without spatial sorting

When the offspring dispersal strategy is uniformly distributed, independent of the parental strategy, the356

reproduction function f in the IDE Eq. (3) (main text) depends only on the total density N . We can rescale

Eq. (2b) to read358

f(N) =


1
τ

RN
1+(R−1)N/K N ≥ a

0 N < a,

(S1)

where a > 0 is again the Allee threshold, R is a growth rate and K the carrying capacity. We further scale

K = 1 and let R tend to infinity. Then the function becomes the step function360

f(N) =


1
τ N ≥ a

0 N < a,

(S2)

where a > 0 is still the Allee threshold.

We first study the IDE in Eq. (3) with step function in Eq. (S2) for a single type (τ = 1), which we362

denote by n = n1 = N . If all individuals disperse (p = 1), this is exactly the case in Kot et al. (1996);
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Lutscher (2019). It is useful to introduce the density after the reproduction phase, n̂ = f(n). This density364

satisfies the equation

n̂(x, t+ 1) = f((1− p)n̂+ p(1− µ)k ∗ n̂). (S3)

We use the shorthand notation ∗ for the convolution integral in (3).366

We begin with the step function n̂(x, 0), which is equal to 1 for x ≤ 0 and equal to zero for x > 0. We

calculate368

k ∗ n̂ = 1− F (x), (S4)

where F is the cumulative density function of k. In particular, F is a non-decreasing function, and, hence,

1− F is a non-increasing function. Therefore,370

ñ = (1− p)n̂+ p(1− µ)k ∗ n̂ (S5)

is also a non-increasing function. Hence, there exists a largest value x̃ where ñ(x) ≥ a. This implies that

n(x, t + 1) = f(ñ) is again a step function. Hence, if we start with a step function in one year, then the372

population density remains a step function in following years. It turns out that we can calculate how far

the front moves in one year (namely x̃), which is the precisely the speed that we are interested in (which we374

denote by c). The calculations are only a slight extension of those given when µ = 0 and p = 1 in Lutscher

(2019).376

Lemma 1 If

p(1− µ) > 2a (S6)

then there is a traveling wave with positive speed c (distance per year), which is given implicitly by378

F (c) = 1− a

p(1− µ)
, (S7)

where F is the cumulative density function of k. If (S6) is reversed, the population will not spread. In that

case, if (1− p) > a, the population will not retreat, i.e., there is a pinned wave of speed zero, otherwise the380

population will retreat in a wave with negative speed.
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The reasoning above extends directly to the case of two or more dispersal strategies (τ ≥ 2) with382

movement probabilities pi. We obtain the following result.

Lemma 2 If the average dispersal strategy p̄ = 1
τ

∑τ
i=1 pi satisfies384

p̄(1− µ) > 2a (S8)

then there is a traveling wave with positive speed c (distance per year), which is given implicitly by

F (c) = 1− a

p̄(1− µ)
, (S9)

where F is again the cumulative density function of k.386

For an explicit example, we consider the Laplace kernel in Eq. (4). Its cumulative density function for

x > 0 is F (x) = 1− 1
2 exp(−

√
2/v x). The explicit formula for the speed then becomes388

c =

√
v

2
ln

(
p̄(1− µ)

2a

)
. (S10)

We illustrate the profile of an advancing population with 10 types in Fig. S2.

Remarks.390

1. The statements in the two lemmas hold under very general assumptions on the dispersal kernel: it has

to be symmetric and integrable. It does not have to be exponentially bounded.392

2. As is usual with strong Allee effects, if the initial density of a population is too low and/or the initial

spatial extent is too small, then the population will not spread but go extinct. Here, we always choose394

initial conditions that spread spatially.

3. The two lemmas can be generalized considerably in that the different types can have different dispersal-396

induced mortality (i.e., we can replace µ by a different µi for each type). Another possible extension

is that rather than drawing the dispersal strategy from a uniform distribution, it can be drawn from398
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Figure S2: The advance of a population of ten types in one year. Strong colours show year t, weaker colours

show year t+1. The lowest density behind the front corresponds to the highest profile ahead of the front and

belongs to the strategy with the highest pi (here p10 = 1). The kernel is the Laplace kernel with v = 0.25.

The initial condition has each type uniformly distributed on [−1, 1]. The ten types have pi = i/10 for

i = 1, . . . , 10. Other parameters are µ = 0.2 and a = 0.02. The resulting speed is c = 0.848.
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any fixed distribution, i.e., a fraction mi of offspring has dispersal strategy i in each year. The only

change in the statement of Lemma 2 is that the average of pi is replaced by the weighted average of400

pi(1− µi) with weights mi.

The case with spatial sorting402

With spatial sorting, we have a third time scale, namely the competition between types. We first describe

the model assumptions verbally (see Figure S3), then we formalize it in equations. For simplicity, we consider404

only two types: a low disperser (red) and a high disperser (blue). Initially, both types are equally present

for x < 0 and absent for x > 0 (top panel, dashed profiles). After dispersal (top panel, solid curves), the406

higher disperser has the higher density ahead of the original population extent and the lower density behind.

The new extent of the population in year 1 (vertical line at c1) is given where the combined density of the408

two types exceeds the Allee threshold (second panel). Between the old and the new extent, the population

grows to carrying capacity immediately and the relative frequency of the two types after reproduction is410

the same as after dispersal (lottery competition). Throughout the old extent (x < 0), the lower disperser

(red line) wins the competition since fewer of its individuals disperse; see e.g. Perkins et al. (2016). After412

the subsequent dispersal phase, the high disperser has again the higher density ahead of c1 (solid curves,

third panel). As before, the combined density determines the new extent (c1 + c2) in year 2 (bottom panel).414

Behind c1, the low disperser takes over. In the newly occupied region between c1 and c1 + c2, the total

density is at carrying capacity whereas the frequency of the two types reflects that after dispersal.416

Before we formulate the above verbal description in mathematical terms, we make one more simplifying

assumption. To calculate the relative densities of the two types in the newly extended range, we take the418

relative density at the range edge as representative for the entire region (rather than taking it at every point

in the region). With this, we are ready to formulate equations.420

We denote the density of the low (high) disperser by n1(x, t) (n2(x, t)). The initial condition (dashed
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Figure S3: Schematic illustration of the model with spatial sorting for two types. In each panel, the solid

(dashed) lines represent the current (preceding) densities of the low (red) and high (blue) disperser. In the

first dispersal step, the population advances by c1 space units, in the second by c2. See text for details.
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lines, top panel, Fig. S3) are422

n1(x, 0) = n2(x, 0) =


1/2, x ≤ 0,

0, x > 0.

(S11)

After the dispersal phase (solid curves, same panel), the densities are given by

ni(x, 1) = (1− pi)ni(x, 0) + pi(1− µi)(1− F (x)), (S12)

where F is again the cumulative density function of the dispersal kernel (identical for both types) and ∗424

denotes the convolution integral. We calculate the new extent of the population exactly as before by finding

c1 such that426

n1(c1, 1) + n2(c1, 1) = a. (S13)

The new extent in the first year, c1, is given implicitly by

1− F (c1) =
2a

p1(1− µ1) + p2(1− µ2)
. (S14)

When k is the Laplace kernel, we have the explicit expression428

c1 =

√
v

2
ln

(
p1(1− µ1) + p2(1− µ2)

4a

)
. (S15)

The percentage of high dispersers in the first year at the population edge is

H1 =
n2(c1, 1)

n1(c1, 1) + n2(c1, 1)
. (S16)

After the reproduction phase, the high disperser is present only in the new extent, whereas the low disperser430

has taken over the previous extent and is proportionally present in the new extent (solid lines, second panel).

This can be expressed by using the indicator function χ(a,b] (which is equal to 1 on (a, b] and zero elsewhere)432

as

f(n1(x, 1)) = χ(−∞,0] + (1−H1)χ(0,c1], f(n2(x, 1)) = H1χ(0,c1]. (S17)
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Now we look at the next dispersal phase. We only need to calculate the densities at locations x > c1 to

determine the advance in the second year, c2. We find

n1(x, 2) = p1(1− µ1)(1− F (x)) + p1(1− µ1)(1−H1)(F (x)− F (x− c1)),

n2(x, 2) = p2(1− µ2)H1(F (x)− F (x− c1)).

From these expressions, we calculate the new extent, c1 + c2, and the fraction of high dispersers in the new434

extent, H2 as before. If we use the Laplace kernel, we can obtain explicit expressions for the distance gained

in each year (ct) and the percentage of high dispersers (Ht) in terms of the previous year. After some tedious436

calculations, we find the following.

Lemma 3 Let k be the Laplace kernel with parameter v, let ct and Ht denote the distance advanced in the438

t-th year and the fraction of high dispersers at the front. Then we have the recursion equations

ct+1 =

√
v

2
ln

p1(1− µ1) + [p1(1− µ1)(1−Ht) + p2(1− µ2)Ht]
(
ect

√
2
v − 1

)
2a

 (S18)

and440

Ht+1 =
p2(1− µ2)H(t)[F (ct+1 + ct)− F (ct)]

p1(1− µ1)(1− F (ct+1 + ct)) + p2(1− µ2)Ht[F (ct+1 + ct)− F (ct)]
. (S19)

These formulas look unwieldy, but they turn out to be much faster to simulate than the spatial system

with the convolution integral and have some special properties that we summarize in the next lemma.442

Lemma 4 The updating functions in the previous lemma, i.e., the right-hand sides of (S18) and (S19) are

monotone functions with respect to ct and Ht. This implies that the solution of the recursion is monotone444

and, since it is also bounded, it converges to a fixed point, (c∗, H∗), given by the expressions

E(1− E) =
2a

p2(1− µ2)
, E = e−c∗

√
2
v (S20)

and446

H∗ =
1− p1(1−µ1)

p2(1−µ2)
− p1(1− µ1)

E2

2a

1− p1(1−µ1)
p2(1−µ2)

. (S21)
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This result is remarkable for several reasons. First, it allows us to calculate explicitly the asymptotic speed

c∗ and the corresponding fraction of high dispersers at the front, H∗. Second, it says that the asymptotic448

speed c∗ depends only on the movement behavior and mortality of the high disperser, not on that of the low

disperser (since the equation for E does not contain parameters p1 and µ1). The caveat is that there can be450

two solutions for E, and therefore for c∗, because the equation is quadratic. However, in most simulations,

only one of the two solutions for c∗ has a positive value of H∗ associated with it. That is the relevant one.452

The analysis of the approximate model shows exactly the same qualitative behavior as the simulation

model in the main text (Fig. S4). In analogy with Fig. 4 (a)–(c), we plot the speed with (top) and without454

(middle) sorting and their difference (bottom). As for the simulation model, we find that spatial sorting

slows down range expansion near the extinction limit and speeds them up far from it. We conclude that456

these findings are robust with respect to model details.
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Figure S4: Comparing the speed with (top) and without (middle) sorting. The difference is plotted in the

bottom panel. The analysis gives straight lines. Parameters are p1 = 0.6, p2 = 0.7 and v = 0.25, which gives

b =
√

v/2 ≈ 0.35355.
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